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ABSTRACT

Denial of service (DoS) attacks are arguably one of the mast-c
bersome problems in the Internet. This paper presentsrébdistd
information system (over a set of completely connectedessjv
called Chameleorwhich is robust to DoS attacks on the nodes as
well as the operations of the system. In particular, it alovedes
to efficiently look up and insert data items at any time, despi
powerful “past-insider adversary” which has complete kienge
of the system up to some time pointand can use that knowledge
in order to block a constant fraction of the nodes and injecklip
and insert requests to selected data. This is achieved veithaat
randomized replication policy requiring a polylogaritltnaverhead
only and the interplay of a permanent and a temporary digith
hash table. All requests in Chameleon can be processedyitogel
arithmic time and work at every node.

Categoriesand Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems

General Terms
Algorithms, Theory

1. INTRODUCTION

It is widely believed that distributed denial of service &aat-
tacks are one of the biggest problems in today’s open dig#ib
systems, such as the Internet. Attackers use the fact that In
net servers are typically accessible to anyone in order ¢olaad
them with bogus requests from so-calleat nets which are large
groups of machines that are under their control [31, 32].nEplas
of such attacks include downloading large files [24], cagismmpu-
tationally expensive operations [9], or just overloadiegvers with
junk. Some popular information services like Google and rAka

are under constant DoS attacks, and also the Domain Name Sys-

tem has been hit several times by major DoS attacks durintashe
years [13].

*Research partly supported by the DFG-Project SCHE 1592/1-1

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SPAA’09 August 11-13, 2009, Calgary, Alberta, Canada.

Copyright 2009 ACM 978-1-60558-606-9/09/08 ...$5.00.

Christian Scheideler
Dept. of Computer Science
University of Paderborn
D-33102 Paderborn
Germany

scheideler@upb.de

Stefan Schmid
Dept. of Computer Science
Technische Universitat Minchen
D-85748 Garching bei Miinchen
Germany

schmiste@in.tum.de

The predominant approach to deal with the threat of DoS:hdta
is the introduction ofedundancy Information which is replicated
on multiple machines is more likely to remain accessiblerdua
DoS attack. However, storing and maintaining multiple espof
each data item can entail a large overhead in storage andeupda
costs. In order to preserve scalability, it is thereforalvibat the
burden on the servers is minimized.

This paper presents a distributed information system dalle
Chameleonwhich is provably robust against large-scale DoS at-
tacks. This is even true if the attacker is a past insider With
knowledge of the system’s internals up to a certain time tpin
(which may be unknown to the system). As has been pointed out
in [2], robustness to such attacks is a crucial feature, ag/reecu-
rity breaches in corporate systems are caused by humanagrdor
negligence (which may temporarily expose the system to the o
side world) as well as past insiders (such as temporary at éne-
ployees). The Chameleon system can process put and gesteque
efficiently at any time despite a massive ongoing DoS attaxk a
even though the put and get requests were selected by thesadve
The trick of our system is that it employs a smart replicastnat-
egy whose appearance cannot be predicted by the attackere(he
the system’s name) though the data can still be efficientiatied.

In fact, in Chameleon, it is sufficient to employ a logaritemredun-
dancy, even if we allow the adversary to block a constantifraof
all servers.

1.1 Mode€

In a distributed information system (e.g., a collaborasystem
consisting of many servers located at different comparms}kitiata
is distributed among multiple servers, simply calleadesin the
following. We assume that we are given a name spga@nd each
data itemd is identified by its name in that space. All data items are
of unit size (e.g., we are dealing with a block-level storagstem).
To provide a basic lookup service, the following operatibase to
be implemented:

e Put(d): this inserts data itend into the system (if nothing has
been stored under its name before) or updates it (if its name
has already been used).

e Get(hame: this returns the data iteshwith Name{)=name
or L if no such data item exists.

We assume that the set of nodes in the system is fixed and that al
nodes are honest and reliable (since we are dealing withvarser
based system). However, there is an adversary that has wWer po
to shut down (or block) up ten nodes at any time (by a DoS at-
tack), for some constamt> 0 that we would like to be as large as
possible without harming the functionality of the systemotder to
keep the description of our problem at a reasonable levehsseme
that time proceeds istepsthat are synchronized among the nodes.



Note however that using local synchronizers [23], our athors 1.2 Related Work

also work in asynchronous settings. All we need is a boundetst Due to their importance, DoS attacks are a well-studiedlprob
mission time between two non-attacked nodes. In each tiefg st (e g., [5, 18] for an overview). Unfortunately, it is ofteiffitult to
every node is able to send and receive a polylogarithmic atnefu  gjstinguish Do$ traffic from legitimate traffic, which remdenany

information and as long as this bound is satisfied, any messen network-layer and transport-layer DoS prevention tootshsas in-
out by some node to some nodev will arrive at w within the next stalling a box to filter out anomalies [15], blacklisting peular 1P
time step (or be dropped if is blocked). In this way, a node can  addresses, using TCP SYN cookies [3], pushback [8], etoh-pr
easily determine whether another node is blocked by nofviege  |ematic [31]. This observation has led some researchereofmpe
an acknowledgment of its message within two time steps. means how legitimate clients can “speak up” and thus be iident
We allow the adversary to block any set of nodes and issuewtny p - fied [31, 32], for example.

and get requests, but the rate at which it can do this is limikeor In this paper, we do not seek to prevent DoS attacks, butrfthe
simplicity, we will assume a batch-like mode in which the ¢ifs cus on how to maintain a good availability and performanaingu

partitioned into so-callephasegthat should be as short as possible; - the attack. Our system is based on the distributed hash(@bi€)
in our caseD(log” n) time steps suffice). At the beginning of each  paradigm (e.g., [4, 6, 7, 25, 30]). In particular, we follove@nsis-
phase, the adversary selects an arbitrary, fixed set obdes that  tent hashingapproach [10] in order to store the data and employ the

will be blocked throughout that phase. It also selects aitrarp set continuous-discrete techniquegesented in [20] for communication

of put and get requests (including multiple requests to éineesdata between the servers.

