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ABSTRACT
Denial of service (DoS) attacks are arguably one of the most cum-
bersome problems in the Internet. This paper presents a distributed
information system (over a set of completely connected servers)
calledChameleonwhich is robust to DoS attacks on the nodes as
well as the operations of the system. In particular, it allows nodes
to efficiently look up and insert data items at any time, despite a
powerful “past-insider adversary” which has complete knowledge
of the system up to some time pointt0 and can use that knowledge
in order to block a constant fraction of the nodes and inject lookup
and insert requests to selected data. This is achieved with asmart
randomized replication policy requiring a polylogarithmic overhead
only and the interplay of a permanent and a temporary distributed
hash table. All requests in Chameleon can be processed in polylog-
arithmic time and work at every node.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems

General Terms
Algorithms, Theory

1. INTRODUCTION
It is widely believed that distributed denial of service (DoS) at-

tacks are one of the biggest problems in today’s open distributed
systems, such as the Internet. Attackers use the fact that Inter-
net servers are typically accessible to anyone in order to overload
them with bogus requests from so-calledbot nets, which are large
groups of machines that are under their control [31, 32]. Examples
of such attacks include downloading large files [24], causing compu-
tationally expensive operations [9], or just overloading servers with
junk. Some popular information services like Google and Akamai
are under constant DoS attacks, and also the Domain Name Sys-
tem has been hit several times by major DoS attacks during thelast
years [13].
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The predominant approach to deal with the threat of DoS-attacks
is the introduction ofredundancy. Information which is replicated
on multiple machines is more likely to remain accessible during a
DoS attack. However, storing and maintaining multiple copies of
each data item can entail a large overhead in storage and update
costs. In order to preserve scalability, it is therefore vital that the
burden on the servers is minimized.

This paper presents a distributed information system called
Chameleonwhich is provably robust against large-scale DoS at-
tacks. This is even true if the attacker is a past insider withfull
knowledge of the system’s internals up to a certain time point t0
(which may be unknown to the system). As has been pointed out
in [2], robustness to such attacks is a crucial feature, as many secu-
rity breaches in corporate systems are caused by human errorand
negligence (which may temporarily expose the system to the out-
side world) as well as past insiders (such as temporary or fired em-
ployees). The Chameleon system can process put and get requests
efficiently at any time despite a massive ongoing DoS attack and
even though the put and get requests were selected by the adversary.
The trick of our system is that it employs a smart replicationstrat-
egy whose appearance cannot be predicted by the attacker (hence
the system’s name) though the data can still be efficiently located.
In fact, in Chameleon, it is sufficient to employ a logarithmic redun-
dancy, even if we allow the adversary to block a constant fraction of
all servers.

1.1 Model
In a distributed information system (e.g., a collaborativesystem

consisting of many servers located at different company sites), data
is distributed among multiple servers, simply callednodesin the
following. We assume that we are given a name spaceU and each
data itemd is identified by its name in that space. All data items are
of unit size (e.g., we are dealing with a block-level storagesystem).
To provide a basic lookup service, the following operationshave to
be implemented:

• Put(d): this inserts data itemd into the system (if nothing has
been stored under its name before) or updates it (if its name
has already been used).

• Get(name): this returns the data itemd with Name(d)=name,
or ⊥ if no such data item exists.

We assume that the set of nodes in the system is fixed and that all
nodes are honest and reliable (since we are dealing with a server-
based system). However, there is an adversary that has the power
to shut down (or block) up toǫn nodes at any time (by a DoS at-
tack), for some constantǫ > 0 that we would like to be as large as
possible without harming the functionality of the system. In order to
keep the description of our problem at a reasonable level, weassume
that time proceeds instepsthat are synchronized among the nodes.



Note however that using local synchronizers [23], our algorithms
also work in asynchronous settings. All we need is a bounded trans-
mission time between two non-attacked nodes. In each time step,
every node is able to send and receive a polylogarithmic amount of
information and as long as this bound is satisfied, any message sent
out by some nodev to some nodew will arrive atw within the next
time step (or be dropped ifw is blocked). In this way, a node can
easily determine whether another node is blocked by not receiving
an acknowledgment of its message within two time steps.

We allow the adversary to block any set of nodes and issue any put
and get requests, but the rate at which it can do this is limited. For
simplicity, we will assume a batch-like mode in which the time is
partitioned into so-calledphases(that should be as short as possible;
in our caseO(log2 n) time steps suffice). At the beginning of each
phase, the adversary selects an arbitrary, fixed set ofǫn nodes that
will be blocked throughout that phase. It also selects an arbitrary set
of put and get requests (including multiple requests to the same data
item or get requests to non-existing data items) with at mostone
request per non-blocked node. The goal of the system is to serve
all of these requests within the given phase without overloading any
node with data over time. A get request for some data itemd is
servedcorrectly if a most recentversion ofd is returned and this
most recent version isunique. That is, a version ofd is delivered that
belongs to a put request in a most recent phase (including thecurrent
phase), and between two phases with updates ofd, all get requests
for d return the same version ofd. This implies that if multiple put
requests are issued for the same name in the same phase, then only
one of them will win, i.e., will determine the unique versionthat
will be stored under that name.

A data itemd is said to have aredundancyof r if r times more
storage (including any control storage ford) is used ford than is
needed when just storing the plain item. A node is calledoverloaded
if its storage load is by more than a constant factor larger than the
average load in the system.

Of course, if the adversary knows everything about the system
and the data items have a small redundancy, then it is impossible for
the system to serve all requests in a correct way. Hence, we assume
that the adversary is apast insider, i.e., it only knows everything
about the system up to some phaset0 that may not be known to the
system. Aftert0, the adversary cannot inspect nodes or communica-
tion between the nodes anymore—it can only block nodes and issue
requests. The goal of the system will be to ensure the following
properties in any phase (before and aftert0, withoutknowingt0):

1) Scalability: Every node spends at most polylogarithmic time
(number of communication rounds) and work (number of
messages) in order to serve all requests in a phase and no
node will get overloaded over time.

2) Robustness: All get requests for data that was inserted or last
updatedafter t0 are served correctly under any adversarial
attack within our model.

Achieving these conditions is not an easy task as the system can-
not afford to continuously replace all the data in it (recallthat the
system doesnot know t0 and we have no bound on the number of
data items in the system). Also, no long-term information hiding
techniques can be used (as the adversary hasfull knowledge of the
system up to phaset0). Yet, there is a solution. The Chameleon sys-
tem we propose in this paper is the first system that can achieve all
of these goals. In fact, it just needs a logarithmic redundancy (when
using Reed-Solomon coding, for example) and phases of polyloga-
rithmic length.

For simplicity, we will assume that the total number of nodes,
n, is a power of two, and that the nodes are numbered from0 to
n − 1. The size of the name universeU is defined asm, wherem
is polynomially bounded inn.

1.2 Related Work
Due to their importance, DoS attacks are a well-studied problem

(e.g., [5, 18] for an overview). Unfortunately, it is often difficult to
distinguish DoS traffic from legitimate traffic, which renders many
network-layer and transport-layer DoS prevention tools such as in-
stalling a box to filter out anomalies [15], blacklisting particular IP
addresses, using TCP SYN cookies [3], pushback [8], etc., prob-
lematic [31]. This observation has led some researchers to propose
means how legitimate clients can “speak up” and thus be identi-
fied [31, 32], for example.

