
Distributed Disaster Disclosure

Algorithms for Event Detection

Stefan Schmid

Collaborators:
Bernard Mans

Roger Wattenhofer

Wroclaw Information
Technology Initiative (2008)

Stefan Schmid @ Wroclaw, 2008 2

Motivation

DISTRIBUTED COMPUTING

• Talk deals with natural disasters
- Flooding, earthquakes, fires, etc.

• Need for fast disclosure
- to warn endangered towns (shelter)
- to inform helpers (e.g., firemen)

Our focus: environmental monitoring and early warning systems

Stefan Schmid @ Wroclaw, 2008 3

Today’s Warning System

DISTRIBUTED COMPUTING

• Different kinds of warning systems
- Satellites
- Seismic sensors
- Smoke detectors
- etc.

• Focus of this talk: Sensor nodes
- Simple „computers“ with sensors
- Sensors measure physical properties (e.g., heat)
- Basic wireless communication
- Cheap, can be distributed over a certain area
- Limited energy supply

Stefan Schmid @ Wroclaw, 2008 4

Why Sensor Nodes?

DISTRIBUTED COMPUTING

• Example: SENTINEL
- Australian bushfire monitoring system
- Based on satellites
- Provides timely information about hotspots
- Satellites may miss certain heat sources,
e.g., if there is smoke!

- Sensor nodes can be a good alternative

Stefan Schmid @ Wroclaw, 2008 5

Example: A Distributed Sensor System

DISTRIBUTED COMPUTING

• Based on laptops
- not a classic sensor network

• Earthquake network
- Jesse Lawrence (Stanford),
Elizabeth Cochran (Riverside)

- E.g., Apple laptops since 2005 are outfitted with
accelometers, to protect harddrive when
falling; or USB shake sensors

- Fill the „gaps“ between
seismometers already in place in
California.

• Goal: early warning of quakes based on
gentle waves before the more brutal
ones come. (E.g., stop high-speed trains)

Stefan Schmid @ Wroclaw, 2008 6

Algorithmic Perspective

DISTRIBUTED COMPUTING

• Given a sensor network
- Local event: connected subset of nodes
senses event (simultaneously)
- „connected event component“

• Goal of distributed algorithm
- Determine total number of nodes which
sensed the event (size of event component)

- Algorithm should be fast
- Output sensitive: In case of „small disasters“, only a small
number of messages is transmitted.

- In case of large disasters, an alarm can be
raised (e.g., priority = depends on event component size)

Stefan Schmid @ Wroclaw, 2008 7

Model

DISTRIBUTED COMPUTING

• Preprocessing of graph is allowed

- Only unknown: subset of nodes where event will happen

• Evaluation

- Time complexity: time needed until at least one node knows event
component size s
- Communication complexity: total number of messages sent

• Assumptions
- All nodes sense event simultaneously
- „Synchronous“ environment (upper bound on message transmission time)
- Nodes which did not sense event can also help to disclose the disaster by
forwarding messages (on-duty model)
- Only one event (can easily be generalized)

Stefan Schmid @ Wroclaw, 2008 8

Appetizer: What about the Tree?

• Efficient disaster disclosure on undirected tree?

• Idea: in preprocessing phase, make the
tree directed!

• At runtime: each node v immediately
informs its parent in case of an event;
subsequently, wait until all event-children
counted the total number of event
nodes in their subtrees

Time O(d), Messages O(s)
d ... Diameter of component

s ... Size of component
=> asymptotically optimal!

Stefan Schmid @ Wroclaw, 2008 9

The Neighborhood Problem (1)

• A first challenge for general graphs: how can a node find out which
of its neighbors also sensed the event? Called the neighborhood
problem.

• Asking all neighbors is expensive: e.g., star graph where only center
has event:

event component size s=1,
but requires n-1 messages!

• Better idea: only ask neighbors with higher degree? Works for this
example! But what about the complete graph? Lower bound n??

