
Distributed Disaster Disclosure 

Algorithms for Event Detection

Stefan Schmid

Collaborators:
Bernard Mans

Roger Wattenhofer

Wroclaw Information 
Technology Initiative (2008)



Stefan Schmid @ Wroclaw, 2008 2

Motivation

DISTRIBUTED COMPUTING

• Talk deals with natural disasters
- Flooding, earthquakes, fires, etc.

• Need for fast disclosure
- to warn endangered towns (shelter)
- to inform helpers (e.g., firemen)

Our focus: environmental monitoring and early warning systems
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Today’s Warning System

DISTRIBUTED COMPUTING

• Different kinds of warning systems
- Satellites
- Seismic sensors
- Smoke detectors
- etc.

• Focus of this talk: Sensor nodes
- Simple „computers“ with sensors
- Sensors measure physical properties (e.g., heat)
- Basic wireless communication
- Cheap, can be distributed over a certain area
- Limited energy supply
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Why Sensor Nodes? 

DISTRIBUTED COMPUTING

• Example: SENTINEL
- Australian bushfire monitoring system
- Based on satellites
- Provides timely information about hotspots
- Satellites may miss certain heat sources,
e.g., if there is smoke!

- Sensor nodes can be a good alternative
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Example: A Distributed Sensor System

DISTRIBUTED COMPUTING

• Based on laptops
- not a classic sensor network

• Earthquake network
- Jesse Lawrence (Stanford), 
Elizabeth Cochran (Riverside)

- E.g., Apple laptops since 2005 are outfitted with
accelometers, to protect harddrive when
falling; or USB shake sensors

- Fill the „gaps“ between
seismometers already in place in 
California.

• Goal: early warning of quakes based on 
gentle waves before the more brutal 
ones come. (E.g., stop high-speed trains)
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Algorithmic Perspective

DISTRIBUTED COMPUTING

• Given a sensor network
- Local event: connected subset of nodes
senses event (simultaneously)
- „connected event component“

• Goal of distributed algorithm
- Determine total number of nodes which
sensed the event (size of event component)

- Algorithm should be fast
- Output sensitive: In case of „small disasters“, only a small
number of messages is transmitted.

- In case of large disasters, an alarm can be
raised (e.g., priority = depends on event component size)
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Model

DISTRIBUTED COMPUTING

• Preprocessing of graph is allowed

- Only unknown: subset of nodes where event will happen

• Evaluation

- Time complexity: time needed until at least one node knows event 
component size s
- Communication complexity: total number of messages sent

• Assumptions
- All nodes sense event simultaneously
- „Synchronous“ environment (upper bound on message transmission time)
- Nodes which did not sense event can also help to disclose the disaster by 
forwarding messages (on-duty model)
- Only one event (can easily be generalized)
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Appetizer: What about the Tree?

• Efficient disaster disclosure on undirected tree?

• Idea: in preprocessing phase, make the
tree directed!

• At runtime: each node v immediately
informs its parent in case of an event; 
subsequently, wait until all event-children
counted the total number of event
nodes in their subtrees

Time O(d), Messages O(s)
d ... Diameter of component

s ... Size of component
=> asymptotically optimal!
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The Neighborhood Problem (1)

• A first challenge for general graphs: how can a node find out which 
of its neighbors also sensed the event? Called the neighborhood 
problem.

• Asking all neighbors is expensive: e.g., star graph where only center 
has event:

event component size s=1,
but requires n-1 messages!

• Better idea: only ask neighbors with higher degree? Works for this 
example! But what about the complete graph? Lower bound n??
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The Neighborhood Problem (2)

• Idea: construct a sparse neighborhood cover in preprocessing 
phase! 
- A set of node sets with certain properties

• Concretely: cover ensures small diameter („local“), where at least 
one set includes t-neighborhood of each node (for parameter t), and 
where nodes are in not too many sets (small membership count)
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The Neighborhood Problem (3)

• Solution with neighborhood cover:
- Preprocessing: compute (log n, 1)-neighborhood cover (clusters with log 
diameter, nodes in at most log sets, 1-neighborhoods included); for each set, 
define a cluster head (CH) (e.g., node with smallest ID), and compute shortest 
paths to CH
- Runtime: Event node informs all its cluster heads, which will reply with 
corresponding neighbor list

• Analysis (of neighborhood problem only): 
- Time O(log n) and O(s polylog(n)) messages
– Small cluster diameter ensures fast termination
– Small membership count / sparseness ensures low message complexity

set includes all neigbhors of v
v

CH

CHCH
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Disaster Disclosure on General Graphs

• How to compute the event component size in general graphs?

• Algorithm 1: Hierarchical network decomposition

• Algorithm 2: Merging trees and pointer jumping
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Hierarchical Network Decomposition (1)

• Use exponential hierarchy of covers: D1 = (log n, 1), D2 = (log n, 2), D3 = (log n, 
4), ..., Di = (log n, 2i), neighborhood increases exponentially
- diameter also increases, sparseness remains logarithmic
- then: CHs and shortest paths

• Runtime:
- First all event nodes in active state
- Contact CHs to learn 1-neighborhood (cover log n, 1)
- Then, go to larger decompositions iteratively
- Active nodes inform CHs about event component K part they already know
- Cluster head does the following: 
(1) if component entirely contained in cluster => output size, done. 
(2) if component hits boundary of cluster, determine node with largest ID in 

component K; if this node‘s entire 2i neighborhood is contained in C, make this 
the only remaining active node, otherwise set all nodes to passive (=> not too 
many nodes continue exploration, low message complexity). 
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Hierarchical Network Decomposition (2)

• Observation:
- largest node in component always
survives (until entire component included)

- in phase i, at least 2i nodes have to be passive
for an active node

- number of active nodes decreases
geometrically

Runtime O(d log n) and at most O(s log d log n) messages needed.
d... weak diameter
of component
(ess. last cluster diameter)

in each phase s log n messages are sent, 
and there are log d many phases
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Merging Forests and Pointer Jumping

• Idea:
- Solve neighborhood problem with (log n, 1)-cover
- Each event node selects parent = neighboring event node with larger ID (if any)
- Start merge forest: learn about root („pointer jumping“) and join the largest
neighboring tree

- Hence, in phase i, minimal tree is of 
size at least 2i

Runtime O(d log s + log s log n) and 
at most O(s log s (d+log n)) messages
needed.

[Time: log n for neighborhood problem. Single tree after log s phases,
as tree size doubles. Star conversion with PJ in log s time, each hop
taking time at most d. Amortized over all phases also d log s. 
Convergecasts take time d. Asking children about size of neighboring
trees is neighborhood problem, time log n, for each of log s many
rounds.]
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Summary

• Easy in special graphs, e.g., on trees

• Algorithm 1: Hierarchical network decomposition

• Algorithm 2: Merging trees and pointer jumping

Runtime O(d log n) and at most
O(s log d log n) messages needed.

Runtime O(d log s + log s log n) and 
at most O(s log s (d+log n)) messages
needed.
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Conclusion

• Distributed event detection and alarming

• Two first algorithms
- Network decomposition
- Merging trees

• Open problems
- Alternative algorithms? Distributed MST construction on general graphs?
- Off-duty model: Non-events node are in sleep mode
- Lower bounds
- Smaller messages?
- Faulty environments when components are not necessarily connected?
- Dynamic case: e.g., detection of large wave fronts?
- etc.
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Dziekowac!

Slides and papers at
http://www14.informatik.tu-muenchen.de/personen/schmiste/
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