In this paper, we do not seek to prevent DoS attacks, but rather fo-
cus on how to maintain a good availability and performance during
the attack. Our system is based on the distributed hash table(DHT)
paradigm (e.g., [4, 6, 7, 25, 30]). In particular, we follow aconsis-
tent hashingapproach [10] in order to store the data and employ the
continuous-discrete techniquespresented in [20] for communication
between the servers.

DoS-resistant systems based on DHTs have already been stud-
ied in [11, 12, 19]. For instance, the Secure Overlay Services ap-
proach [12] usesproxieson Chord to defend against flooding DoS
attacks. A Chord overlay is also used by the Internet Indirection In-
frastructurei3 [29] to achieve resilience to DoS attacks. Other DoS
limiting architectures have been proposed in [21, 33]. Manyof these
systems are based on traffic analysis or some indirection approach.

Replication strategies have already been investigated in the con-
text of flash crowdproblems in DHTs. Important literature in
the systems community includes CoopNet [22], Backslash [27] or
PROOFS [28], and there is also theoretical work [20]. However,
these works only consider scenarios where many requests aretar-
geted to the same data item, but not to many different itemsat the
same location. Techniques originally proposed for CRCW PRAMs
[17] allow one to overcome these limitations [1], although only for
application layer attacks (i.e., the adversary selects theput and get
requests but does not block nodes) and not DoS attacks.

This paper builds upon the archival system by Awerbuch and
Scheideler [2]. The authors consider the same past-insiderDoS at-
tack as we do in this paper. They observe that the basic approaches
for distributed systems fail in this context:Explicit data structures
(e.g., skip graphs) do not achieve correctness and robustness un-
der DoS-attacks;distributed hash tablesare not robust since, in
our model, the adversary knows exactly where data will be repli-
cated; andrandom placement strategiesimply costly lookup opera-
tions that do not scale. Hence, ahybrid versionof a hash table and
random placement is proposed: A data item is replicated randomly
in increasingly large vicinities of the location given by a (public)
hash function on the data item; the larger the vicinity, the higher
the lookup cost, but the smaller the probability that the adversary
blocks the replica. Unfortunately, however, the random placement
strategies in [2] can only handle get requests, which limitsthe ap-
proach to archival and information retrieval systems like Google or
Akamai. Instead, our system described here can also handleput re-
questswhile an attack is going on. Being able to handle arbitrary
combinations of put and get requests requires a significant exten-
sion of [2] which consists of a complex mix of topology and data
management techniques as well as proper routing strategies, as can
be seen from the lengthy description of our system in the restof this
paper.

1.3 Our Contributions
To the best of our knowledge, this is the first work to present a

distributed information system that can process any set of put and
get requests in a correct and scalable manner even when the system
is under a past-insider attack. This is achieved with a novelput algo-
rithm and the interplay of two distributed hash tables, a temporary
and a permanent one. We show the following result:



THEOREM 1.1. Chameleon requires only a logarithmic redun-
dancy so that any set of put and get requests with at most one per
non-blocked node can be processed in a scalable and robust manner,
w.h.p., for any past-insider adversary within our model.

Throughout the paper,with high probability, or w.h.p., means
with probability at least1 − 1/nc for a constantc that can be made
arbitrarily large. A logarithmic redundancy requires Reed-Solomon
codes. If coding strategies are not allowed, the redundancyof our
system isO(log2 n). The runtime needed to process all put and get
requests in a phase isO(log2 n).

Notice that we arenot proposing a peer-to-peer system for robust
storage management asn is fixed and the servers are assumed to be
honest and reliable. Thus, we can afford to assume in Chameleon
that all the servers know each other as these days even laptops can
easily store millions of IP addresses in their main memory. Our
main concern is to store the data items in a scalable way. Designing
scalable and dynamic topologies of potentially untrusted sites that
can withstand massive DoS attacks appears to be very challenging
(if not impossible) and is left for future research.

1.4 Tools
In our paper, we will frequently make use of the well-known

Chernoff bounds [16]:

THEOREM1.2 (CHERNOFFBOUND). LetX1, . . . , Xn be in-
dependent binary random variables. ConsiderX =

∑n
i=1 Xi and

let µ = E[X]. Then it holds for allδ ≥ 0 that

Pr[X ≥ (1 + δ)µ] ≤

(

eδ

(1 + δ)1+δ

)µ

(1)

≤ e
−

δ2µ
2(1+δ/3)

Furthermore, it holds for all0 ≤ δ ≤ 1 that

Pr[X ≤ (1 − δ)µ] ≤

(

e−δ

(1 − δ)1−δ

)µ

(2)

≤ e−δ2µ/2 .

Inequality (1) also holds for anyµ ≥ E[X], and Inequality (2)
also holds for anyµ ≤ E[X].

1.5 Paper Organization
The remainder of this paper is organized as follows. Our infor-

mation system is described in Section 2. After giving an overview
on the overall architecture and the protocols, we describe the perma-
nent and temporary DHTs in Sections 2.1 and 2.2. In the subsequent
four subsections, the four stages of our protocol are described and
analyzed in detail. These stages are used to build the temporary
DHT and process the requests; they are executed in every phase.
The paper is concluded in Section 3.

2. THE CHAMELEON SYSTEM
The data management of the Chameleon system relies on two

stores: the permanentp-store, and the temporaryt-store. The
two stores can be regarded as extensions of distributed hashtables
(DHTs). Thep-storeis a static DHT (holding an arbitrary number
of data items), in which the positions of the data items are fixed un-
less they are updated. Thep-storeis similar to the hybrid structure
introduced in [2], where data is replicated at increasinglyrandom
positions in the vicinity (w.r.t. the identifier space) of the locations
given by the (public) hash functions. The lookup is essentially done
in increasingly large vicinities byflooding: this costs more in larger
vicinities, but at the same time, it becomes increasingly harder for
the adversary to block sufficiently many positions to block nodes

with up-to-date information on the requested data item withsuffi-
cient probability.

The t-store is a classic dynamic DHT that constantly refreshes
its topology as well as the positions of its data items in an efficient
manner. The random structure of thet-store is hence not known
to a past insider. Thet-store is redundant in the sense that small,
completely interconnected clusters of nodes are responsible for each
identifier. It serves as a buffer before the data items are successfully
transferred to and replicated randomly in thep-store. The t-store
can afford to replace all of its data items in each phase as it provably
only containsO(n) many w.h.p.

On a high level, a phase of the Chameleon system proceeds as
follows:

1. Build a newt-store from scratch and transfer all data from
the oldt-storeto the newt-store(if possible). As we will see,
thet-storeis based on a logarithmic-degree network and there
will never be too much data in thet-store, w.h.p., so that this
step is not too expensive.

2. Process all put requests in thet-store.

3. Process all get requests in thet-storeand if a get request can-
not be served there (because no information is available for
the given name), process it in thep-store.

4. Try to transfer all data items in thet-storeto thep-store. Any
data item that cannot be stored in thep-store(due to blocked,
congested or overloaded nodes) is left in thet-store.

In the following, we start with a description of thep-storeand the
t-store, which is followed by a detailed description of each of the
stages above. Whenever we say “for a fixed and sufficiently large
constantx ≥ y”, we mean a constantx that can be any number
at leasty, and the larger the constant, the better is the exponentγ
in our high probability bounds of the form1 − 1/nγ . Sometimes,
y may be large because we did not try to optimize constants. In
our analysis, we will assume that our hash functions are liketruly
random functions, butO(log n)-universal hash functions suffice for
our temporary hash functions so that they can be efficiently dissem-
inated.