item or get requests to non-existing data items) with at noost DoS-resistant systems based on DHTs have already been stud-
request per non-blocked node. The goal of the system is ¥@ser jed in [11, 12, 19]. For instance, the Secure Overlay Sesvige

all of these requests within the given phase without ovelifiany proach [12] useproxieson Chord to defend against flooding DoS
node with data over time. A get request for some data iteis attacks. A Chord overlay is also used by the Internet Indvadn-
servedcorrectly if a most recenversion ofd is returned and this  frastructurei3 [29] to achieve resilience to DoS attacks. Other DoS
most recent version isnique That s, a version of is delivered that limiting architectures have been proposed in [21, 33]. Mafrthese
belongs to a put request in a most recent phase (including.thent systems are based on traffic analysis or some indirectioroapp.
phase), and between two phases with updates afl get requests Replication strategies have already been investigatelkiron-

for d return the same version df This implies that if multiple put  text of flash crowdproblems in DHTs. Important literature in
requests are issued for the same name in the same phasentien o the systems community includes CoopNet [22], Backslash ¢27

one of them will win, i.e., will determine the unique versitrat PROOFS [28], and there is also theoretical work [20]. Howeve
will be stored under that name. o these works only consider scenarios where many requestarare
A data itemd is said to have aedundancyof r if r times more  geted to the same data item, but not to many different itanike
storage (including any control storage fdyis used ford than is  same location Techniques originally proposed for CRCW PRAMSs
needed when just storing the plain item. Anode is catlegtloaded  [17] allow one to overcome these limitations [1], althougtiycfor
if its storage load is by more than a constant factor largen the application layer attacks (i.e., the adversary selectptheand get
average load in the system. . requests but does not block nodes) and not DoS attacks.
Of course, if the adversary knows everything about the syste  Thjs paper builds upon the archival system by Awerbuch and
and the data items have a small redundancy, then it is imgedsi Scheideler [2]. The authors consider the same past-inBid&rat-

the system to serve all requests in a correct way. Hence, suenes  tack as we do in this paper. They observe that the basic agEsa
that the adversary is past insider i.e., it only knows everything  for distributed systems fail in this contexxplicit data structures
about the system up to some phaséhat may not be knowntothe (e g., skip graphs) do not achieve correctness and rotssstne
system. Aftetto, the adversary cannot inspect nodes or communica- der DoS-attacksgistributed hash tablesre not robust since, in
tion between the nodes anymore—it can only block nodes anetis  our model, the adversary knows exactly where data will béi-rep
requests. The goal of the system will be to ensure the foligwi  cated; andandom placement strategiesply costly lookup opera-
properties in any phase (before and aftgmwithoutknowingo): tions that do not scale. Hencehgbrid versionof a hash table and
random placement is proposed: A data item is replicatedorahd
in increasingly large vicinities of the location given by @ublic)
0hash function on the data item; the larger the vicinity, tighar
the lookup cost, but the smaller the probability that theeasiary
blocks the replica. Unfortunately, however, the randonceaent
2) RobustnessAll get requests for data that was inserted or last strategies in [2] can only handle get requests, which lithiesap-
updatedafter t, are served correctly under any adversarial proach to archival and information retrieval systems likeo@le or
attack within our model. Akamai. Instead, our system described here can also hpntlte-
o N ) questswhile an attack is going on. Being able to handle arbitrary
Achieving these conditions is not an easy task as the sysi@m ¢ combinations of put and get requests requires a significsehe

1) Scalability Every node spends at most polylogarithmic time
(number of communication rounds) and work (number of
messages) in order to serve all requests in a phase and n
node will get overloaded over time.

not afford to continuously replace all the data in it (re¢hlit the sion of [2] which consists of a complex mix of topology andalat
system doesiot know ¢, and we have no bound on the number of - management techniques as well as proper routing strategiesn
data items in the system). Also, no long-term informatiodirig be seen from the lengthy description of our system in theofetbis

techniques can be used (as the adversaryuiaknowledge of the paper.

system up to phase). Yet, there is a solution. The Chameleon sys-

tem we propose in this paper is the first system that can azlaiév . .

of these goals. In fact, it just needs a logarithmic redunggwhen 1.3 Our Contributions

using Reed-Solomon coding, for example) and phases ofquayl To the best of our knowledge, this is the first work to present a
rithmic length. distributed information system that can process any setibfpd

For simplicity, we will assume that the total number of ngdes get requests in a correct and scalable manner even whenstezsy
n, is a power of two, and that the nodes are humbered ficim is under a past-insider attack. This is achieved with a nowealgo-
n — 1. The size of the name univerggéis defined asn, wherem rithm and the interplay of two distributed hash tables, agerary

is polynomially bounded im. and a permanent one. We show the following result:



THEOREM 1.1. Chameleon requires only a logarithmic redun-

with up-to-date information on the requested data item witffi-

dancy so that any set of put and get requests with at most ane pe cient probability.

non-blocked node can be processed in a scalable and robustena
w.h.p., for any past-insider adversary within our model.

Throughout the papemyith high probability or w.h.p, means
with probability at least — 1/n° for a constant that can be made
arbitrarily large. A logarithmic redundancy requires R&mlomon
codes. If coding strategies are not allowed, the redundahoyr
system isO(log® n). The runtime needed to process all put and get
requests in a phase @(log? n).

Notice that we ar@ot proposing a peer-to-peer system for robust
storage management ass fixed and the servers are assumed to be
honest and reliable. Thus, we can afford to assume in Chamele
that all the servers know each other as these days even sapaop
easily store millions of IP addresses in their main memoryr O
main concern is to store the data items in a scalable waygbiesj
scalable and dynamic topologies of potentially untrusiezsghat
can withstand massive DoS attacks appears to be very chiaslten
(if not impossible) and is left for future research.

1.4 Tools

In our paper, we will frequently make use of the well-known
Chernoff bounds [16]:

THEOREM1.2 (CHERNOFFBOUND). LetX;,..., X, bein-
dependent binary random variables. Considér=>""  X; and
let x = E[X]. Then it holds for alb > 0 that

s M
PriX > (140)u] < (W) (1)
524
< e 2AF/B
Furthermore, it holds for alD < § < 1 that
=8 Iz
PriX <(1-0)u] < (m) 2

< 6762#/2 .
Inequality (1) also holds for any > E[X], and Inequality (2)
also holds for any. < E[X].

1.5 Paper Organization

The remainder of this paper is organized as follows. Ourrinfo
mation system is described in Section 2. After giving an aesv
on the overall architecture and the protocols, we deschibgpérma-
nent and temporary DHTs in Sections 2.1 and 2.2. In the sulesgq
four subsections, the four stages of our protocol are desdrand
analyzed in detail. These stages are used to build the temypor
DHT and process the requests; they are executed in everg.phas
The paper is concluded in Section 3.

2. THECHAMELEON SYSTEM

The t-storeis a classic dynamic DHT that constantly refreshes
its topology as well as the positions of its data items in dicieht
manner. The random structure of thatoreis hence not known
to a past insider. Théstoreis redundant in the sense that small,
completely interconnected clusters of nodes are resplerfsibeach
identifier. It serves as a buffer before the data items areesstully
transferred to and replicated randomly in {hetore The t-store
can afford to replace all of its data items in each phase ae\vgply
only containgD(n) many w.h.p.

On a high level, a phase of the Chameleon system proceeds as
follows:

1. Build a newt-storefrom scratch and transfer all data from
the oldt-storeto the newt-store(if possible). As we will see,
thet-storeis based on a logarithmic-degree network and there
will never be too much data in thestore w.h.p., so that this
step is not too expensive.