Stefan Schmid @ Wroclaw, 2008 10

The Neighborhood Problem (2)

• Idea: construct a sparse neighborhood cover in preprocessing
phase!
- A set of node sets with certain properties

• Concretely: cover ensures small diameter („local“), where at least
one set includes t-neighborhood of each node (for parameter t), and
where nodes are in not too many sets (small membership count)

Stefan Schmid @ Wroclaw, 2008 11

The Neighborhood Problem (3)

• Solution with neighborhood cover:
- Preprocessing: compute (log n, 1)-neighborhood cover (clusters with log
diameter, nodes in at most log sets, 1-neighborhoods included); for each set,
define a cluster head (CH) (e.g., node with smallest ID), and compute shortest
paths to CH
- Runtime: Event node informs all its cluster heads, which will reply with
corresponding neighbor list

• Analysis (of neighborhood problem only):
- Time O(log n) and O(s polylog(n)) messages
– Small cluster diameter ensures fast termination
– Small membership count / sparseness ensures low message complexity

set includes all neigbhors of v
v

CH

CHCH

Stefan Schmid @ Wroclaw, 2008 12

Disaster Disclosure on General Graphs

• How to compute the event component size in general graphs?

• Algorithm 1: Hierarchical network decomposition

• Algorithm 2: Merging trees and pointer jumping

Stefan Schmid @ Wroclaw, 2008 13

Hierarchical Network Decomposition (1)

• Use exponential hierarchy of covers: D1 = (log n, 1), D2 = (log n, 2), D3 = (log n,
4), ..., Di = (log n, 2i), neighborhood increases exponentially
- diameter also increases, sparseness remains logarithmic
- then: CHs and shortest paths

• Runtime:
- First all event nodes in active state
- Contact CHs to learn 1-neighborhood (cover log n, 1)
- Then, go to larger decompositions iteratively
- Active nodes inform CHs about event component K part they already know
- Cluster head does the following:
(1) if component entirely contained in cluster => output size, done.
(2) if component hits boundary of cluster, determine node with largest ID in

component K; if this node‘s entire 2i neighborhood is contained in C, make this
the only remaining active node, otherwise set all nodes to passive (=> not too
many nodes continue exploration, low message complexity).

Stefan Schmid @ Wroclaw, 2008 14

Hierarchical Network Decomposition (2)

• Observation:
- largest node in component always
survives (until entire component included)

- in phase i, at least 2i nodes have to be passive
for an active node

- number of active nodes decreases
geometrically

Runtime O(d log n) and at most O(s log d log n) messages needed.
d... weak diameter
of component
(ess. last cluster diameter)

in each phase s log n messages are sent,
and there are log d many phases

Stefan Schmid @ Wroclaw, 2008 15

Merging Forests and Pointer Jumping

• Idea:
- Solve neighborhood problem with (log n, 1)-cover
- Each event node selects parent = neighboring event node with larger ID (if any)
- Start merge forest: learn about root („pointer jumping“) and join the largest
neighboring tree

- Hence, in phase i, minimal tree is of
size at least 2i

Runtime O(d log s + log s log n) and
at most O(s log s (d+log n)) messages
needed.

[Time: log n for neighborhood problem. Single tree after log s phases,
as tree size doubles. Star conversion with PJ in log s time, each hop
taking time at most d. Amortized over all phases also d log s.
Convergecasts take time d. Asking children about size of neighboring
trees is neighborhood problem, time log n, for each of log s many
rounds.]

Stefan Schmid @ Wroclaw, 2008 16

Summary

• Easy in special graphs, e.g., on trees

• Algorithm 1: Hierarchical network decomposition

• Algorithm 2: Merging trees and pointer jumping

Runtime O(d log n) and at most
O(s log d log n) messages needed.

Runtime O(d log s + log s log n) and
at most O(s log s (d+log n)) messages
needed.

Stefan Schmid @ Wroclaw, 2008 17

Conclusion

• Distributed event detection and alarming

• Two first algorithms
- Network decomposition
- Merging trees

• Open problems
- Alternative algorithms? Distributed MST construction on general graphs?
- Off-duty model: Non-events node are in sleep mode
- Lower bounds
- Smaller messages?
- Faulty environments when components are not necessarily connected?
- Dynamic case: e.g., detection of large wave fronts?
- etc.

Stefan Schmid @ Wroclaw, 2008 18

Dziekowac!

Slides and papers at
http://www14.informatik.tu-muenchen.de/personen/schmiste/

	Distributed Disaster Disclosure ��Algorithms for Event Detection
	Motivation
	Today’s Warning System
	Why Sensor Nodes?
	Example: A Distributed Sensor System
	Algorithmic Perspective
	Model
	Appetizer: What about the Tree?
	The Neighborhood Problem (1)
	The Neighborhood Problem (2)
	The Neighborhood Problem (3)
	Disaster Disclosure on General Graphs
	Hierarchical Network Decomposition (1)
	Hierarchical Network Decomposition (2)
	Merging Forests and Pointer Jumping
	Summary
	Conclusion
	Slide Number 18