2.1 The p-Store
The p-store is similar to the archival system by Awerbuch and

Scheideler [2], with some extensions to be able to handle putre-
quests. In thep-storethe nodes are completely interconnected. Like
in consistent hashing, nodes and data items are mapped to points in
the[0, 1)-interval. For eachi ∈ {0, . . . , n−1}, nodei is associated
with the pointi/n andresponsiblefor the interval[i/n, (i + 1)/n),
i.e., it stores all data items that are mapped to a point in itsinter-
val. Sincen is a power of two, for any pointx ∈ [0, 1) with binary
representationx =

∑

i≥1 xi/2
i, we only need the firstlog n bits

x1, . . . , xlog n in order to determine the responsible node. Hence,
w.l.o.g., we assume that all pointsx considered below only uselog n
bits.

The mapping of the data items to[0, 1) is based onc = Θ(log m)
hash functionsh1, ..., hc : U → [0, 1). This set of hash functions
is fixed and hence also known by the past insider. To be useful
for our system, the hash functions have to fulfill certain expansion
properties to be explained later (cf also [2]).

In order to select suitable points for the data items, thep-store
organizes the nodes into levelsi that are consecutively numbered
from 0 to log n. For each data itemd, the lowest leveli = 0 gives
fixed storage locationsh1(d), ..., hc(d) for d of whichO(log n) are
picked at random to store up-to-date copies ofd. These locations
are called theroots of d. For larger levels, the same number of
copies is stored, but an increasing randomness is introduced in the



storage locations. Thus, for larger levels, searching becomes more
expensive as the entropy of the location increases. However, the
probability that the adversary manages to block all copies of a data
item in some level declines.

Concretely, we seek to store replicas along so-calledprefix paths
in thep-store(cf Figure 1). Letpre(x, y) denote the length of the
longestcommon prefix ofx andy, that is,pre(x, y) = i if and only
if x1 = y1, x2 = y2, . . . , xi = yi andxi+1 6= yi+1. We define
Tℓ(x) = {z ∈ {0, 1}log n | pre(x, z) ≥ log n − ℓ} to be the set
of all pointsz ∈ [0, 1) (using the encodingz =

∑

i≥1 zi/2
i) such

that at mostℓ of the least significant bits ofx andz are different.
A sequenceR = (yℓ, yℓ−1, . . . , y0) of points such thaty0 = x
and for eachi > 0, yi ∈ Ti(x), is called aprefix pathto x of
length ℓ. The set of all possible prefix paths tox of length ℓ is
denoted byRℓ(x). A random prefix pathto x is a pathR that is
chosen uniformly and independently at random fromRℓ(x). Given
an ℓ ∈ N, let Tℓ = {Tℓ(x) | x ∈ [0, 1)}. Certainly,|Tℓ| = n/2ℓ

and each member ofTℓ contains2ℓ points.
Our goal will be to store up-to-date copies of each data itemd

along Θ(log n) randomly chosen prefix paths of lengthlog n to
points inh1(d), . . . , hc(d). More precisely, we will try to enforce
the following rule.

p-store Storage Rule: For any data itemd in thep-store, a setId

of γ1 log n indices is used to stored, whereId has been picked
uniformly at random out of at least2c/3 indices in{1, . . . , c}. All
roots of these indices store (the current value of)d, and for every
level ℓ ≥ 1 and indexi ∈ Id there is a node picked uniformly at
random out of at least2/3 of the nodes inTℓ(hi(d)) that storesd.

The details on how to enforce that rule will be given when we ex-
plain the put strategy for thep-store. In addition to this, we will also
make sure that at mostO(log n) outdated copies ofd are still around
in each level. If this is true then the redundancy of our storage strat-
egy is limited toO(log2 n), and if we employ Reed-Solomon cod-
ing in each level, the redundancy can be reduced toO(log n). Each
root hi(d) keeps track of the positions of all the (current and out-
dated) copies ofd stored along prefix paths tohi(d). Thus, in order
to correctly store the copies of a data itemd, we have to have ac-
cess toΩ(log n) roots, which may not always be possible due to a
past-insider attack. This is why we also need at-store.

ℓ h1(d) h2(d)

0

1 T1

2 T2

3

Blocked node Non-blocked node

Figure 1: Replication in the p-Store.

2.2 The t-Store
In order to temporarily store data that cannot be stored in the p-

storedue to a DoS attack, we use thet-store. The topology of the
t-storeis a de Bruijn-like network with logarithmic node degree that

is constructed from scratch in every phase. De Bruijn graphsare
useful here as they have a logarithmic diameter and a high expan-
sion (e.g., [14]). In order to form this network, we partition the
[0, 1)-space into intervals of sizeδ log n/n for some fixed and suf-
ficiently large constantδ ≥ 2. For anyi ≥ 0, positioni · δ log n/n
is responsible for the interval[i · δ log n/n, (i + 1) · δ log n/n).
At the beginning of the current phase, each non-blocked nodev in
the system chooses uniformly at random one positionx from the
set{0, δ log n/n, 2δ log n/n, 3δ log n/n, ...}. Thus,δ log n many
nodes will share the same position on expectation andΘ(δ log n)
many w.h.p.

Each node that selected positionx tries to establish connections
to all other nodes that selected the positionsx (thecluster connec-
tions), x− := x − δ log n/n andx+ := x + δ log n/n (thecycle
connections), and⌊x/2⌋δ log n/n and⌊(1 + x)/2⌋δ log n/n (the de
Bruijn connections), where⌊a⌋b means roundinga to the closest
integer multiple ofb from below. This results in the union of a re-
dundant cycle with a redundant form of the de Bruijn graph. Infact,
when viewing the cluster of nodes assigned to the same position x
as a single supernode and the edges between adjacent clusters as an
edge between their corresponding supernodes, then the supernode
graph forms the union of a cycle and a de Bruijn graph. Once the
t-storehas been established, the nodes at position 0 select a random
hash functionh : U → [0, 1) (by leader election) and broadcast that
to all nodes in thet-store. The hash function determines the loca-
tions of the data items in the newt-store. More precisely, for any
data itemd in the oldt-store, we now want to stored in the cluster
responsible forh(d) (i.e., whose interval containsh(d)) in the new
t-store. In order to do this, each cluster of nodes from the oldt-store
will initiate appropriate insert requests for its old data items. The
details are explained in the upcoming Section 2.3.

2.3 Stage 1: Building a New t-Store
We first describe how the nodes can find the nodes they are sup-

posed to connect to in the newt-store. This is done with the so-
calledjoin protocol. Afterwards, we show how to transfer the data
in the old t-store to the newt-store, which is done with theinsert
protocol.

The Join Protocol
In order to learn about its neighbors and build all necessarylinks
between the nodes, a nodev that selected positionxv issues the
following five requests: join(xv), join((xv)−), join((xv)+),
join(⌊xv/2⌋δ log n/n) andjoin(⌊(1 + xv)/2⌋δ log n/n). With the
join(x) operation a node tries to find all other nodes that are exe-
cutingjoin(x) for the samex. Thejoin(x) operation is executed
in two substages that are synchronized among the nodes.