2. Process all put requests in thetore

. Process all get requests in thetoreand if a get request can-
not be served there (because no information is available for
the given name), process it in tpestore

. Try to transfer all data items in thiestoreto thep-store Any
data item that cannot be stored in fhatore(due to blocked,
congested or overloaded nodes) is left in tistore

In the following, we start with a description of thestoreand the
t-store which is followed by a detailed description of each of the
stages above. Whenever we say “for a fixed and sufficientgelar
constantz > y”, we mean a constant that can be any number
at leasty, and the larger the constant, the better is the expoment
in our high probability bounds of the form— 1/n”. Sometimes,

y may be large because we did not try to optimize constants. In
our analysis, we will assume that our hash functions arettikly
random functions, bub (log n)-universal hash functions suffice for
our temporary hash functions so that they can be efficielnsketn-
inated.

21 Thep-Store

The p-storeis similar to the archival system by Awerbuch and
Scheideler [2], with some extensions to be able to handlegut
quests. In thg-storethe nodes are completely interconnected. Like
in consistent hashing, nodes and data items are mappednts [joi
the[0, 1)-interval. For each € {0, ...,n—1}, nodei is associated
with the pointi/n andresponsibleor the interval[i/n, (i + 1) /n),

i.e., it stores all data items that are mapped to a point imtes-

val. Sincen is a power of two, for any point € [0, 1) with binary
representatior = >, x;/2°, we only need the firsiogn bits
Z1,...,Tlogn iN Order to determine the responsible node. Hence,
w.l.0.g., we assume that all pointonsidered below only udeg n

bits.

The data management of the Chameleon system relies on two The mapping of the data items|@ 1) is based o = ©(log m)

stores the permanenp-store and the temporary-store The
two stores can be regarded as extensions of distributedthbkds
(DHTSs). Thep-storeis a static DHT (holding an arbitrary number
of data items), in which the positions of the data items amedfiom-
less they are updated. Tipestoreis similar to the hybrid structure
introduced in [2], where data is replicated at increasirglydom
positions in the vicinity (w.r.t. the identifier space) oktlocations
given by the (public) hash functions. The lookup is esséptitone
in increasingly large vicinities bflooding this costs more in larger
vicinities, but at the same time, it becomes increasingtgéafor
the adversary to block sufficiently many positions to bloddes

hash functiongis, ..., he : U — [0,1). This set of hash functions

is fixed and hence also known by the past insider. To be useful
for our system, the hash functions have to fulfill certainamgion
properties to be explained later (cf also [2]).

In order to select suitable points for the data items, gkstore
organizes the nodes into levelghat are consecutively numbered
from O tolog n. For each data itend, the lowest levet = 0 gives
fixed storage locations; (d), ..., hc(d) for d of whichO(log n) are
picked at random to store up-to-date copiesiofThese locations
are called theoots of d. For larger levels, the same number of
copies is stored, but an increasing randomness is intradincéne



storage locations. Thus, for larger levels, searching fpesomore
expensive as the entropy of the location increases. Howéver
probability that the adversary manages to block all copfesdata
item in some level declines.

Concretely, we seek to store replicas along so-cailefix paths
in the p-store(cf Figure 1). Letpre(zx,y) denote the length of the
longestcommon prefix ofc andy, that is,pre(z,y) = 4 if and only
if 1 = y1,22 = y2,..., 2, = y; andx;41 # yi+1. We define
Ty(z) = {z € {0, 1}1°g” | pre(z,z) > logn — ¢} to be the set
of all pointsz € [0,1) (using the encoding = 3_ ., z:/2") such
that at most of the least significant bits of and z are different.
A sequenceR = (ye¢,ye—1,--.,Y0) Of points such thay, = =
and for eachi > 0, y; € Ti(x), is called aprefix pathto x of
length £. The set of all possible prefix paths ioof length ¢ is
denoted byR.(x). A random prefix patho z is a pathR that is
chosen uniformly and independently at random ff@a(z). Given
ant € N, let7, = {Tu(z) | = € [0,1)}. Certainly,|Z;| = n/2"
and each member @, contains2® points.

Our goal will be to store up-to-date copies of each data item
along ©(log n) randomly chosen prefix paths of lendlbg n to
points inhi(d),. .., h.(d). More precisely, we will try to enforce
the following rule.

p-store Storage Rule: For any data itena in the p-store a setl,
of 71 logn indices is used to storé, wherel,; has been picked
uniformly at random out of at leagt/3 indices in{1,...,c}. All
roots of these indices store (the current valuedfand for every
level ¢ > 1 and index: € I, there is a node picked uniformly at
random out of at least/3 of the nodes iy (h;(d)) that storesi.

The details on how to enforce that rule will be given when we ex
plain the put strategy for the-store In addition to this, we will also
make sure that at moét(log n) outdated copies af are still around
in each level. If this is true then the redundancy of our gferstrat-
egy is limited toO(log® ), and if we employ Reed-Solomon cod-
ing in each level, the redundancy can be reduced(iog »). Each
root h; (d) keeps track of the positions of all the (current and out-
dated) copies of stored along prefix paths ta(d). Thus, in order
to correctly store the copies of a data iteinwe have to have ac-
cess ta2(log n) roots, which may not always be possible due to a
past-insider attack. This is why we also needstore

¢ ha(d) ha(d)

O] @ ® ® ® @ ® ®
D@ ONC -><« D @O
> @ : jk D /@. ® \\\ T
C I G \\y

® Blocked node ® Non-blocked node

Figure 1: Replication in the p-Store.

2.2 Thet-Store

In order to temporarily store data that cannot be storederpth
storedue to a DoS attack, we use thstore The topology of the
t-storeis a de Bruijn-like network with logarithmic node degreettha

is constructed from scratch in every phase. De Bruijn graphs
useful here as they have a logarithmic diameter and a higarexp
sion (e.g., [14]). In order to form this network, we partitithe
[0, 1)-space into intervals of sizelog n/n for some fixed and suf-
ficiently large constani > 2. For anyi > 0, position: - d logn/n
is responsible for the intervdl - dlogn/n, (i + 1) - dlogn/n).
At the beginning of the current phase, each non-blocked mdde
the system chooses uniformly at random one positidnom the
set{0,dlog n/n,25logn/n,36logn/n, ...}. Thus,dlogn many
nodes will share the same position on expectation @(@llog n)
many w.h.p.

Each node that selected positioriries to establish connections
to all other nodes that selected the positienghe cluster connec-
tions), z— := z — Jlogn/n andz4 := x + dlogn/n (thecycle
connectiony and |x/2]s10gn/n aNd [ (1 + x)/2] 5105 n/n (thede
Bruijn connectiony where|a|, means rounding to the closest
integer multiple ofb from below. This results in the union of a re-
dundant cycle with a redundant form of the de Bruijn grapHadt,
when viewing the cluster of nodes assigned to the same @ositi
as a single supernode and the edges between adjacentchstar
edge between their corresponding supernodes, then thensdee
graph forms the union of a cycle and a de Bruijn graph. Once the
t-storehas been established, the nodes at position 0 select a random
hash functiort : U — [0, 1) (by leader election) and broadcast that
to all nodes in the-store The hash function determines the loca-
tions of the data items in the netastore More precisely, for any
data itemd in the oldt-store we now want to stord in the cluster
responsible foh(d) (i.e., whose interval contairis(d)) in the new
t-store In order to do this, each cluster of nodes from thetedtbre
will initiate appropriate insert requests for its old datenis. The
details are explained in the upcoming Section 2.3.

