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ABSTRACT
This paper studies the fundamental trade-off between communica-
tion cost and delay cost arising in various contexts such as con-
trol message aggregation or organization theory. An optimization
problem is considered where nodes are organized in a tree topol-
ogy. The nodes seek to minimize the time until the root is informed
about their states and to use as few transmissions as possible at
the same time. We derive an upper bound on the competitive ratio
of O(min(h, c)) where h is the tree’s height, and c is the trans-
mission cost per edge. Moreover, we prove that this upper bound
is tight in the sense that any oblivious algorithm has a ratio of at
least Ω(min(h, c)). For chain networks, we prove a tight compet-

itive ratio of Θ(min(
√

h, c)). Furthermore, the paper introduces a
new model for online event aggregation where the importance of
an event depends on its difference to previous events.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]

General Terms
Algorithms, Theory

Keywords
Competitive Analysis, Wireless Sensor Networks, Distributed Al-
gorithms, Aggregation

1. INTRODUCTION
The analysis of distributed algorithms often revolves around time

and message complexity. On the one hand, we want our distributed
algorithms to be fast, on the other hand, communication should be
minimized. Problems often ask to optimize one of the two—and
treat the other only as a secondary target. However, there are situa-
tions where time and message complexity are equally important.

In this paper, we study such a case known as distributed aggre-
gation. Nodes of a large distributed network may sense potentially
interesting data which they are to report to a central authority. Not
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only should the data make its way fast through the network such
that information is not unnecessarily delayed; but also, since mes-
sage transmission is costly, one may reduce the number of trans-
missions by aggregating messages along the way. In other words,
nodes may wait for further packets before forwarding them in or-
der to decrease the number of transmission at the expense of a later
arrival of the information at the sink. This problem has many ap-
plications. In the past it was mostly studied in contexts such as
control message aggregation, or organization theory. In the heyday
of wireless networking the first application that comes to mind is
perhaps sensor networking. Due to energy constraints, it is neces-
sary to minimize the number of transmissions. At the same time,
it is desirable to aim at minimizing the time until the nodes are
informed about changes of measured values.

This paper assumes that the communication network of the nodes
forms a pre-computed directed spanning tree on which information
about events is passed to the root node (the sink). We assume that
data arrives at the nodes in an online (worst-case) fashion. A main
challenge is to decide at what points in time data should be for-
warded to a parent in the tree.

Our contributions are the following. We prove that a simple al-
gorithm achieves a competitive ratio of O(min(h, c)) where h is
the tree’s height, and c is the transmission cost per edge, which im-
proves on an existing upper bound of O(h log (cn)), where n is
the network size. This algorithm is oblivious, i.e., decisions at each
node are based solely upon the static local information available
at the node. Being oblivious is a desirable property of distributed
algorithms, since non-oblivious algorithms need dynamic updating
mechanisms—a costly operation. We also demonstrate that this
upper bound is tight in the sense that there exist problem instances
where any oblivious algorithm has a ratio of at least Ω(min(h, c)).

Earlier work proved a lower bound of Ω(
√

h) on a chain network.
Therefore, we examine this topology more closely and show that
chain networks are inherently simpler than general trees by giving
a competitive ratio of Θ(min(

√
h, c)) for oblivious algorithms. In

the last part of this paper, we initiate the study of a new event ag-
gregation model which takes into account that nodes often have
non-binary data to aggregate and greater differences between val-
ues need to be reported to the root faster than small differences. We
present a model comprising this additional constraint as well as an
oblivious algorithm achieving a competitive ratio of Θ(c/ε) on a
one-link network, where ε is the minimum difference between two
values. Moreover, we devise a polynomial algorithm that can com-
pute an optimal aggregation strategy offline for chain networks.

This paper is organized as follows. We review related work in
Section 2 and we introduce our model in Section 3. Section 4
contains our main technical contributions and Section 5 addresses
value-sensitive aggregation. We conclude the paper in Section 6.
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2. RELATED WORK
The trade-off between delay and communication cost appears in

various contexts, and plays a role in the design of algorithms for
wireless sensor networks, for Internet transfer protocols, and also
appears in organization theory. This section gives a brief overview
of related work on this topic.

Papadimitriou et al. [11, 12] investigate the following optimiza-
tion problem: An organization is modeled as a tree where employ-
ees (leaves) receive messages to be sent to the boss (the root). The
authors observe that before it is possible to accept some commu-
nication, humans typically must do a “context switch” in order to
process the message properly, and that the cost of these context
switches becomes large if communications are not scheduled care-
fully. Concretely, the cost function consists of two components,
one capturing the total number of messages sent along the tree, and
the other one capturing the total delay incurred by the messages be-
fore they reach the root. For the formal analysis of this dilemma of
interruptions, a Poisson process queuing model is assumed.

A basic problem in the design of Internet transfer protocols such
as the TCP protocol concerns the acknowledgements (ACKs) which
have to be sent by a receiver in order to inform the sender about the
successful reception of packets: In many protocols, a delay algo-
rithm is employed to acknowledge multiple ACK packets with a
single message or to piggy-back the ACK on outgoing data seg-
ments [14]. The main objective of these algorithms is to save band-
width (and other overhead at the sender and receiver) while still
guaranteeing small delays. The problem of aggregating ACKs in
this manner is also known as the TCP acknowledgment problem [5].
Karlin et al. [7] pointed out interesting relationships of the single-
link acknowledgment problem to other problems such as ski-rental,
and gave an optimal, e/(e − 1)-competitive randomized online al-
gorithm. Brito et al. [4] calculated general upper and lower bounds
for an asynchronous ACK delaying problem.