Preprocessing Stage.
Each non-blocked nodev chooses a setUv of α log n random nodes
in V for some fixed and sufficiently large constantα ≥ 3. The edge
setE = {{v, w} | v ∈ V ∧ w ∈ Uv} can be shown to form an
expander graph of logarithmic degree among the non-blockednodes
w.h.p. (given that the adversary can only block a small constant frac-
tion of the nodes). Now, this graph can be used to agree on a setof
c′ = Θ(log n) random hash functionsg1, . . . , gc′ : [0, 1) → [0, 1)
via randomized leader election (each node guesses a random bit
string and the one with lowest bit string wins and proposes the
hash functions). The process is folklore and can be easily shown
to require justO(log n) communication rounds w.h.p. until all non-
blocked nodes are informed. Thus, we do not go into details here.

Construction Stage.
Next, each non-blocked nodev sends, for each of itsjoin(x) re-
quests, a message to the nodes owningg1(x), . . . , gc′(x) in thep-



store. As shown in the next lemma, this only creates a logarithmic
congestion.

LEMMA 2.1. The first round of the construction stage causes a
congestion of at mostO(log n) at any node w.h.p.

PROOF. Consider some fixed nodew. For any nodev let the
binary random variableXv be 1 if and only ifv sends a message to
w. Sincev chooses its pointxv uniformly at random and generates
five join requests based onxv, Pr[Xv = 1] ≤ 5/n for any given
hash functiongi. When summing up over alli and nodesv, this
results in an expected number ofc′ · n · 5/n = O(log n) nodes.
Since theXv ’s are independent, it follows from the Chernoff bounds
that the number of nodes contactingw is alsoO(log n) w.h.p. As
each node generates only 5 messages, this bound also holds for the
messages.

Thus, every non-blocked node can receive all messages sent to it
in that step. For a nodew let Mx be the set of nodes that sent a
message to it for pointx. If w sendsMx to all nodesv ∈ Mx, then
every nodev with a join(x) request will learn about all other nodes
in the system with such a request, as shown in the next lemma.

LEMMA 2.2. If the adversary can block at mostn/2 nodes and
the current phase is beyondt0, then for every pair of nodesu andv
that send out a join request for the samex there is at least one node
w that receives both of their messages, w.h.p.

PROOF. Focus on any fixed pointx. Since the hash functions
are chosen independently and uniformly at random, it holds for any
fixed i that the probability that the owner ofgi(x) is blocked is at
most1/2. Thus, the probability that all owners ofg1(x), . . . , gc′(x)

are blocked is at most(1/2)c′ , which is polynomially small inn if
c′ = Θ(log n) is sufficiently large. Hence, summing up over all
possible pointsx still gives a polynomially small probability, which
results in the lemma.

Thus, the correct topology of thet-store can be built from the
information obtained by the nodes. Note that Lemma 2.1 also holds
under a current insider attack whereas Lemma 2.2 only works for a
past insider. Altogether, we obtain the following result.

LEMMA 2.3. The join protocol needsO(log n) communication
rounds with congestionO(log n) w.h.p. Moreover, if the current
phase is beyondt0, then the nodes form the correctt-storetopology
at the end, w.h.p.

The Insert Protocol
Subsequently, the data items which have been stored in the old t-
storeare transferred to the newt-store. In order to make sure that
this does not cause too much work, we will enforce the following
rule:

t-store Load Rule: At any time, every cluster stores at most
ρ1 log n data items that belong to thet-store, for some fixed and
sufficiently large constantρ1 > δ. If that cap is exceeded, data is
deleted, with a priority on the older data, until the cap is reached.

This rule is needed to ensure robustness against storage attacks
also beforet0. Besides this rule, we need the following lemma,
which uses the fact that the clusters are formed by random node sets
that are not known by the adversary if it was already a past insider
at that point.

LEMMA 2.4. If the past phase was beyondt0, then any adver-
sarial attack on at mostn/3 nodes will only block a constant frac-
tion of the nodes in each cluster of the oldt-store, w.h.p.

PROOF. The lemma directly follows from the fact that the adver-
sary does not know the membership of the clusters in the oldt-store,
and since each cluster consists of a random subset of the nodes of
(sufficiently large) sizeΘ(log n), the Chernoff bounds imply that
the adversary will only manage to block at most half of the nodes in
each cluster with a DoS attack on at mostn/3 nodes, w.h.p.

With the help of this lemma, we can use the following strat-
egy: For every cluster in the oldt-storewith currently non-blocked
nodes, one of its nodes (which may be determined by some ran-
domized local leader election that can be implemented with runtime
O(log n) w.h.p.) issues aninsert(d) request for each of the data
itemsd stored in it. Each of these requests is sent to the nodes own-
ing g1(x), . . . , gc′(x) in thep-store, wherex = ⌊h(d)⌋(δ log n)/n.
Each non-blocked nodew collects, for anyx, all data itemsd to
point x in Dx and forwardsDx to all nodes inMx that contacted it
in the join protocol.

From the load rule it follows similar to Lemma 2.1 that the con-
gestion caused by the messages isO(log n) at any node w.h.p. Also,
Lemma 2.2 implies that at the end all nodes in a cluster that issup-
posed to stored will know aboutd (given that the current phase is
beyondt0). Hence, we get the following result.

LEMMA 2.5. The insert protocol needs justO(1) communica-
tion rounds. Moreover, if the past phase was beyondt0, then all
data items in the oldt-storeare successfully transferred to the new
t-storeand every node (as well as cluster) in the newt-storehas to
store at mostO(log n) data items, w.h.p.

2.4 Stage 2: Put Requests in t-Store
Once the newt-store has been built, the new put requests are

served in thet-store. Theseput requests cannot be served in the
same way as the insert requests below since there can be multiple
put requests to the same data item, so we need a different, more
careful approach.

For each of theput(d) requests, we execute at-put(d) request.
Eacht-put(d) request aims at storingd in the cluster responsible for
h(d). The t-put requests are sent to their destination clusters us-
ing the generic de Bruijn paths. More precisely, a request starting at
pointx = (x1, . . . , xlog n) and ending at pointy = (y1, . . . , ylog n)
is sent along the cluster nodes responsible for the points
x, (ylog n , x1, . . . , xlog n−1), (ylog n−1, ylog n, x1, . . . , xlog n−2),
. . . , (y2, . . . , ylog n, x1), y. These cluster nodes are indeed con-
nected due to the de Bruijn rule of selecting edges. In order to
handle manyt-put requests for the same name, we use a simple,
well-known filtering mechanism during the routing: Whenever two
or moret-put requests for the same name meet in a node, then only
one of them survives and the others are deleted. If at-put(d) request
arrives at its destination cluster and this cluster alreadystores an old
data itemd′ with name(d′) = name(d), thend′ is replaced byd.

If too manyt-put(d) requests fordifferentd have to be forwarded
by a cluster (which does not happen w.h.p. unless we are in a phase
beforet0), we use the following filtering mechanism to keep the
congestion low.

t-store Routing Rule: If t-put requests for more thanρ2 log2 n
many data items pass a node at any time, for some fixed and suffi-
ciently large constantρ2, then only requests for the firstρ2 log2 n
data items are handled and the rest is deleted.

Fortunately, this rule only has to be used if we are in a phase
before or att0, as shown in the following lemma, so for each data
item with at least onet-put(d) request, at least onet-put(d) request
will reach its destination cluster.