2.3 Stagel: Building a New t-Store

We first describe how the nodes can find the nodes they are sup-
posed to connect to in the netstore This is done with the so-
calledjoin protocol Afterwards, we show how to transfer the data
in the old t-storeto the newt-store which is done with thensert
protocol

The Join Protocol

In order to learn about its neighbors and build all necesiakg
between the nodes, a nodethat selected position,, issues the
following five requests: join(x,), join((xv)-), join((xv)+),
Join (v /2]s10gn/n) @Ndjoin([(1 + 24)/2] 5105 n/n). With the
join(x) operation a node tries to find all other nodes that are exe-
cuting join(x) for the samer. Thejoin(x) operation is executed

in two substages that are synchronized among the nodes.

Preprocessing Stage.

Each non-blocked nodechooses a séf,, of o log n random nodes
in V for some fixed and sufficiently large constant- 3. The edge
setE = {{v,w} | v eV A w e U,} can be shown to form an
expander graph of logarithmic degree among the non-blockeds
w.h.p. (given that the adversary can only block a small @mdtac-
tion of the nodes). Now, this graph can be used to agree ondd set
¢’ = ©(logn) random hash functiongi, ..., g. : [0,1) — [0,1)
via randomized leader election (each node guesses a random b
string and the one with lowest bit string wins and proposes th
hash functions). The process is folklore and can be eastwish
to require jusO(log n) communication rounds w.h.p. until all non-
blocked nodes are informed. Thus, we do not go into details. he

Construction Stage.

Next, each non-blocked nodesends, for each of itgoin(x) re-
quests, a message to the nodes owring), . . ., g (z) in the p-



store As shown in the next lemma, this only creates a logarithmic
congestion.

LeEmMA 2.1. The first round of the construction stage causes a
congestion of at mog?(log n) at any node w.h.p.

PROOF Consider some fixed node. For any nodev let the
binary random variablé&, be 1 if and only ifv sends a message to
w. Sincev chooses its point,, uniformly at random and generates
five join requests based an,, Pr[X, = 1] < 5/n for any given
hash functiong;. When summing up over ail and node, this
results in an expected number &f- n - 5/n = O(logn) nodes.
Since theX,’s are independent, it follows from the Chernoff bounds
that the number of nodes contactingis alsoO(logn) w.h.p. As
each node generates only 5 messages, this bound also hotts fo
messages. O

Thus, every non-blocked node can receive all messagesosiént t
in that step. For a node let M, be the set of nodes that sent a
message to it for point. If w sendsM,, to all nodesy € M., then
every nodev with a join(x) request will learn about all other nodes
in the system with such a request, as shown in the next lemma.

LEMMA 2.2. If the adversary can block at mosy/2 nodes and
the current phase is beyorgd, then for every pair of nodes andv
that send out a join request for the saméhere is at least one node
w that receives both of their messages, w.h.p.

PrRoOFE Focus on any fixed point. Since the hash functions
are chosen independently and uniformly at random, it hadsifly
fixed i that the probability that the owner gf(x) is blocked is at
mostl/2. Thus, the probability that all owners ¢f (x), . . ., g ()

are blocked is at moe{tl/2)c’, which is polynomially small im if

¢ = O(logn) is sufficiently large. Hence, summing up over all
possible points: still gives a polynomially small probability, which
results in the lemma.

Thus, the correct topology of thiestore can be built from the
information obtained by the nodes. Note that Lemma 2.1 atéash
under a current insider attack whereas Lemma 2.2 only warka f
past insider. Altogether, we obtain the following result.

LEMMA 2.3. The join protocol need®(log n) communication
rounds with congestioi® (log n) w.h.p. Moreover, if the current
phase is beyonth, then the nodes form the correestoretopology
at the end, w.h.p.

Thelnsert Protocol

Subsequently, the data items which have been stored in the ol
storeare transferred to the netastore In order to make sure that
this does not cause too much work, we will enforce the foliayvi
rule:

t-store Load Rule: At any time, every cluster stores at most
p1logn data items that belong to thtestore for some fixed and
sufficiently large constarnp; > 4. If that cap is exceeded, data is
deleted, with a priority on the older data, until the cap escteed.

This rule is needed to ensure robustness against storagpksatt
also beforet,. Besides this rule, we need the following lemma,
which uses the fact that the clusters are formed by randore seis
that are not known by the adversary if it was already a pagiens
at that point.

LEMMA 2.4. If the past phase was beyong then any adver-
sarial attack on at most/3 nodes will only block a constant frac-
tion of the nodes in each cluster of the aidtore w.h.p.

PrROOFR The lemma directly follows from the fact that the adver-
sary does not know the membership of the clusters in thé-sidre
and since each cluster consists of a random subset of the dde
(sufficiently large) sized(logn), the Chernoff bounds imply that
the adversary will only manage to block at most half of theesoich
each cluster with a DoS attack on at mags8 nodes, w.h.p. O

With the help of this lemma, we can use the following strat-
egy: For every cluster in the oldstorewith currently non-blocked
nodes, one of its nodes (which may be determined by some ran-
domized local leader election that can be implemented witkime
O(logn) w.h.p.) issues amnsert(d) request for each of the data
itemsd stored in it. Each of these requests is sent to the nodes own-
ing g1(x), ..., g« (x) in the p-store wherex = |h(d)](s10gn)/n-

Each non-blocked node collects, for anyz, all data itemsd to
pointz in D, and forwardsD,, to all nodes inM,, that contacted it
in the join protocol.

From the load rule it follows similar to Lemma 2.1 that the con
gestion caused by the message3 (g n) at any node w.h.p. Also,
Lemma 2.2 implies that at the end all nodes in a cluster thaups
posed to store will know aboutd (given that the current phase is
beyondt,). Hence, we get the following result.

LEMMA 2.5. The insert protocol needs jus!(1) communica-
tion rounds. Moreover, if the past phase was beyandhen all
data items in the old-storeare successfully transferred to the new
t-storeand every node (as well as cluster) in the niestorehas to
store at mosO(log n) data items, w.h.p.

24 Stage2: Put Requestsin t-Store

Once the new-store has been built, the new put requests are
served in thet-store Theseput requests cannot be served in the
same way as the insert requests below since there can beleulti
put requests to the same data item, so we need a different, more
careful approach.

For each of theput(d) requests, we executetgput(d) request.
Eacht-put(d) request aims at storingin the cluster responsible for
h(d). The t-put requests are sent to their destination clusters us-
ing the generic de Bruijn paths. More precisely, a requestisg at
pointz = (x1,. .., Zg») and ending at poing = (y1,. .., Yiogn)
is sent along the cluster nodes responsible for the points
x, (yIOgn yLLye e 7-’Elogn71)7 (ylognfhylog'ruxh BRI xlogn72)7
«ooy (Y2, .-, Ylogn, z1),y. These cluster nodes are indeed con-
nected due to the de Bruijn rule of selecting edges. In order t
handle manyt-put requests for the same name, we use a simple,
well-known filtering mechanism during the routing: Wheneteo
or moret-put requests for the same name meet in a node, then only
one of them survives and the others are deletedt-fat(d) request
arrives at its destination cluster and this cluster alrestdses an old
data itemd’ with name(d’) = name(d), thend' is replaced byi.