There are many variations of the theme, e.g., Albers et al. [1]
seek to minimize the number of acknowledgments sent plus the
maximum delay incurred for any of these packets. They propose a
π/6-competitive deterministic algorithm for the single link, which
is also a lower bound for any deterministic online algorithm. Fred-
eriksen et al. [6] consider deterministic and randomized algorithms
for bundling packets on a single-link network; their objective func-
tion measures the total time elapsed while packets are waiting at
the leaf node, but have not been delivered yet.

Finally, there is much literature on aggregation in sensor net-
works [10, 13, 15, 16, 17]. E.g., Becchetti et al. [2] studied online
and offline algorithms for scenarios where fixed deadlines must be
met. They show that the offline version of the problem is strongly
NP-hard and provide a 2-approximation algorithm.

The paper closest to ours is by Khanna et al. [8]. Our model
is derived from the one by [8] which investigates the task of cen-
tralized and decentralized online control message aggregation on
weighted tree topologies. In particular, [8] presents a O(h log α)-
competitive distributed algorithm, where h is the tree’s height, and
α is the sum of the weights of the tree’s edges. Moreover, the au-
thors show that any oblivious distributed online algorithm has a
competitive ratio of at least Ω(

√
h). In this paper, we study the

same algorithm and we give a new analysis for scenarios where
the communication cost is c on all links, resulting in a better upper
bound of O(min (h, c)). We also derive a new generalized lower
bound for edge cost which are different from h, and show that for
any oblivious aggregation algorithm, the competitive ratio is at least
Ω(min(h, c)). Moreover, by taking into account many interesting
properties of our algorithm, we show that for chain graphs an upper
bound of O(min(

√
h, c)) holds. This is asymptotically tight.

Korteweg et al. [9] address the same problem, but they follow a
bicriterion approach which considers time and communication as
two independent optimization problems: a (B, A)-bicriterion prob-
lem minimizes objective A under a budget on objective B. Inter
alia, the authors prove that if r is the ratio between the maximum
and the minimum delay allowed, then the competitive ratio of their
algorithm is (2hλ, 2h1−λ log r) for any λ in (0, 1].

3. MODEL
Let there be a rooted tree T = (V, E) of height h with root

r ∈ V and n = |V | nodes. Every node u except for the root r (the
sink) has a parent node v, i.e., an edge (u, v) ∈ E. The cost of
transmitting a message over an edge is c.

We assume that events occur at the leaf nodes L ⊂ V (e.g., a
control message arriving at a node, or a sensor node detecting an
environmental change). We will refer to the information about the
occurrence of a single event as an event packet. Leaf l creates an
event packet p for every event that happens at l.

Eventually, all event packets have to be forwarded to the root.
Instead of sending each packet p ∈ P individually to a node’s par-
ent after the event took place, nodes can retain packets and send a
message m consisting of one or more packets together later, thus
saving on communication cost as we have to pay for a link only
once per message (rather than per event). Messages can be merged
iteratively with other messages on their way to the root.

We consider a synchronous model where time is divided into
time slots. In each slot, an arbitrary number of events can arrive at
each node. For an event packet p, tl (p) denotes the time slot its
corresponding event occurred at a node and tr (p) the time when it
reaches the root. For each time slot an event waits at a node, we
add one unit to the delay cost, i.e., the delay cost dc (p) the event
accumulates until reaching the root is dc (p) = tr (p) − tl (p).

Each message can only be forwarded one hop per round, i.e., a
message always has to wait one round. Thus, the delay accumu-
lated by an event is at least hl, where hl denotes the length of the
path from the respective leaf l to the root. The total delay cost of
all events accumulated up to time slot T is hence

dcT =
X

p∈P,tr(p)≤T

dc (p) +
X

p∈P,tr(p)>T

(T − tl (p)).

Nodes can aggregate as many event packets as needed. At each
time step t, a node may aggregate awaiting event packets and for-
ward the resulting message to its parent. The cost of sending a
message is c per edge no matter how many event packets are com-
bined. Consequently, the total communication cost is the sum of
the edge cost of all message transmissions. More formally, let St

be the set of nodes sending out a message in time slot t, then the to-
tal communication cost ccT up to time slot T is ccT =

PT
t=1 |St|.

The total cost up to time T is the sum of both the delay and the
communication cost,

costT = dcT + ccT .

Observe that the edge cost c allows us to weight delay and commu-
nication costs: a larger c implies that communication cost become
relatively more important compared to the delay cost. Note that
we neglect the energy consumption in idle listening mode and con-
sider the nodes’ transmission cost only. We believe that this is jus-
tified for networks where listening nodes have their radios turned
off most of the time and only check for data transfers at the very
beginning of each time slot.

Nodes do not know the future arrival time of events, and hence
have to make the decisions on when to send messages online. We
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are in the realm of competitive analysis [3] and define the (strict)
competitive ratio ρ achieved by an online algorithm AGG as the
delay and communication cost of AGG divided by the total cost of
an optimal offline algorithm OPT .

DEFINITION 3.1 (ρ-COMPETITIVENESS). An online algorithm
AGG is (strictly) ρ-competitive compared to an optimal offline al-
gorithm OPT if for all input sequences I , i.e., all possible event
arrival sequences,

costALG(I) ≤ ρ · costOPT (I).