LEMMA 2.6. If the current phase is beyondt0 andρ2 ≥ 4δ is
a sufficiently large constant, then the number of different data items
with requests leaving a cluster in a step is at mostρ2 log n w.h.p.



PROOF. Since the hash functionh is chosen at random and each
cluster contains at most2δ log n nodes w.h.p., the de Bruijn rout-
ing strategy ensures that for any distribution of theput(d) requests
among the nodes, the expected number data items witht-put re-
quests passing a node is at most2δ log n afteri hops of the de Bruijn
routing. Also, since the data items have destination clusters that are
independent of each other, the Chernoff bounds imply that there are
at most4δ log n such data items w.h.p.

Since the combining makes sure that every node will forward at
most O(log n) t-put requests for each data item (namely, to the
nodes of the next cluster in the de Bruijn path), the following re-
sult holds.

LEMMA 2.7. Given that every non-blocked node issues at most
one t-put request, all t-put requests can be served in at most
O(log n) communication rounds and with congestion at most
O(log2 n) in each step, w.h.p. Moreover, at most one request is
served for each name with at-put request and also at least one if
the current phase is beyondt0. Also, every cluster in the newt-store
has to store at mostO(log n) data items for these requests, w.h.p.

When combining Lemmas 2.5 and 2.7, it follows that every clus-
ter in the newt-store has to store at mostO(log n) data items,
w.h.p., which sums up to a total ofO(n) data items in the new
t-store. However, since the O-notation ignores constants, we also
need to show that there is an absolute bound ofφ · n for some con-
stantφ that is not violated over time after time pointt0. We will
address this in Stage 4.

2.5 Stage 3: Processing Get Requests
The processing of the get requests proceeds in two further stages.

First, the get requests are processed in thet-storeusing thet-getpro-
tocol (with at most one t-get request per node), and all get requests
that cannot be served in thet-storeare processed in thep-storeusing
thep-getprotocol.

The t-Get Protocol
For eachget(name) request, at-get(name) request is executed in
thet-store. These requests are sent along the same routes as thet-put
requests above. Like in thet-put protocol, we have to deal with the
problem that multiplet-get requests exist for the same name. This
can be handled by using combining and splitting. More precisely,
whenever two or moret-get requests meet at some node during the
routing, then only one of them is forwarded and the others areleft in
that node. Once thet-get requests have reached their destinations,
they look up the requested data item, if it exists in thet-store and
send it back to their sources along the same paths they came from.
Whenever a returningt-get request hits a node that storest-get re-
quests to the same name (which were left behind in the forward
phase), the answer of that request is stored in the other requests and
all of them are sent backwards to their destinations. We use the
t-store Routing Rule above in order to filter outt-get requests if
requests for too many different data items pass a node.

As the forward phase of thet-get protocol is equivalent to the
t-put protocol and the backward phase is just the reverse of the for-
ward phase, the following lemma follows from Lemma 2.7.

LEMMA 2.8. Given that every non-blocked node issues at most
one t-get request, allt-get requests can be processed in at most
O(log n) communication rounds and with congestion at most
O(log2 n) in each step, w.h.p. Moreover, all requests are served
correctly if the current phase is beyondt0 and every clusters serves
at mostO(log n) t-getrequests, w.h.p.

The p-Get Protocol
For each destination cluster of at-get request that cannot serve that
t-get request, ap-get request is issued for that name in thep-store.
Thus, we have at most onep-get request for each name. Distribut-
ing thesep-get requests evenly among the nodes of each cluster
results in a constant number ofp-get requests per node w.h.p. (see
Lemma 2.8). Once they have all been served, the destinationsof
the correspondingt-get requests will receive the answers which are
then delivered back to the sources of thet-get requests in the same
way as in thet-get protocol. Hence, it remains to describe how to
execute thep-getprotocol in thep-store.

For thep-get protocol to work, we assume that thep-storeStor-
age Rule in Section 2.1 is satisfied for all requested data items
(which turns out to be true for each data item that was last inserted
or updated aftert0). The p-get protocol consists of three stages:
a preprocessing stage, a contraction stage and an expansionstage.
The basic approach in these stages goes back to the lookup proto-
col in [2] though we did some significant modifications to makethe
contraction stage more lightweight.

Preprocessing stage
Every non-blocked nodev checks the state ofα1 log n random
nodes inTi(v) for every0 ≤ i ≤ log n, for some fixed and suf-
ficiently large constantα1 ≥ 8. If more than1/4 of the (sampled)
nodes inTi(v) are blocked,v declaresTi(v) asblockedand other-
wiseunblocked. Since the checking can be done in parallel in our
model, this only needs two communication rounds.

Contraction stage
Eachp-get(d) request issued by some nodev selects a random node
v
(i)
0 ∈ Tlog n(hi(d)) (i.e., out of all nodes in the system) for alli ∈
{1, ..., c} and aims at reaching the node responsible forhi(d) within
at mostH = β1 log n hops, for some fixed and sufficiently large
constantβ1 ≥ 6. Initially, every indexi is active. Let the nodes
that are visited in these hops be calledv

(i)
1 , v

(i)
2 , . . .. We call a node

v
(i)
t congested at levelj if v

(i)
t receives more thanβ2cH different

p-get requests for levelj at timet. For hopt, v checks ifv(i)
t−1 is

blocked or congested. If so andv
(i)
t−1 was sampled out ofTj(hi(x)),

thenv
(i)
t is chosen at random out ofTj(hi(x)), otherwisev

(i)
i is

chosen at random out ofTj−1(hi(x)). If level j = 0 is reached, or
a nodev

(i)
t is reached that declaresTj(hi(x)) as blocked, ort =

β log n, thenv stops going forward for indexi. In the latter two
cases, it deactivates indexi at level j (i.e., i is considered to be
inactive for levelj) and otherwise callsi successful. At the end of
the contraction stage, nodev declaresp-get(d) to belong to levelℓ
whereℓ is the smallest level that contains at least2c/3 active indices
(i.e., indices that were not deactivated atℓ or earlier). Ifℓ = 0, then
p-get(d) is calledsuccessful.

Each successfulp-get(d) request can be immediately served by
contacting all nodes in level 0 with a successfuli, as implied by
the p-storeStorage Rule. The others have to continue on to the
expansion stage.

The contraction stage obviously needs at mostO(log n) time.
Let a setT ∈ Tℓ be calledblocked if at least1/3 of its nodes
are blocked. Also, letT be calledcongested at timet if at least
2β2cH · 2j messages are sent to it in some time stept. The follow-
ing lemmas hold.

LEMMA 2.9. For any setT ∈ Tℓ that is blocked it holds that for
all p-get(d) requests and indicesi with T = Tℓ(hi(d)), indexi will
be deactivated at a levelj ≥ ℓ.

PROOF. Suppose that setT ∈ Tℓ is blocked, and letv be any
non-blocked node inT . Then, on expectation, at least1/3 of the



α1 log n nodes sampled byv out of T are blocked, and since these
nodes are sampled independently at random, the Chernoff bounds
imply that at least1/4 of the sampled nodes are blocked w.h.p.
(given thatα1 ≥ 8 is sufficiently large). Hence, every node inT
will considerT to be blocked in the preprocessing stage w.h.p. So
according to thep-getprotocol, anyp-get(d) request will deactivate
any indexi with T = Tℓ(hi(d)) at latest at levelℓ.