If too manyt-put(d) requests fodifferentd have to be forwarded
by a cluster (which does not happen w.h.p. unless we are iaseph
beforet,), we use the following filtering mechanism to keep the
congestion low.

t-store Routing Rule: If t-put requests for more thap, log? n
many data items pass a node at any time, for some fixed and suffi-
ciently large constanp., then only requests for the first log? n

data items are handled and the rest is deleted.

Fortunately, this rule only has to be used if we are in a phase
before or at,, as shown in the following lemma, so for each data
item with at least oné-put(d) request, at least orteput(d) request
will reach its destination cluster.

LEMMA 2.6. If the current phase is beyontd and p2 > 44 is
a sufficiently large constant, then the number of differatadtems
with requests leaving a cluster in a step is at moslog n w.h.p.



PROOF Since the hash functiolis chosen at random and each
cluster contains at mog¥ log n nodes w.h.p., the de Bruijn rout-
ing strategy ensures that for any distribution of the(d) requests
among the nodes, the expected number data items twaitht re-
guests passing a node is at m2$tog n after: hops of the de Bruijn
routing. Also, since the data items have destination clasteat are
independent of each other, the Chernoff bounds imply tretthre
at most4¢ log n such data items w.h.p. [l

Since the combining makes sure that every node will forward a
most O(log n) t-put requests for each data item (namely, to the
nodes of the next cluster in the de Bruijn path), the follayvie-
sult holds.

LEMMA 2.7. Given that every non-blocked node issues at most
one t-put request, all t-put requests can be served in at most
O(log n) communication rounds and with congestion at most
O(log? n) in each step, w.h.p. Moreover, at most one request is
served for each name with taput request and also at least one if
the current phase is beyorng. Also, every cluster in the netastore
has to store at mog?(log n) data items for these requests, w.h.p.

When combining Lemmas 2.5 and 2.7, it follows that every-clus
ter in the newt-store has to store at mosD(logn) data items,
w.h.p., which sums up to a total @(n) data items in the new
t-store However, since the O-notation ignores constants, we also
need to show that there is an absolute bound of. for some con-
stant¢ that is not violated over time after time poiti. We will
address this in Stage 4.

2.5 Stage 3. Processing Get Requests

The processing of the get requests proceeds in two furthgest
First, the get requests are processed irtttereusing thet-getpro-
tocol (with at most one t-get request per node), and all gpiasts
that cannot be served in testoreare processed in thestoreusing
the p-getprotocol.

Thet-Get Protocol

For eachget(name) request, a-get(name) request is executed in
thet-store These requests are sent along the same routes gpdhe
requests above. Like in thteput protocol, we have to deal with the
problem that multiple-get requests exist for the same name. This
can be handled by using combining and splitting. More psedgis
whenever two or moré-get requests meet at some node during the
routing, then only one of them is forwarded and the othersediren
that node. Once thegetrequests have reached their destinations,
they look up the requested data item, if it exists in tfstore and
send it back to their sources along the same paths they came fr
Whenever a returning-get request hits a node that storieget re-
guests to the same name (which were left behind in the forward
phase), the answer of that request is stored in the otheesesjand
all of them are sent backwards to their destinations. We hise t
t-store Routing Rule above in order to filter ostget requests if
requests for too many different data items pass a node.

As the forward phase of theget protocol is equivalent to the
t-put protocol and the backward phase is just the reverse of the for
ward phase, the following lemma follows from Lemma 2.7.

LEMMA 2.8. Given that every non-blocked node issues at most
one t-get request, allt-getrequests can be processed in at most
O(logn) communication rounds and with congestion at most
O(log? n) in each step, w.h.p. Moreover, all requests are served
correctly if the current phase is beyomgland every clusters serves
at mostO(log n) t-getrequests, w.h.p.

The p-Get Protocol

For each destination cluster ot-@et request that cannot serve that
t-getrequest, @-getrequest is issued for that name in {hetore
Thus, we have at most onegetrequest for each name. Distribut-
ing thesep-get requests evenly among the nodes of each cluster
results in a constant number pfgetrequests per node w.h.p. (see
Lemma 2.8). Once they have all been served, the destinations
the corresponding-get requests will receive the answers which are
then delivered back to the sources of thget requests in the same
way as in thet-get protocol. Hence, it remains to describe how to
execute the-getprotocol in thep-store

For thep-getprotocol to work, we assume that tpestoreStor-
age Rule in Section 2.1 is satisfied for all requested datasite
(which turns out to be true for each data item that was lastried
or updated aftety). The p-get protocol consists of three stages:
a preprocessing stage, a contraction stage and an expatagm
The basic approach in these stages goes back to the looktgp pro
col in [2] though we did some significant modifications to méhe
contraction stage more lightweight.

Preprocessing stage

Every non-blocked node checks the state ofi; logn random
nodes inT;(v) for every0 < i < logn, for some fixed and suf-
ficiently large constant; > 8. If more thanl/4 of the (sampled)
nodes inT;(v) are blockedy declaresT’;(v) asblockedand other-
wise unblocked Since the checking can be done in parallel in our
model, this only needs two communication rounds.

Contraction stage

Eachp-gel(d) request issued by some nodselects a random node
vél) € Tiogn(hi(d)) (i.e., out of all nodes in the system) for ale
{1, ..., ¢} and aims at reaching the node responsiblé/f@d) within

at mostH = (31 logn hops, for some fixed and sufficiently large
constants; > 6. Initially, every index: is active. Let the nodes

that are visited in these hops be cth{H, vgi), .... We call a node
vt(i) congested at level if vt(i) receives more thaf:cH different
p-getrequests for levej at timet. For hopt, v checks ifvii)l is
blocked or congested. If so am{ﬂl was sampled out &f;; (hi(x)),

then v,ﬁ” is chosen at random out &f; (h;(z)), otherwisev,fz) is
chosen at random out @f;_1 (h:(z)). If level j = 0 is reached, or
a nodevt(l) is reached that declarés (hi(x)) as blocked, ot =
Blogn, thenv stops going forward for index In the latter two
cases, it deactivates indéxat level 5 (i.e., 7 is considered to be
inactive for levely) and otherwise calls successful At the end of
the contraction stage, nodedeclaregp-get(d) to belong to level
where/ is the smallest level that contains at le2st3 active indices
(i.e., indices that were not deactivated atr earlier). If¢ = 0, then
p-get(d) is calledsuccessful

Each successfyp-getd) request can be immediately served by
contacting all nodes in level 0 with a successfulhs implied by
the p-store Storage Rule. The others have to continue on to the
expansion stage.