The goal of an online algorithm designer is hence to devise algo-
rithms minimizing ρ, as a small ρ describes the guaranteed worst-
case quality of an algorithm.

In this paper, we focus on oblivious online algorithms.

DEFINITION 3.2 (OBLIVIOUS ALGORITHMS). A distributed
online algorithm ALG is called oblivious if the decisions by each
node v ∈ V whether to transmit a message solely depends on the
time slots when the packets currently stored at v arrived (at v).

In particular, Definition 3.2 implies that the decisions of a node v
do not depend on packets forwarded by v earlier or on v’s location
in the aggregation network.

4. ALGORITHM AND ANALYSIS

4.1 Algorithm
This section describes and analyzes the deterministic online al-

gorithm AGG presented in [5, 8]. The algorithm is oblivious in the
sense that given the same packet arrival times, each node will re-
act in the same way, i.e., independently of its distance to the root
(cf. Definition 3.2). Essentially, the event aggregation algorithm
AGG seeks to balance the total delay cost and the total commu-
nication cost. In order to do so, it aggregates information about
multiple events into one message until the forwarding condition is
satisfied. Whenever a new event occurs or a message arrives, it is
merged with the message waiting for transmission at the node.

For each message m, we define delay(m, t), denoting the delay
associated with message m at time t. Informally, it is the sum of the
accumulated delay cost of all the event packets the message m con-
tains, minus the sum of the edge cost of every edge a message was
sent over. Thus, not only the delay but also the communication cost
paid already is taken into account. More formally, let a message m
be a set of merged messages {m1, . . . , mk}, where message mi

consists of |mi| packets and arrived at the current node in time slot
ti. The delay of message m at time t is defined by

delay(m, t) :=

kX
i=1

[delay(mi, ti) − c + |mi|(t − ti)] .

When executing algorithm AGG, a node v forwards a message
m to its parent as soon as the current accumulated delay exceeds
the transmission cost.

delay (m, t) ≥ c.

We demonstrate the execution of AGG on a simple example.
Consider the tree and the event arrival sequence in Figure 1. There
are two events occurring at leaf node v1, one in time slot t = 1,
one at time t = 2. Node v2 receives two packets at t = 2. The
transmission cost is set to c = 3. For this input sequence, node v1

sends its two packets after time t = 2 and node v2 after time t = 3,
i.e., as soon as the accumulated delay reaches or exceeds c = 3.
Node v3 incurs a delay of two after the message from v1 arrives.

root

v1 v2

v3

events at node v1 v2

t = 1 1 0
t = 2 1 2

delay at node v1 v2 v3

t = 1 1 0 0
t = 2 3 2 0
t = 3 0 4 2
t = 4 0 0 7
t = 5 0 0 0

Figure 1: Example execution of AGG where the transmission
cost c is 3.

In the next time slot, v3’s delay cost increases to 7, as the message
from v2 carries an “overflow delay” of 4− c = 1 and there are four
messages at v3. Adding this up to the delay cost of the previous
slot results in 2 + 1 + 4 = 7.

4.2 Tight Bound for Trees
We establish a new upper bound of O(min(h, c)) on the compet-

itive ratio of AGG by an astoundingly simple analysis. Instead of
calculating the delay and the communication cost the event pack-
ets accumulate, we focus on the messages AGG and OPT send.
We proceed as follows. First, we investigate the competitiveness of
AGG for a single link network, then tackle the chain network, and
finally generalize our analysis to tree topologies.

THEOREM 4.1. On arbitrary trees, the competitive ratio of AGG
is at most

ρ =
costAGG

costOPT ∈ O(min (h, c)).

PROOF. The proof unfolds in several lemmas.

LEMMA 4.2. [5] The competitive ratio of AGG on a single link
is at most 2.

PROOF. Consider a single link of cost c. Let ti be the time slot
AGG sends the message mi containing information on ki events.
This transmission entails a communication cost of ccAGG

i = c. The
total delay of the events in message mi is dcAGG

i = c + xi for
some xi ≥ 0, because mi will be sent as soon as its events’ delay
exceeds c, and because there can be (xi + 1) ≥ 0 simultaneous
event arrivals in the time slot immediately preceding ti. Any opti-
mal offline algorithm OPT will have at least delay cost xi as well.
In addition, OPT incurs a cost of at least c for the event packets
contained in mi, either because of a transmission or due to the ac-
cumulated delay, costAGG

i /costOPT
i ≤ (2c + xi)/(c + xi). This

expression is maximized for xi = 0, implying a competitive ratio
of 2. �

In a next step we analyze the chain network. First, we assume
that each message of the optimal offline algorithm which is sent
from a given leaf node comprises packets of multiple messages sent
by AGG at this leaf, and show that the claim indeed holds in this
case. Second, we prove that the claim holds true also if AGG sends
more messages than OPT . Finally, our results are generalized for
arbitrary sending sequences and for trees.

LEMMA 4.3. If the optimal algorithm’s messages sent from a
given leaf l include all packets of multiple messages of AGG, the
competitive ratio is at most O(min (hl, c)).

PROOF. Let mA
i denote the ith message leaf node l located at depth

hl sends to its parent. Let the total number of messages sent by
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AGG at l be denoted by MA
l . Due to our assumption, a message

mO
j of OPT contains the event packets of one or several messages

of AGG, i.e., mO
j = ∪i′

k=im
A
k for some i′ ≥ i. The cumulated cost

for AGG is less than (i′ − i + 1)(3hlc), since any message incurs
a delay cost of less than 2c and a transmission cost of c per hop
towards the root.