LEMMA 2.10. Consider anyp-get(d) request and indexi with
T = Tℓ(hi(d)) that is at levelℓ at a time whenT is congested.
Then indexi will be deactivated at levelℓ.

PROOF. If T is congested, then the expected congestion of ev-
ery node inT is at least2β2cH and therefore also more thanβ2cH
w.h.p. (if the constantβ2 is sufficiently large). Hence, according
to thep-get protocol, all requests probing nodes inT at levelℓ for
some indexi will not advance to a lower level w.h.p. So the con-
gestion will be at least as large in the remaining time steps,which
implies the lemma.

Hence, the congestion at any node cannot exceedO(c log2 n)
throughout the contraction stage, w.h.p., implying that the contrac-
tion stage is correctly executed (i.e., all requests sent tonon-blocked
nodes can be handled within two communication rounds so that
blocked nodes are correctly identified).

LEMMA 2.11. The preprocessing and contraction stages re-
quire at mostO(log n) time and each node is involved in at most
O(c log2 n) many message transmissions per time step, w.h.p.

It remains to prove the following crucial result, which bounds the
number ofp-get requests that belong to a certain level.

LEMMA 2.12. If ǫ < 1/108 andβ2 ≥ 2/ǫ and at most2n p-get
requests have to be served, then at most6ǫn/2ℓ of thep-getrequests
belong to levelℓ w.h.p.

PROOF. Recall thatU is the name universe andm = |U |. LetH
be the collection of hash functionsh1, . . . , hc. Given a setS ⊂ U
of data names and ak ∈ N, we call F ⊆ S × {1, . . . , c} a
k-bundleof S if every d ∈ S has exactlyk many tuples(d, i)
in F . In other words, ak-bundle guarantees that each data item
is represented withk different indices. Givenh1, . . . , hc and a
distanceℓ, let ΓF,ℓ(S) be the union of the sets involved in these
indices fromTℓ, i.e., ΓF,ℓ(S) =

⋃

(d,i)∈F Tℓ(hi(d)). Given a
0 < σ < 1, we callH a (k, σ)-expanderif for any ℓ ≤ log n,
anyS ⊆ U with |S| ≤ σn/2ℓ, and anyk-bundleF of S, it holds
that |ΓF,ℓ(s)| ≥ 2ℓ|S|. Similar to Lemma 1 in [2], the following
claim can be shown.

CLAIM 2.13. If the hash functionsh1, . . . , hc are chosen uni-
formly and independently at random, it holds thatH is a (c/6, σ)-
expander w.h.p., for anyc ≥ 12 log m and0 < σ ≤ 1/36.

PROOF. We can adapt the proof of [2] for our setting. Suppose
that, for randomly chosen functionsh1, . . . , hc,H is not a(c/6, σ)-
expander. Then there exists ani ≤ log n and a setS ⊂ U with
|S| ≤ σn/2i, and ac/6-bundleF of S with |ΓF,i(S)| < 2i|S|. We
claim that the probabilityps,i that such a setS of sizes exists is at
most

(

m
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·
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.

This holds because there are
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ways of choosing a subsetS ⊂ U .
Furthermore, there are
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ways of choosingcs/6 pairs (d, j)

for F and at most
(

n/2i

s

)

ways of choosing a setW of s sets in

Ti witnessing a bad expansion of the pairs inF . The fraction of
collectionsH for which the selected pairs(d, j) indeed have the
property thatTi(hj(d)) ⊆ W is equal to(s/n/2i)cs/6 because the
hash functionsh1, . . . , hc are chosen independently and uniformly
at random.

Next we simplifyps,i. Using the conditions onc andσ in the
lemma it holds that
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if c ≥ 12 log m andm is sufficiently large. Hence, summing up
over all possible values ofs andi, we obtain a probability of hav-
ing a badc/6-bundle of at most(2 log n)/m, which proves the
lemma.

Given a setT ∈ Tℓ for some levelℓ, we callT blockedif the ad-
versary blocks more than a third of its nodes during the DoS attack.
T is calledcongestedif there is a time point in which more than a
third of its nodes are congested, i.e., received more thanβ2cH dif-
ferentp-put requests for levelℓ. (Note that this definition is different
from the prior definition of a congested setT .)

Let d be a data item. We calld blocked at level ℓ
if at least c/6 of its c sets Tℓ(hi(d)) are blocked, and we
call d weakly blockedat level ℓ if there are blocked sets
Tℓ1(hi1(d)), Tℓ2(hi2(d)), . . . , Tℓk

(hik (d)) with ℓ1, . . . , ℓk ≥ ℓ,
k = c/6, and i1, . . . , ik being pairwise different. Similarly, we
call d congestedat level ℓ if at leastc/6 of its c setsTℓ(hi(d))
are congested, and we call itweakly congestedat level ℓ if there
are congested setsTℓ1(hi1(d)), Tℓ2(hi2(d)), . . . , Tℓk

(hik (d)) with
ℓ1, . . . , ℓk ≥ ℓ, k = c/6, andi1, . . . , ik being pairwise different.
We start with the following claim.

CLAIM 2.14. Whenever ap-getrequest deactivates some index
i in levelℓ ≥ 0 then there must be a levelj ≥ ℓ so thatTj(hi(d))
is blocked or congested, w.h.p.

PROOF. Suppose that none of the setsTℓ(hi(d)) is blocked or
congested. Then they would also be non-congested when ignoring
the request ford. In this case, the probability that indexi of the
p-get request hits a node in some levelℓ that is neither blocked nor
congested is at least1/3 at any time. Thus, when defining the binary
random variableXt as being 1 if and only if thep-get(d) request
hits a node that is neither blocked nor congested at timet (or level
0 has already been reached successfully), thenPr[Xt = 1] ≥ 1/3.
ConsiderX =

∑β1 log n
t=1 Xt. Since the probability bound above

for Xt holds independently of the previousXt′ ’s, we can use the
Chernoff bounds to prove thatX > log n w.h.p., that is, indexi
successfully reaches level 0 w.h.p.

Thus, if ap-get request deactivates some indexi in level ℓ ≥ 0
then there must be a levelj ≥ ℓ so thatTj(hi(d)) is blocked or
congested, w.h.p.

Hence, if ap-get(d) request is not successful, then there are at
leastc/6 indices for which the first condition in Claim 2.14 is true,
or there are at leastc/6 indices for which the second condition is
true. Together with Claim 2.14 this implies thatd is either weakly



blocked or weakly congested. Hence, by bounding the number of
weakly blocked and congested data items we obtain an upper bound
on the number of unsuccessful requests. For weakly blocked data
items, the following claim holds.

CLAIM 2.15. If s blocked nodes are sufficient forb weakly
blocked data items at levelℓ thens blocked nodes are sufficient for
b blocked data items at levelℓ.

PROOF. Consider item d to be weakly blocked and let
Tℓ1(hi1(d)), Tℓ2(hi2(d)), . . . , Tℓk

(hik (d)) be the sets witnessing
that withk = c/6. Any route through a setTℓ′(hi′(d)) with ℓ′ > ℓ

contains exactly2ℓ′−ℓ setsT ∈ Tℓ, and each of these setsT has
a size of|Tℓ′(hi′(d))|/2ℓ′−ℓ. Thus, when distributing the nodes
causingTℓ′(hi′(d)) to be blocked evenly among allT ∈ Tℓ in
Tℓ′(hi′(d)), we can turn any set ofb weakly blocked data items
into blocked data items at levelℓ.