The contraction stage obviously needs at moslogn) time.
Let a setl’ € 7, be calledblockedif at least1/3 of its nodes
are blocked. Also, lefl” be calledcongested at time if at least
2062cH - 27 messages are sent to it in some time stefhe follow-
ing lemmas hold.

LEMMA 2.9. For any setl’ € 7, that is blocked it holds that for
all p-getd) requests and indiceswith T" = T¢(h;(d)), index: will
be deactivated at a levgl> /.

PROOF Suppose that s&f € 7; is blocked, and leb be any
non-blocked node iff". Then, on expectation, at least3 of the



a1 logn nodes sampled by out of T are blocked, and since these
nodes are sampled independently at random, the Chernoffolsou
imply that at leastl/4 of the sampled nodes are blocked w.h.p.
(given thata; > 8 is sufficiently large). Hence, every nodelh

will considerT to be blocked in the preprocessing stage w.h.p. So
according to thgp-getprotocol, anyp-get(d) request will deactivate
any index: with T' = T, (h;(d)) at latest at levef. O

LEMMA 2.10. Consider anyp-ge{d) request and index with
T = T,(hi(d)) that is at level¢ at a time wheril" is congested.
Then index will be deactivated at level.

PrROOF If T is congested, then the expected congestion of ev-
ery node il is at leasR32cH and therefore also more th@acH
w.h.p. (if the constang, is sufficiently large). Hence, according
to the p-getprotocol, all requests probing nodesTinat level? for
some index will not advance to a lower level w.h.p. So the con-
gestion will be at least as large in the remaining time stejhéch
implies the lemma.

Hence, the congestion at any node cannot exa@éelog? n)
throughout the contraction stage, w.h.p., implying thatdbntrac-
tion stage is correctly executed (i.e., all requests sembisblocked

7; witnessing a bad expansion of the pairsAn The fraction of
collectionsH for which the selected pair§l, j) indeed have the
property thatl; (h;(d)) C W is equal to(s/n,/2")°*/% because the
hash functions:, .. ., h. are chosen independently and uniformly
at random.

Next we simplify ps ;. Using the conditions or ando in the
lemma it holds that

cs ) cs/6
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if ¢ > 12logm andm is sufficiently large. Hence, summing up
over all possible values of andi, we obtain a probability of hav-
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nodes can be handled within two communication rounds so that ing a badc/6-bundle of at mosi(2log n)/m, which proves the

blocked nodes are correctly identified).

LEMMA 2.11. The preprocessing and contraction stages re-
quire at mostO(log n) time and each node is involved in at most
O(clog? n) many message transmissions per time step, w.h.p.

It remains to prove the following crucial result, which basrthe
number ofp-getrequests that belong to a certain level.

LEMMA 2.12.If e < 1/108 and 32 > 2/e and at mos2n p-get
requests have to be served, then at néeat/2* of thep-getrequests
belong to level w.h.p.

ProoF. Recall that is the name universe and = |U|. LetH
be the collection of hash functiorts, ..., h.. Given asetS C U
of data names and & € N, we call F C S x {1,...,c} a
k-bundleof S if every d € S has exactlyk many tuples(d, ¢)
in F. In other words, &-bundle guarantees that each data item
is represented wittk different indices. Giverh,...,h. and a
distance, let I'r((S) be the union of the sets involved in these
indices fromTy, i.e., 're(S) = U iyer Te(hi(d)). Given a
0 < o < 1, we call'H a (k, o)-expanderif for any ¢ < logn,
anyS C U with |S| < on/2°, and anyk-bundle F’ of S, it holds
that |Tx(s)| > 2°|S|. Similar to Lemma 1 in [2], the following
claim can be shown.

CLAIM 2.13. If the hash function$, .. ., h. are chosen uni-
formly and independently at random, it holds thétis a (¢/6, o)-
expander w.h.p., for any > 12logm and0 < o < 1/36.

PROOF We can adapt the proof of [2] for our setting. Suppose
that, for randomly chosen functions, . . . , he, H is nota(c/6, o)-
expander. Then there exists ar< logn and a setS C U with
|S| < on/2¢, and ac/6-bundleF of S with |Tr,;(S)| < 2°|S|. We
claim that the probabilitys,; that such a se$ of sizes exists is at

CcS

most
() (6) () ()™

This holds because there &) ways of choosing a subsgtc U.

Furthermore, there ar(scij) ways of choosing:s/6 pairs (d, 5)

for F and at most(”/fi) ways of choosing a sé/ of s sets in

lemma. O

Given a sefl’ € 7, for some leve¥, we callT blockedif the ad-
versary blocks more than a third of its nodes during the Dt lat
T is calledcongestedf there is a time point in which more than a
third of its nodes are congested, i.e., received more tha#/ dif-
ferentp-putrequests for level. (Note that this definition is different
from the prior definition of a congested $&f)

Let d be a data item. We cald blocked at level ¢
if at least ¢/6 of its ¢ sets T;(h;(d)) are blocked, and we
call d weakly blockedat level ¢ if there are blocked sets
Tll (h’il (d))7 Tl2(h”i2 (d))7 s 7le (h’ik (d)) with 617 ol > 4,

k = ¢/6, andiq,... i being pairwise different. Similarly, we
call d congestedat level ¢ if at leastc/6 of its ¢ setsT;(hi(d))
are congested, and we callvittakly congestedt level? if there
are congested sef3, (hq, (d)), Te, (hiy (d)), . .., Ty, (hsy, (d)) With
liy..., 0k > 4, k = ¢/6, andiq,.. ., being pairwise different.
We start with the following claim.

CLAaIM 2.14. Whenever g-getrequest deactivates some index
i in level¢ > 0 then there must be a levgl> ¢ so thatT; (h;(d))
is blocked or congested, w.h.p.

PROOF Suppose that none of the séts(hi(d)) is blocked or
congested. Then they would also be non-congested whenirignor
the request forl. In this case, the probability that indeéxof the
p-getrequest hits a node in some levahat is neither blocked nor
congested is at leasy3 at any time. Thus, when defining the binary
random variableX; as being 1 if and only if thep-get(d) request
hits a node that is neither blocked nor congested at tioe level
0 has already been reached successfully), th¢X, = 1] > 1/3.
ConsiderX = Y /11" X, Since the probability bound above
for X holds independently of the previous,,’s, we can use the
Chernoff bounds to prove that > logn w.h.p., that is, index
successfully reaches level 0 w.h.p.

Thus, if ap-getrequest deactivates some index level £ > 0
then there must be a levgl > ¢ so thatT}(h;(d)) is blocked or
congested, w.h.p. O

Hence, if ap-get(d) request is not successful, then there are at
leastc/6 indices for which the first condition in Claim 2.14 is true,
or there are at least/6 indices for which the second condition is
true. Together with Claim 2.14 this implies thats either weakly



blocked or weakly congested. Hence, by bounding the number o
weakly blocked and congested data items we obtain an uppedbo
on the number of unsuccessful requests. For weakly blockéa d
items, the following claim holds.