Let the total number of messages sent by the optimal algorithm
at node l be MO

l . The cost a message mO
j accumulates is at least

(i′ − i + 1)(c + hl − 1); the term (i′ − i)c is the delay cost the
events accrue while waiting at the leaf and (i′−i+1)(hl−1) is the
lower bound for the delay incurred on the way to the root, matched
if AGG’s messages contain one event each. The additional cost
c stands for the communication cost the optimal algorithm has to
pay for the first link. Note that this cost cannot decrease due to a
possible aggregation closer to the root. Hence we can write

ρ = costAGG/costOPT

≤
PMA

l
i=1 3hlcPMO

l
j=1 (i′ − i + 1) (c + hl − 1)

=
3hlc

c + hl − 1
∈ O(min(hl, c)),

which completes our proof. �

LEMMA 4.4. If the optimal algorithm sends more messages than
AGG from a given leaf node l, the competitive ratio is at most
ρ ∈ O(min (hl, c)).

PROOF. Let the total number of messages that node l at depth hl

sends be MA
l and let the total number of messages by the optimal

algorithm be MO
l . The delay cost these messages accumulate for

OPT is at least MO
l hl, regardless of aggregation operations closer

to the root, and the communication cost is at least MO
l c since every

message has to be sent over the first link separately. The cumulated
cost for AGG is at most MA

l (3hlc). Thus

ρ ≤
PMA

l
i=1 3hlcPMO

l
j=1 hl + c

≤ 3hlc

hl + c

∈ O (min (hl, c)) .

�

Continuing the proof of Theorem 4.1, it remains to consider
an arbitrary sequence of event arrivals where the optimal algo-
rithm’s messages are not unions of the packets of several mes-
sages of the online algorithm AGG or where the optimal algo-
rithm transmits more often at the leaf, but messages of AGG are
split and recombined across several messages the optimal algo-
rithm sends. We divide the sequence of event arrivals into sec-
tions where AGG sends more messages than OPT and into sec-
tion where AGG sends fewer messages than OPT . We proceed in
the following way: Set t := 0. For every time slot ti where AGG
sends a message we check whether the number of messages so far
exceeds the number of messages the optimal algorithm sends. As
soon as this condition is not satisfied anymore (time slot tk) we
backtrack to the previous message at time slot tk−1. We exempt
OPT from paying for the messages it did not send towards the
root up to this time slot. For the section [0, tk−1], Lemma 4.3 can
be applied. We continue by resetting t := 0. For every time slot
ti where AGG sends a message we check whether the number of
messages so far is below the number of messages the optimal sends.
As soon as this condition is not satisfied anymore (time slot tk) we

root

v1 v2 v3 ... vn/2-1

vn/2

Figure 2: Lower bound topology.

backtrack to the previous message at time slot tk−1. We exempt
OPT from paying for the messages it did not send towards the
root up to this time slot. For the section [0, tk−1] we can now ap-
ply Lemma 4.4. We repeat this examination for all remaining slots.
Consequently it holds for each leaf that there is no section where
AGG’s ratio is higher than O(min(h, c)). Since no assumptions
on the behavior of the optimal algorithm have been made in the
arguments above and since we only count the communication cost
incurring on the edges between the leaves and their neighbors, the
statements hold for general trees as well. �

We conclude our investigations of the tree network with a lower
bound stating that AGG is asymptotically optimal for any oblivious
algorithm. Recall from Definition 3.2 that for oblivious algorithms,
it holds that the wait time w only depends on the packet arrival time
of the packets currently stored by a given node.

THEOREM 4.5. Any oblivious deterministic online algorithm has
a competitive ratio of at least

ρ =
costALG

costOPT ∈ Ω(min(h, c))

on the tree.

PROOF. Consider the tree topology depicted in Figure 2 which
consists of a chain network of n/2 + 1 nodes, where all nodes
except for the two last ones have an additional neighbor. The leaf
nodes are referred to by v1, ..., vn/2.

Assume an input sequence where all leaves simultaneously get
one packet and consider any oblivious online algorithm ALG. Since
ALG is oblivious, according to Definition 3.2, each leave node vi

will send the packet after waiting for w time slots to its parent,
where the packet arrives at time w + 1 (the value of w > 0 de-
pends on the chosen algorithm). From there, the packet leaves at
time 2w + 1. And so on. Generally, the packet of leaf node vi will
arrive at a node at distance j from vi at time jw + j, and will stay
there for w rounds. Observe that the packets of two nodes vi−1

and vi are never merged into one message, as the time intervals
[(j − 1) w + (j − 1) , jw + (j − 1)] and [jw + j, (j + 1) w + j]
are disjoint. Thus, ALG has communication cost in the order of
Θ
`
h2c
´

and delay cost in the order of Θ
`
h2w

´
. Now consider

an algorithm which aggregates all these packets on the way to the
root: the communication cost are in Θ(ch), and the delay cost are
Θ
`
h2
´
. As the optimal algorithm OPT can only have lower cost,

we have the following (asymptotic) competitive ratio:

ρ =
costALG

costOPT ≥ h2w + h2c

2hc + h2
,

and the claim follows. �

Discussion. The analysis of Theorem 4.1 can be compared to
the results obtained in [8]. There, an upper bound of O (h log α)
is derived for the competitive ratio of AGG, where α is the total
edge weight of the tree. If all edges have a weight c, this trans-
lates into O (h log (nc)), which is O

`
h2 log c

´
in balanced binary

trees. In this case, our much simpler analysis is better by a factor
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of Θ(h log c) if h < c. In other networks, for instance, on chain
topologies, the gap between the two bounds narrows, although it
always remains positive.