A similar claim also holds for weakly congested data items:

CLAIM 2.16. If s congested nodes are sufficient forb weakly
congested data items at levelℓ thens congested nodes are sufficient
for b congested data items at levelℓ.

Now we are ready to bound the number of weakly blocked and
weakly congested data items. First, consider the weakly blocked
data items. If the adversary can block up toǫn nodes (whereǫ
combines here the blocked and overloaded nodes), at most3ǫn/2ℓ

of the n/2ℓ sets inTℓ can be blocked, which covers at most3ǫn
nodes. Suppose the attacker can block a setS of data items at level
ℓ. Then there is ac/6-bundleF for S, i.e., we can identifyc/6
indices to blocked sets. Due to Claim 2.13, if|S| ≤ σn/2ℓ then
|ΓF,ℓ(S)| ≥ 2ℓ|S|. As ΓF,ℓ(S) is of size at most3ǫn, we have that
|S| ≤ 3ǫn/2r , which is less thanσn/2ℓ (so that Claim 2.13 im-
plies an upper bound on|S|) if 3ǫ < 1/36, or ǫ < 1/108. Hence, if
the adversary can block up toǫn nodes, this entails at most3ǫn/2ℓ

blocked data items at levelℓ. Together with Claim 2.15 this implies
that if the adversary can block at mostǫn nodes, then there are at
most3ǫn/2ℓ weakly blocked data items at levelℓ.

It remains to bound the number of weakly congested data items.
Recall that the contraction stage uses a congestion bound ofβ2cH .
Thus, when we have a total of at most2n p-get requests, at most
6n/(β2H2ℓ) of the n/2ℓ sets inTℓ can be congested at a single
time point and therefore at most6n/(β22

ℓ) of the sets inTℓ can be
congested over all time points. When settingβ2 = 2/ǫ, this means
at most3ǫn/2ℓ congested sets inTℓ. Using the same arguments as
for the blocked sets together with Claim 2.16 implies that there can
be at most3ǫn/2ℓ weakly congested data items at levelℓ.

Thus, altogether at most6ǫn/2ℓ data items are weakly blocked
or congested at levelℓ, which implies that at most6ǫn/2ℓ p-get
requests belong to levelℓ.

Expansion stage
The expansion stage works in the same way as for the lookup pro-
tocol in [2]. For completeness, we present it here again.

The expansion stage proceeds in rounds numbered from 1 to
log n. In roundr, everyp-get request for some data itemd that
belongs to roundr′ ≤ r and is not finished yet sends a message
of the form (d, r, i,−) (where “−” is an empty placeholder for a
most current copy ofd) for each indexi that was still active in the
level the request belongs to. This message is sent to the non-blocked
nodev in T = Tr(hi(d)) that was successfully contacted at level
r in the contraction stage. Each such nodev remembers the nodes
that sent messages to it in the setSv and stores the messages it re-
ceived from them into its active pool of messagesAv, one copy

for each(d, r, i,−). If |Av| > 3c/σ (for a constantσ satisfying
Claim 2.13), then any set of messages is discarded fromAv to get
down to |Av| = 3c/σ. For any remaining(d, r, i,−) in Av for
whichv stores a copyb of d (due to the data storage strategy defined
above),(d, r, i,−) is replaced by(d, r, i, b). Afterwards, every node
v in the system executes the following push strategyO(log n) many
times:

• v sends every message(d, r, i, b) in Av to a random node in
Tr(hi(d)).

• For each message(d, r, i, b) received by a non-blocked node
v, v first checks whetherAv already contains some message
(d, r, i, b′). If so, the message with the most current copy
of d is kept and the other is deleted. Otherwise,v checks if
|Av| = 3c/σ. If so,v discards the message.

If after these steps|Av| = 3c/σ, thenv sends for each nodew ∈ Sv

with original message(d, r, i,−) the message(d, r, i, ∗) back tow,
where the “∗” indicates thatv was too congested. Otherwise,v
sends(d, r, i, b) in Av back tow.

Eachp-get request that receives at mostc/6 many replies of the
form (d, r, i, ∗) (among the at least2c/3 replies) returns the mes-
sage(d, r, i, b) with the most up-to-dateb (which may also be “−”
if no copy was found) to whoever generated the request and is fin-
ished. Otherwise, it continues to participate in roundr + 1.

The runtime of the expansion stage isO(log2 n). Using
the bound on the number of requests belonging to levelℓ in
Lemma 2.12, one can show inductively with the same arguments
as in Lemma 2.12 that the number of requests belonging to a level
ℓ′ < ℓ that are not finished in levelℓ is at most6ǫn/2ℓ. Hence,
together with those requests that belong to levelℓ, there are at most
12ǫn/2ℓ requests that the expansion stage has to take care of at
levelℓ. Finally, at levellog n, all remaining requests can be finished
w.h.p. (cf [2]).

Whenever ap-get request finishes, it will receive the most up-to-
date copy of a data item for at leastc/2 indices, w.h.p., and since
none of the setsTℓ(hi(d)) explored for that were blocked w.h.p.
(see Lemma 2.9), it follows from thep-storeStorage Rule at least
leastc/6 setsTℓ(hi(d)) were successfully explored that contain an
up-to-date copy ofd (in a potentially blocked node) and at most a
third of their nodes are blocked, so w.h.p. there is at least one set
Tℓ(hi(d)) in which the up-to-date copy ofd is in a non-blocked
node (if d has already been inserted). This implies the following
result.

LEMMA 2.17. Given that the current phase is beyondt0 and
there are at mostn p-get requests with at most a constant num-
ber per node, allp-get requests are served correctly in at most
O(log2 n) communication rounds, w.h.p.

Note that the expansion stage is the only part in a phase whose
runtime exceedsO(log n). Otherwise, a phase would just need
O(log n) time. A runtime ofO(log2 n) is only necessary if the
adversary can adaptively choose thep-get requests in order to cre-
ate a high congestion in some parts of the system. If the namesfor
thep-get requests are selected independently of the hash functions
h1, . . . , hc, then eachp-get request only has to do broadcasts in
the level it belongs to in the expansion stage, which can be done in
O(log n) steps w.h.p.

2.6 Stage 4: Transferring Items
Finally, we try to transfer all items stored in thet-store(i.e., the

old and new ones) to thep-storeusing thep-put protocol; if the
transfer of a certain data itemd is successful, that is, if sufficiently
many replicas ofd can be stored correctly in thep-store, the corre-
sponding data item in thet-store is removed. Otherwise, the item



is left in the t-store. From thet-store Load Rule and Lemma 2.7
it follows that if every cluster evenly distributes thep-put requests
among its nodes, then each node only has to issue at most a constant
number ofp-put requests.

The p-Put Protocol
Thep-put protocol consists of three stages: a preprocessing stage, a
contraction stage and a permanent storage stage.

Preprocessing Stage.
Like in the p-get protocol, every non-blocked nodev checks the
state ofα1 log n random nodes inTi(v) for every0 ≤ i ≤ log n,
for some fixed and sufficiently large constantα1 ≥ 8. If more
than1/4 of the (sampled) nodes inTi(v) are blocked,v declares
Ti(v) asblockedand otherwiseunblocked. Also, each non-blocked
nodev picksα2 log n random nodes from the entire node set for a
fixed and sufficiently large constantα2. If at most half of them are
blocked (which is the case w.h.p. whenǫ < 1/3) thenv computes
the average data load̄Lv of the non-blocked nodes in thep-store.
Since the checking can be done in parallel in our model, this only
needs two communication rounds. The following lemma can be
shown forL̄v .