CLaim 2.15.If s blocked nodes are sufficient fér weakly
blocked data items at levélthens blocked nodes are sufficient for
b blocked data items at levél

PrROOF Consider itemd to be weakly blocked and let
Te, (hiy (d)), Tey (hin(d)), ..., Ty, (hiy (d)) be the sets witnessing
that withk = ¢/6. Any route through a sét,, (h;s (d)) with ¢ > ¢
contains exactlp’ ~* setsT' € Tz, and each of these sefshas
a size of|Ty (hy (d))|/2° ~*. Thus, when distributing the nodes
causingTy (h;(d)) to be blocked evenly among &l € 7; in
T, (hi(d)), we can turn any set df weakly blocked data items
into blocked data items at levél O

A similar claim also holds for weakly congested data items:

CLaim 2.16. If s congested nodes are sufficient fomeakly
congested data items at levidhens congested nodes are sufficient
for b congested data items at level

Now we are ready to bound the number of weakly blocked and
weakly congested data items. First, consider the weaklgkild
data items. If the adversary can block upeto nodes (where:
combines here the blocked and overloaded nodes), at 3angp’
of the n/2° sets in7; can be blocked, which covers at ma@st
nodes. Suppose the attacker can block é'sgftdata items at level
£. Then there is &/6-bundle F for S, i.e., we can identifyc/6
indices to blocked sets. Due to Claim 2.13|$f < on/2¢ then
IT#,0(S)| > 2°|S|. AsTr(S) is of size at mosBen, we have that
|S| < 3en/2", which is less thamn/2¢ (so that Claim 2.13 im-
plies an upper bound di$|) if 3¢ < 1/36, ore < 1/108. Hence, if
the adversary can block up & nodes, this entails at mosén /2°
blocked data items at levél Together with Claim 2.15 this implies
that if the adversary can block at mast nodes, then there are at
most3en/2¢ weakly blocked data items at level

It remains to bound the number of weakly congested data items
Recall that the contraction stage uses a congestion boufigt-&f.
Thus, when we have a total of at mast p-getrequests, at most
6n/(B2 H2) of the n/2° sets in7, can be congested at a single
time point and therefore at most./(322¢) of the sets ir7; can be
congested over all time points. When settifig= 2/¢, this means
at most3en/2° congested sets ifi;. Using the same arguments as
for the blocked sets together with Claim 2.16 implies that¢hcan
be at mosBen,/2° weakly congested data items at ledel

Thus, altogether at moskn/2° data items are weakly blocked
or congested at level, which implies that at mosten/2¢ p-get
requests belong to levél

Expansion stage

The expansion stage works in the same way as for the lookup pro
tocol in [2]. For completeness, we present it here again.

The expansion stage proceeds in rounds numbered from 1 tohi,..

logn. In roundr, every p-getrequest for some data itemhthat
belongs to round’ < r and is not finished yet sends a message
of the form (d, r,i, —) (where “-" is an empty placeholder for a
most current copy off) for each index that was still active in the
level the request belongs to. This message is sent to thblnoked
nodev in T' = T, (h;(d)) that was successfully contacted at level
r in the contraction stage. Each such nedemembers the nodes
that sent messages to it in the $gtand stores the messages it re-
ceived from them into its active pool of messagés, one copy

for each(d, r,i,—). If |[Ay,| > 3c/o (for a constant satisfying
Claim 2.13), then any set of messages is discarded figno get
down to|A,| = 3c¢/o. For any remainingd,r,i, —) in A, for
whichv stores a copy of d (due to the data storage strategy defined
above)(d, r,i, —) is replaced byd, r, i, b). Afterwards, every node

v in the system executes the following push stratégiog n) many
times:

e v sends every messagé, r,i,b) in A, to a random node in
T-(hi(d)).

e For each messagé, r, i, b) received by a non-blocked node
v, v first checks whethed, already contains some message
(d,r,1,b"). If so, the message with the most current copy
of d is kept and the other is deleted. Otherwiseshecks if
|Av| = 3¢/o. If so,v discards the message.

If after these stepsd,| = 3¢/o, thenv sends for each node € S,
with original messagéd, r, i, —) the messag&d, r, 7, *) back tow,
where the %” indicates thatv was too congested. Otherwise,
sends(d, r, 1, b) in A, back tow.

Eachp-getrequest that receives at meg many replies of the
form (d, r,4, ) (@among the at leastc/3 replies) returns the mes-
sage(d, r, i, b) with the most up-to-daté (which may also be~"
if no copy was found) to whoever generated the request and-is fi
ished. Otherwise, it continues to participate in round 1.

The runtime of the expansion stage @(log?n). Using
the bound on the number of requests belonging to Ievéh
Lemma 2.12, one can show inductively with the same arguments
as in Lemma 2.12 that the number of requests belonging toeh lev
¢ < ( that are not finished in level is at most6m/2‘5. Hence,
together with those requests that belong to Iéyéhere are at most
12en/2¢ requests that the expansion stage has to take care of at
level 4. Finally, at levellog n, all remaining requests can be finished
w.h.p. (cf [2]).

Whenever @-getrequest finishes, it will receive the most up-to-
date copy of a data item for at least2 indices, w.h.p., and since
none of the setqd%(h;(d)) explored for that were blocked w.h.p.
(see Lemma 2.9), it follows from the-storeStorage Rule at least
leastc/6 setsTy(h;(d)) were successfully explored that contain an
up-to-date copy ofl (in a potentially blocked node) and at most a
third of their nodes are blocked, so w.h.p. there is at lensts®et
T, (hi(d)) in which the up-to-date copy af is in a non-blocked
node (if d has already been inserted). This implies the following
result.

LEMMA 2.17. Given that the current phase is beyong and
there are at most p-getrequests with at most a constant num-
ber per node, allp-getrequests are served correctly in at most
O(log? n) communication rounds, w.h.p.

Note that the expansion stage is the only part in a phase whose
runtime exceed®)(logn). Otherwise, a phase would just need
O(logn) time. A runtime ofO(log?n) is only necessary if the
adversary can adaptively choose thgetrequests in order to cre-
ate a high congestion in some parts of the system. If the nfones
the p-getrequests are selected independently of the hash functions
., he, then eachp-get request only has to do broadcasts in
the level it belongs to in the expansion stage, which can be do
O(log n) steps w.h.p.

2.6 Stage4: Transferring ltems

Finally, we try to transfer all items stored in tltestore(i.e., the
old and new ones) to thp-storeusing thep-put protocol; if the
transfer of a certain data itethis successful, that is, if sufficiently
many replicas ofl can be stored correctly in thestore the corre-
sponding data item in thestoreis removed. Otherwise, the item



is left in thet-store From thet-storeLoad Rule and Lemma 2.7
it follows that if every cluster evenly distributes tipeput requests
among its nodes, then each node only has to issue at mosttamions
number ofp-putrequests.

The p-Put Protocol

LEMMA 2.19. The number of nodes that consider themselves to
be overloaded is at mo&t:/\, w.h.p.