4.3 Tight Bound for Chains
In order to obtain our upper bound for trees, the previous section

has already briefly studied the competitiveness of AGG on chain
networks. In the following, it is shown by a more detailed analy-
sis taking into account many intrinsic properties of AGG, that the
bound can be improved. Concretely, we prove that on the chain
topology, AGG is O(

√
h)-competitive, and that no oblivious algo-

rithm is can be less than Ω(min(c,
√

h))-competitive.

THEOREM 4.6. In chain graphs, the competitive ratio of AGG
is

ρ =
costAGG

costOPT ∈ O
“
min

“√
h, c
””

.

PROOF. We start analyzing input sequences where AGG does not
merge any messages at inner nodes. We then show that merge op-
erations cannot improve or deteriorate the competitive ratio.

LEMMA 4.7. On chain graphs and for sequences where AGG
does not have any merge operations, the competitive ratio of AGG
is O(

√
h).

PROOF. Consider a transmission of the optimal offline algorithm
OPT , and assume that OPT ’s message mO consists of packets
which are distributed over x

√
h messages mA

i of the online algo-
rithm AGG. Observe that x ∈ ω(1) since otherwise the claim
trivially holds due to the communication cost.

Let ni denote the number of packets in message mA
i , and let

ti denote the time when this message departs from the leaf node.
Without loss of generality we assume that ni ≤ c. In order to send
the x

√
h messages individually to the root, AGG incurs a trans-

mission cost of ccAGG = chx
√

h and the delay cost is bounded by
dcAGG < 2chx

√
h. For the optimal algorithm this transmission

entails a communication cost of ccOPT = ch. We now bound the
delay cost accumulated by each message mA

i which is merged into
message mO by the optimal algorithm. Without loss of generality,
assume that for 1 ≤ i ≤ x

√
h, all ni packets arrive simultane-

ously: if packets arrived dispersed over time, OPT would incur
higher delay cost. Let λi denote the time interval from the arrival
of the ni packets until the corresponding message departs from the
leaf. Moreover, let δi be the time interval after the message has de-
parted from the leaf until the next set of ni+1 packets arrives. The
delay cost the OPT accumulates at the leaf is given by

x
√

h−1X
l=i

x
√

h−1X
j=l

nl (δj + λj) .

We have λl = �c/nl	 by the definition of AGG. Under the as-
sumption that λl is c/nl, the delay of the optimal algorithm de-
creases while AGG’s cost remain the same. In order to guarantee
that consecutive messages cannot merge, it must hold for δl that

δl ≥ max

„
h

2

‰
2c

nl

ı
− h

2

‰
2c

nl+1

ı
− λl+1, 0

«
.

We show now that the delay cost for the optimal algorithm de-
creases if we balance the number of packets per message. Consider
two consecutive messages mA

i and mA
i+1, where mA

i+1 is not the
last message of mO

j for some j. Assume ni ≥ ni+1 + 1. We want
to compute the difference between the delay cost in this case (case

a: dc1) and the delay cost when we remove one packet from mA
i

and add it to mA
i+1 (case b: dc2). To this end it suffices to examine

the delay cost accrued in the time slots between the departure of
mA

i−1 and the arrival of mA
i+2. The relevant delay cost is

Pi−1
l=1 nl ·

(δi−1 + λi + δi + λi+1 + δi+1)+ ni (λi + δi + λi+1 + δi+1)+
ni+1 (λi+1 + δi+1) . Note that mA

i+1 cannot catch up with mA
i be-

cause of its size in dc1, thus δi = 0. For dc2, δi can only exceed 0
if ni − 1 > ni+1 + 1. The difference Δdc between the two costs
is hence

Δdc =

i−1X
l=1

nl · (δa)
i−1 + λ

a)
i + λ

a)
i+1 + δ

a)
i+1 − δ

b)
i−1 − δ

b)
i

−λ
b)
i+1 − δ

b)
i+1) + ni(λ

a)
i + λ

a)
i+1 + δ

a)
i+1 − λ

b)
i − δ

b)
i − λ

b)
i+1

−δ
b)
i+1) + ni+1(λ

a)
i+1 + δ

a)
i+1 − λ

b)
i+1 − δ

b)
i+1) − λ

b)
i − δ
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c
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Clearly, the sum of the terms multiplied by h/2 is at least zero.
Observe that the following inequality holds for all ni ≥ 2, ni−1 >
ni+1, and arbitrary ni−1:

ni

„
1

ni
− 1

ni − 1
+

1

ni+1

«
− 1

ni − 1

+ni+1

„
1

ni+1
− 1

ni+1 + 1

«
+

1

ni+1 + 1
> 0.

Hence, the difference of the cost is always positive, and a lower
bound for the delay cost is reached if for all pairs of consecutive
messages the second one contains at least as many packets as the
first one.

We now compute the delay cost of this balanced arrival sequence.
Let the last message with a size four times its predecessor’s, i.e.,
nk ≥ 4nk−1, be mA

k . (If no such message exists, take k = 1.) The
total sum of the delay cost in this case is

x
√

h−1X
i=1

x
√

h−1X
j=i

ni (tj − tj+1) >

k−1X
i=1

k−1X
j=i

niδj+

x
√

h−1X
i=k

x
√

h−1X
j=i

niλj .