LEMMA 2.18. LetL̄ be the average load in the system andLmax

be the maximum load at a node. IfLmax ≤ 2λL̄, ǫ ≤ 1/(8λ), and
α ≥ 36λ is sufficiently large then for every nodev, L̄v ∈ [L̄/2, 2L̄]
w.h.p.

PROOF. Let L̄ andLmax be defined as in the lemma. First, we
prove an upper bound on̄Lv. If ǫ ≤ 1/3 then no matter whichǫ-
fraction of the nodes is shut down by the adversary, the average load
of the non-blocked nodes,̄Lnb, is at most

(n · L̄)/(1 − ǫ)n ≤ (3/2)L̄.

Consider any nodev and letL1, . . . , Lk be random variables de-
noting the loads of thek = α log n random nodes picked byv.
Given that previouslyLmax ≤ 2λL̄, Li ≤ 2λL̄ for every i,
and E[Li] ≤ (3/2)L̄. Hence, forL =

∑k
i=1 Li it holds that

E[L] ≤ (3k/2)L̄. Furthermore, the Chernoff-Hoeffding bounds
imply that, for any0 < δ ≤ 1,

Pr[L ≥ (1 + δ)E[L]] ≤ e−δE[L]/(3Lmax) .

Thus, we haveL ≤ 2kL̄ w.h.p. if the constantα ≥ 36λ is suffi-
ciently large.

Next, we prove a lower bound on̄Lv . If Lmax ≤ 2λL̄ andǫ ≤
1/(8λ), then no matter whichǫ-fraction of the nodes is shut down
by the adversary, the average load of the non-blocked nodes,L̄nb, is
at least

(n · L̄ − ǫn · 2λL̄)/(1 − ǫ)n ≥ (3/4)L̄.

Hence,E[Li] ≥ (3/4)L̄ for every i, which implies thatE[L] ≥
(3k/4)L̄. Furthermore, the Chernoff-Hoeffding bounds imply that,
for any0 < δ < 1,

Pr[L ≤ (1 − δ)E[L]] ≤ e−δ2E[L]/(2Lmax).

Thus, L ≥ kL̄/2 w.h.p. if the constantα ≥ 36λ is sufficiently
large.

If v’s own data loadLv satisfiesLv > λ · L̄ for some fixed and
sufficiently large constantλ ≥ 4, then it considers itself to be over-
loaded and will behave in the rest of thep-put protocol as if it is
blocked when contacted by other requests. Asv will not get any
new data in this case, Lemma 2.18 guarantees that there will never
be a node (w.h.p.) whose load exceeds2λL̄, which satisfies our scal-
ability requirement in Section 1.1. Also, the number of overloaded
nodes is not too high as stated by the following lemma.

LEMMA 2.19. The number of nodes that consider themselves to
be overloaded is at most2n/λ, w.h.p.

It immediately follows from Lemma 2.18 and the fact that there
can be at most2n/λ nodes with a load of more than(λ/2)L̄. Thus,
if λ is sufficiently large, we can just treat all of them as being
blocked, which is done so for the rest of the description and analysis
of thep-put protocol.

Contraction Stage.
The contraction stage of thep-put protocol is identical to the con-
traction stage of thep-get protocol. Lemma 2.12 immediately im-
plies the following result.

LEMMA 2.20. If ǫ < 1/108 andβ2 ≥ 2/ǫ and at most2n p-put
requests have to be served, then at most12ǫn of thep-put requests
are unsuccessful w.h.p.

Thosep-put requests that successfully made it to level 0 will be
served in thep-storeas described below. The other at most12ǫn
requests will remain in thet-store. Given that thet-storehad at most
2n data items initially, it has to serve at most(1+12ǫ)n ≤ 2n p-put
requests in the next round, so the number of data items remaining in
the t-storeis stable w.h.p.

Permanent Storage Stage.
Each node whosep-put(d) request was successful selectsγ1 log n
random indices among the active indices ofd and deactivates all
others for some fixed and sufficiently large constantγ1. Let i be an
index that remains active.

We want to prevent the accumulation of obsolete data items in
our system. In order to achieve this, we maintain in the node re-
sponsible forhi(d) — d’s root node — information about the nodes
storing a copy ofd w.r.t. index i. In order to supportupdatesof
a data itemd in our system, we use this information to remove all
out-of-date copies ofd w.r.t. i. Clearly, since some nodes may be
blocked, this may not always be possible. If it is not possible, refer-
ences to these out-of-date copies are left in the roots so that they may
be deleted at some laterp-put request. If more thanγ2 log n out-of-
date copies remain for some fixed and sufficiently large constantγ2

(which would only happen w.h.p. if the system is under an insider
attack, as we will see) thend is only updated in the roothi(d).
Otherwise, we select a random non-blocked node in eachTℓ(hi(d))
with ℓ ∈ {0, . . . , log n} (which requires at mostO(log n) attempts
w.h.p.), store an up-to-date copy ofd in these nodes, and store ref-
erences to these nodes inhi(d).

LEMMA 2.21. Given that att0 the total number of (obsolete and
up-to-date) copies of data itemd in thep-storeis O(log2 n) (which
is enforced by the permanent storage stage), the number of copies
of d remainsO(log2 n) w.h.p. at any time aftert0.

PROOF. Consider some fixed data itemd, index i and levelℓ.
Certainly, every nodev ∈ Tℓ(hi(d)) will only store one copy ofd
at a time because whenever it receives a newer copy, the olderone
will be deleted. Let the random variableXt be one if and only ifv
stores a copy ofd for indexi and levelℓ at the beginning of phaset,
and letpt = Pr[Xt = 1]. Suppose thatv is blocked at some phase
t in which d is updated. Thenpt+1 = pt as nothing changes forv.
Otherwise, suppose thatv is non-blocked. Ifi is not active for the
p-put(d) request, thenpt+1 = pt as well. Otherwise,pt+1 ≤ 3/2ℓ

asTℓ(hi(d)) contains at least2ℓ/3 non-blocked nodes w.h.p. and
a random set ofγ log n of these nodes is picked for the up-to-date
copies ofd. Hence, given that the number of obsolete copies ofd
wasO(log2 n) at time pointt0, the expected number of obsolete
copies ofd remains atO(log2 n). This also holds w.h.p. as the
probabilities are negatively correlated (see, e.g., [26] for Chernoff
bounds of negatively correlated random variables).



3. CONCLUSION
This paper has shown for the first time how to build a scalable

dynamic information system that is robust against a past insider.
Several important questions remain open. First of all, notethat we
did not try to optimize constants; from a practical perspective, it is
crucial to get them to smaller (resp. larger) values. It would also be
interesting to study whether the runtime of a phase can be reduced
to O(log n)—only thep-get protocol prevents that—and whether
our algorithms can be simplified. An important challenge on our
research agenda is to explore whether our concepts can be adapted
to bounded-degree peer-to-peer systems with potentially unreliable
peers. Finally, although we believe that our replication factors are
optimal, we still do not have a lower bound.
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