It immediately follows from Lemma 2.18 and the fact that ther
can be at mos?n /A nodes with a load of more thdn /2) L. Thus,
if A is sufficiently large, we can just treat all of them as being
blocked, which is done so for the rest of the description aradysis

Thep-putprotocol consists of three stages: a preprocessing stage, &y the p-put protocol.

contraction stage and a permanent storage stage.

Preprocessing Stage.

Like in the p-get protocol, every non-blocked nodechecks the
state ofa; log n random nodes iff;(v) for every0 < ¢ < logn,

for some fixed and sufficiently large constamt > 8. If more
than1/4 of the (sampled) nodes if;(v) are blockedy declares
T;(v) asblockedand otherwiseinblocked Also, each non-blocked
nodew picks az log n random nodes from the entire node set for a
fixed and sufficiently large constant. If at most half of them are
blocked (which is the case w.h.p. when< 1/3) thenv computes
the average data loakl, of the non-blocked nodes in thestore
Since the checking can be done in parallel in our model, thig o
needs two communication rounds. The following lemma can be
shown forL,.

LEMMA 2.18. LetL be the average load inthe system dngl.
be the maximum load at a node.fuax < 2AL, € < 1/(8)), and
a > 36X is sufficiently large then for every nodeL, € [L/2,2L)]
w.h.p.

PROOF. Let L and L. be defined as in the lemma. First, we
prove an upper bound ob,. If ¢ < 1/3 then no matter which-
fraction of the nodes is shut down by the adversary, the gedoad
of the non-blocked nodes,,.;, is at most

(n-L)/(1 - < (3/2)L.

Consider any node and letLq, ..., Ly be random variables de-
noting the loads of th& = alogn random nodes picked by.
Given that previouslyLm.. < 2AL, L; < 2\L for everyi,
andE[L;] < (3/2)L. Hence, forL = ¥ | L, it holds that
E[L] < (3k/2)L. Furthermore, the Chernoff-Hoeffding bounds
imply that, forany0 < § < 1,

Pr[L > (1 + 6)E[L]] < ¢ °FIH/(Glmax)

Thus, we havel, < 2kL w.h.p. if the constanty > 36\ is suffi-
ciently large.

Next, we prove a lower bound ab,. If L. < 2AL ande <
1/(8)), then no matter whicla-fraction of the nodes is shut down
by the adversary, the average load of the non-blocked naggsis
at least

(n-L—en-2X\L)/(1 —¢€)n > (3/4)L.

Hence,E[L;] > (3/4)L for everyi, which implies thatE[L] >
(3k/4)L. Furthermore, the Chernoff-Hoeffding bounds imply that,
forany0 < 6 < 1,

Pr[L < (1 —6§)E[L]] < e~ 5 BIL)/(2Lmax)

Thus, L > kL/2 w.h.p. if the constante > 36\ is sufficiently
large. O

If v's own data load., satisfiesL,, > A - L for some fixed and
sufficiently large constamt > 4, then it considers itself to be over-
loaded and will behave in the rest of tppeput protocol as if it is
blocked when contacted by other requests. vAgill not get any
new data in this case, Lemma 2.18 guarantees that thereevin
be a node (w.h.p.) whose load exced4, which satisfies our scal-
ability requirement in Section 1.1. Also, the number of ¢vaded
nodes is not too high as stated by the following lemma.

Contraction Stage.

The contraction stage of th@put protocol is identical to the con-
traction stage of thp-getprotocol. Lemma 2.12 immediately im-
plies the following result.

LEMMA 2.20. If e < 1/108 andB2 > 2/e and at mosgn p-put
requests have to be served, then at m@st: of the p-putrequests
are unsuccessful w.h.p.

Thosep-put requests that successfully made it to level 0 will be
served in thep-storeas described below. The other at mostn
requests will remain in thestore Given that the-storehad at most
2n data items initially, it has to serve at m@st- 12¢)n < 2n p-put
requests in the next round, so the number of data items rémgam
the t-storeis stable w.h.p.

Permanent Storage Stage.

Each node whosp-put(d) request was successful selegidog n
random indices among the active indicesdond deactivates all
others for some fixed and sufficiently large constantLet: be an
index that remains active.

We want to prevent the accumulation of obsolete data items in
our system. In order to achieve this, we maintain in the nede r
sponsible forh; (d) — d's root node — information about the nodes
storing a copy ofd w.r.t. indexi. In order to supportipdatesof
a data itemd in our system, we use this information to remove all
out-of-date copies of w.r.t. <. Clearly, since some nodes may be
blocked, this may not always be possible. If it is not possibéfer-
ences to these out-of-date copies are leftin the roots sthamay
be deleted at some latprputrequest. If more thafy, log n out-of-
date copies remain for some fixed and sufficiently large eorist
(which would only happen w.h.p. if the system is under andesi
attack, as we will see) thed is only updated in the rook;(d).
Otherwise, we select a random non-blocked node in &agh; (d))
with £ € {0, ...,logn} (which requires at mosd(log n) attempts
w.h.p.), store an up-to-date copy &in these nodes, and store ref-
erences to these nodesfif(d).

LEMMA 2.21. Given that at, the total number of (obsolete and
up-to-date) copies of data itethin the p-storeis O (log? n) (which
is enforced by the permanent storage stage), the numbermidéso
of d remainsO(log? n) w.h.p. at any time aftef,.

ProoF Consider some fixed data itedh index: and level’.
Certainly, every node € T;(h;(d)) will only store one copy ofl
at a time because whenever it receives a newer copy, the abger
will be deleted. Let the random variahlé; be one if and only ifv
stores a copy of for index: and levell at the beginning of phage
and letp, = Pr[X; = 1]. Suppose that is blocked at some phase
t in which d is updated. Thep:+1 = p: as nothing changes far.
Otherwise, suppose thatis non-blocked. Ifi is not active for the
p-put(d) request, thep, 1 = p; as well. Otherwisep, 1 < 3/2°
asTe(h;i(d)) contains at leas?’/3 non-blocked nodes w.h.p. and
a random set ofy log n of these nodes is picked for the up-to-date
copies ofd. Hence, given that the number of obsolete copieg of
was O(log? n) at time pointt,, the expected number of obsolete
copies ofd remains atO(log?n). This also holds w.h.p. as the
probabilities are negatively correlated (see, e.g., [88]Ghernoff
bounds of negatively correlated random variables).



3. CONCLUSION

This paper has shown for the first time how to build a scalable

dynamic information system that is robust against a pastiéns
Several important questions remain open. First of all, tiwd¢ we
did not try to optimize constants; from a practical perspectt is
crucial to get them to smaller (resp. larger) values. It wialso be
interesting to study whether the runtime of a phase can hecesd
to O(log n)—only the p-get protocol prevents that—and whether
our algorithms can be simplified. An important challenge on o
research agenda is to explore whether our concepts can ptedda
to bounded-degree peer-to-peer systems with potentialigliable
peers. Finally, although we believe that our replicatioctdes are
optimal, we still do not have a lower bound.
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