The second summand is at least (x
√

h − 1 − k)2c/4 since the
delay cost mA

i accrues in between the arrival of mA
j and mA

j+1 is
at least niλj = nic/nj ≥ c/4 since nj ≤ 4ni for all i, j > k.
In order to bound the first summand, we use the fact that because
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∀ i : ni < ni+1 it holds that �2c/ni	 − �2c/ni+1	 ≥ 0. Thus

k−1X
i=1

k−1X
j=i

niδj =

k−1X
i=1

ni

k−1X
j=i

h

2
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2c
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ı
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‰

2c

nj+1

ı«
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ni
h
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2c
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ı
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2c
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ı«
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ni
h

2

„
2c

ni
− 2c
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− 1

«

>
(k − 1) hc

4
.

Note that if k < x
√

h/2 the delay cost amounts to more than

Ω((x
√

h − 1 − k)2c/4) = Ω(x2hc) and otherwise the delay cost

exceeds Ω(xh
√

hc). Thus, we can conclude our proof by

ρ ∈ O((x
√

hhc)(hc + hx
√

h + xhc)) ∈ O(
√

h).

�

LEMMA 4.8. Consider a transmission of OPT and assume that
AGG merges μi messages into one message at hop distance i from
the leaf. Compared to a sequence where no messages are merged,
AGG can reduce its cost by at least Ω(μi · c · (h − i)).

PROOF. If the μi messages are sent to the root separately, the online
algorithm pays μi(h − i)c communication cost for the transmis-
sions between the node at distance i to the root node. By merging
theses messages the cost for the transmission amounts to (h − i)c,
consequently the reduction is in Ω(μi · c · (h − i)). �

LEMMA 4.9. Consider a transmission of OPT and assume that
AGG merges μi messages into one message at hop distance i from
the leaf. Compared to a sequence where no messages are merged,
OPT can reduce its cost by at most O(μi · c · (h − i)).

PROOF. We prove this lemma in two steps. First, we assume that
in the execution of the online algorithm AGG the μi messages de-
parted from the leaf node separately and did not merge with any
messages before reaching the node at distance i. Thereafter we
show how to generalize our results for arbitrary merges.

Consider the μi messages that AGG merges at node i. We denote
the size of the messages under scrutiny by n1, ..., nμi . Without loss
of generality, assume that for 1 ≤ j ≤ μi, all nj packets arrive at
the same time: if packets arrived dispersed over time, only the delay
cost of AGG would decrease. In the following, let Xs denote that
variable X is considered in the scenario where AGG does not have
any merges, and Xm denote a variable in the other scenario. Let δl

denote the time interval between two consecutive arrival time slots
of the set of nl and the set of nl+1 packets. For sequences where
AGG does not merge any packets, OPT ’s delay cost is given by

dcOPT
s =

μi−1X
l=1

μi−1X
j=l

nlδ
s
j .

In order to guarantee that consecutive messages cannot merge by
the definition of AGG we have δl

s = max (κs, 1), where κs =
h/2 (�2c/nl	 − �2c/nl+1	) + �c/nl	 − �c/nl+1	.

If we assume the first merge operation of μi messages to hap-
pen at depth h − i, it must hold that nl < nl+1 and we can
compute a lower bound for the reduce time interval between two
messages. Observe that in order to ensure that messages do not
merge too early, it must hold that δl

m > max (κm, 1), where κm =
(i − 1) /2 (�2c/nl	 − �2c/nl+1	) + �c/nl	 − �c/nl+1	 .

Thus, OPT can reduce its delay cost by at most:

ΔdcOPT = dcOPT
s − dcOPT

m

≤
μi−1X
l=1

nl

μi−1X
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ˆ
δs

j − δm
j

˜
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nl
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2
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nl

ı
−
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ı–

=
h − i + 1
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l=1

nl

»‰
2c

nj

ı
−
‰

2c

nμi

ı–

≤ h − i + 1

2
(μi − 1)3c.

Hence, the claim holds for non-recursive merges. To see why the
claim also holds for repeated merges, consider again AGG’s mes-
sages which are aggregated by OPT , and consider the locations in
the chain topology where they merge the first time. If this is the
only time a merge occurs, we are done. Otherwise, regard the node
where the merge occurs as a new leaf node and consider the re-
maining chain until the root. For this network, the same arguments
apply, and hence, the claim also holds in this case. �

LEMMA 4.10. Fix a sequence of packet arrivals such that on a
chain graph AGG sends ν messages individually to the root and
merges μ messages at distance i from the leaf the competitive ratio
is O(min(

√
h, c)).

PROOF. Fix a sequence of packet arrivals such that on a chain graph
AGG sends ν messages individually to the root and merges μ mes-
sages at distance i from the leaf. If the packets that form the μ mes-
sages the online algorithm merges arrive before the ν messages sent
to the root separately the claim follows directly from Lemmas 4.8
and 4.9. Otherwise we have to take the delay cost the ν messages
can save since the to be merged messages can arrive closer to each
other into account. Applying the Lemmas 4.8 and 4.9 leads to a
total cost for AGG of less than 3νhc + 3hc + 3μic and the total
cost for OPT amounts to at least Ω

`
hc + min(ν2c, νhc) + μic

´
.

As in the proofs above we can assume without loss of generality
that (ν + μ) ∈ ω(

√
h). If νh < ν2 the competitive ratio is in

O(1), otherwise the ratio is at most O( νh+μ
h+ν2+μ

). Assume ν to be

lager than μ. This implies that ν >
√

h and hence the ratio is
O(νh/ν2) = O(

√
h). If μ is larger than ν, we have a ratio of

O(hnu/(h + nu2)), which is O(
√

h). �

The online algorithm performing several merge operations can-
not increase the competitive ratio, and together with Theorem 4.1,
it follows that the competitive ratio is at most O(min(

√
h, c)) on

chain graphs. �

We now show that AGG is asymptotically optimal for all oblivi-
ous online algorithms, i.e., we derive a lower bound for chain net-
works of Ω(min(

√
h, c)). For this lower bound, we consider a

chain network with h + 1 nodes. Let ALG denote any oblivious
online algorithm, and assume that packets arrive one-by-one: at
time 0, a packet p arrives at the leaf node l. The next packet ar-
rives at the leaf exactly when ALG sends the packet at l. Let w
denote the time a packet waits at l, and observe that the same wait-
ing time holds for all nodes on the way from the leaf to the root.
Thus, the total waiting time per packet is hw, and the communi-
cation cost is hc: costALG = hw + hc. We now derive an upper
bound on the optimal algorithm’s cost for this sequence. We parti-
tion the packets into blocks of size

√
h, i.e., one message contains
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√
h packets. Thus, the communication cost per packet of this al-

gorithm is hc/
√

h =
√

hc. The delay cost per message at the leaf

is
P√

h−1
i=1 iw ∈ Θ(hw). In addition, each packet experiences one

unit of delay per hop on the way up to the root. Thus, the optimal
cost per packet is costOPT ≤ Θ(

√
hc + w

√
h + h). Therefore,

for this sequence, it asymptotically holds that

ρ ≥ hc + hw

(
√

hc + w
√

h + h
=

h(c + w)√
h(c + w) + h

.

The lower bound follows from distinguishing three cases. If h and
c+w are asymptotically equivalent, the above expression becomes
Ω(

√
h). If h is asymptotically larger than c + w, the best oblivi-

ous algorithm which chooses w as small as possible yields a lower
bound of Ω(c). Finally, if h < c + w, we have Ω(

√
h).

THEOREM 4.11. The competitive ratio of any oblivious algo-
rithm is at least

ρ =
costALG

costOPT ∈ Ω
“
min(

√
h, c)

”
.

Discussion. Our findings can be compared to the analysis pre-
sented in [8]. Their Ω(

√
h) lower bound holds for arbitrary obliv-

ious algorithms on trees. In this paper, we have shown that this
upper bound is too pessimistic, as general trees are inherently more
difficult than chain topologies, and that the lower bound can be
increased to Ω(min(h, c)). For chain networks, we have general-
ized their result to arbitrary edge cost, yielding a lower bound of
Ω(min(

√
h, c)), which is proved tight by AGG.

5. VALUE SENSITIVE AGGREGATION
Before we conclude this paper, we introduce a novel model for

online event aggregation. In contrast to the aggregation model stud-
ied so far, this model is more appropriate in scenarios where the to
be delivered information is not binary (e.g., event messages) but
where arbitrary value aggregations need to be performed at the
root. Take wireless sensor networks as a motivating example: A
set of nodes measures the temperature at a certain outdoor location,
and the root is interested to have up-to-date information on these
measurements. Thereby, larger value changes are more important
and should be propagated faster to the root, e.g., such that an alarm
can be raised soon in case of drastic environmental changes.

In the following, we consider a most simple topology: a network
consisting of a leaf and a sink. Let the value measured by the leaf l
at time t be lt. We assume that the leaf node can only send the value
it currently measures. The root node’s latest value of node l at time
t is denoted by rt. We seek to minimize the following optimization
function: cost = M · c+

P
t |lt −rt| where M is the total number

of message transmissions and c the cost per transmission, i.e., M ·c
is the total communication cost.

Typically, the values measured by a sensor node do not change
arbitrarily, but there is a bound on the maximal change per time
unit. In the following, we assume that the value measured by a
node changes by at most Δ per round. Moreover, we assume that
the sensor nodes can only measure discrete quantities, and that the
difference between two measured values is at least ε.

First observe that there exists a simple optimal (offline) algo-
rithm which employs dynamic programming. OPT exploits the
following optimal substructure: For all time slots i, we compute
the minimal cost given that the node sends its value at time i; in or-
der to find this minimum cost, we consider each optimal last trans-
mission j < i and add the inaccuracy cost which accrued at the
root node between the two transmissions j and i. Observe that it

is not necessary to iterate over all time slots i, because an optimal
algorithm only sends a value immediately after it has changed, i.e.,
we only have to consider the time slots with value changes. Hence
we can construct an array OPT [·] of size λ, where λ is the total
number of value changes at the leaf node. We set OPT [0] = 0,
as we assume that initially, the root stores the correct value. The
remaining matrix entries are then computed as follows:

OPT [i] = min
j<i

 
OPT [j] + c +

iX
t=j+1

|lt − lj |
!

.

We have the following theorem.

THEOREM 5.1. In a link network, the optimal aggregation strat-
egy can be computed in time O(λ3), where λ is the number of value
changes at the leaf.

We propose the following online algorithm AGG, which can be
seen as a generalization of the algorithm presented in the previous
section: The leaf l sends the value it currently measures if and only
if
PT

t=τ |lt − lτ | ≥ c, where τ is the last time l has transmitted its
value and T is the current time.

For the analysis of AGG, we consider the time intervals between
two transmissions of AGG. For each such interval, we can bound
the competitive ratio yielding an overall competitive ratio. We first
need the following helper lemma.

LEMMA 5.2. Let ρ be the competitive ratio of AGG when AGG’s
delay cost is c in each time interval I , then 3ρ/2 is an upper bound
on the total competitive ratio.

PROOF. First observe that AGG can have a larger delay cost than c
in an interval, e.g., if in a round where the accumulated delay cost
is c − ε for an arbitrarily small ε > 0 there is a large value change
of size Δ at the leaf. Hence, the online algorithm’s delay in any
interval is at most 2(c − ε) + Δ. Consider an interval I where
the online algorithm’s delay cost is 2(c − ε) + k for some k ≤ Δ.
Compared to the case studied so far, AGG’s delay cost will increase
by at most k + c− 2ε. However, due to the large value change, we
know that the optimal algorithm’s delay cost must increase by at
least k as well. The new competitive ratio ρ′ is hence

ρ′ =
CC′

AGG + DC′
AGG

CC′
OPT + DC′

OPT

≤ ccAGG + dcAGG + k + c − 2ε

ccOPT + dcOPT + k

=
ccAGG + dcAGG

ccOPT + dcOPT + k
+

k + c − 2ε

ccOPT + dcOPT + k

< ρ +
c − 2ε

ccOPT + dcOPT

< ρ +
c − 2ε

(ccAGG + dcAGG)/ρ

< ρ +
c − 2ε

2c/ρ

<
3ρ

2
.

�

THEOREM 5.3. The competitive ratio of AGG is

ρ =
costAGG

costOPT ∈ Θ(c/ε),

where c is the link cost and ε is the minimum difference between
two values.
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PROOF. We first prove that ρ ∈ O(c/ε), and subsequently show
that ρ ∈ Ω(c/ε).

Proof for ρ ∈ O(c/ε): First, the ratio is computed under the as-
sumption that the delay cost of AGG is exactly c; we then apply
Lemma 5.2. We classify the possible types of intervals I between
two sending events of the online algorithm and consider them sep-
arately. Observe that for any interval where the optimal algorithm
OPT transmits, the competitive ratio is at most 2, as OPT has
cost at least c and the online algorithm AGG has communication
cost c and delay cost c. It remains to examine the situations where
OPT does not send.

Assume that at the beginning of this interval, AGG sends the
value A0, and at the end, it sends the value A1. Furthermore we
denote the optimal algorithm’s value at the root at the beginning
and at the end of this interval by O0 and O1, respectively. We
define δ0 := |A0 − O0| and δ1 := |A1 − O1| and examine all
possible cases under the assumption that the delay cost of AGG is
c for every interval.

Case δ0 = δ1 = 0: If OPT has no transmission, it must have
the same delay cost in this interval as AGG, because the initial and
final values are the same, and hence ρI ≤ 2.

Case δ0 = 0, δ1 �= 0: If OPT has no transmission, it must have
at least the same delay cost as AGG in I , thus ρI ≤ 2.

Case δ0 �= 0, δ1 = 0: If OPT has no transmission, it incurs at
least delay cost δ0 in the first time slot, as AGG sends the correct
value at the beginning of the interval. Hence, ρI ≤ 2c/δ0.

Case δ0 �= 0, δ1 �= 0: In this case, OPT has delay cost δ0 as
well yielding ρI ≤ 2c/δ0.

Thus, for each of these intervals, ρI ≤ 2c/δ0. It must hold that
δ0 > ε, and the claim follows by applying Lemma 5.2.

Proof for ρ ∈ Ω(c/ε): Consider the following sequence of val-
ues at the leaf node:

0, εc/ε, 0c/ε−1,−ε, 0c/ε−1, ε, 0c/ε−1,−ε, . . .

where αβ denotes that the value α remains for β rounds. Observe
that for each subsequence (0c/ε−1,−ε, 0c/ε−1, ε), 2ε is an upper
bound on OPT ’s delay cost: It is the total delay cost if there are
no transmissions at all in the entire sequence. In contrast, AGG has
2c delay cost plus two transmissions. That is, neglecting the cost
of the first time slot, we have ρ ≥ 4c/2ε = 2c/ε. �

6. CONCLUSION
This paper investigated an online aggregation problem which can

be regarded as a generalization of the classic ski-rental problem to
trees. This generalization is motivated by the increasing popular-
ity of wireless sensor networks where a trade-off between event
notification time and transmission cost exists. We have studied a
simple distributed algorithm which achieves a competitive ratio of
Θ(min(h, c)) in case of general trees and Θ(min(

√
h, c)) in case

of chains. Apart from the efficiency criterion, this algorithm is at-
tractive as it poses minimal hardware requirements on the sensor
nodes (low memory and computational requirements). In addition
to binary event aggregation, this paper has initiated the analysis of
a new model where the root is interested in the nodes’ values (e.g.,
the measured temperature or humidity).

We believe that both problems still pose interesting questions
for future research. E.g., the exploration of asynchronous models,
the study of non-oblivious algorithms, or algorithms which have a
limited amount of information about the states of their neighbors,
can yield deeper insights into the event aggregation problem and
may also be useful in other applications. Moreover, it would be
interesting to examine whether the techniques used in [7] can also

be applied to our value aggregation problem in order to reduce the
competitive ratio further by randomization.
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