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ABSTRACT
This paper studies the problem of computing the most fre-
quent element (the mode) by means of a distributed algo-
rithm where the elements are located at the nodes of a net-
work. Let k denote the number of distinct elements and fur-
ther let mi be the number of occurrences of the element ei

in the ordered list of occurrences m1 > m2 ≥ ... ≥ mk. We
give a deterministic distributed algorithm with time com-
plexity O(D+k) where D denotes the diameter of the graph,
which is essentially tight. As our main contribution, a Monte
Carlo algorithm is presented which computes the mode in
O(D + F2/m2

1 · log k) time with high probability, where the

frequency moment F` is defined as F` =
∑k

i=1 m`
i . This algo-

rithm is substantially faster than the deterministic algorithm
for various relevant frequency distributions. Moreover, we
provide a lower bound of Ω(D +F5/(m5

1B)), where B is the
maximum message size, that captures the effect of the fre-
quency distribution on the time complexity to compute the
mode.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]:
Nonnumerical Algorithms and Problems—computations on
discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems
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Algorithms, Theory
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1. INTRODUCTION
A fundamental requirement of decentralized systems such

as, e.g., wireless sensor networks or peer-to-peer networks,
is that statistical data about these systems can be acquired
in a distributed fashion. A network component may want
to analyze relevant data which has been accumulated in the
network in order to learn about the state of the system. For
example, a participant in a peer-to-peer network might be
interested in the most popular files or in the total number
of available files. All queries must be performed efficiently
as nodes may have limited resources such as a small energy
supply in the case of sensor networks, or because the size of
the network may forbid any operation that requires a single
entity to communicate repeatedly with a large number of
other entities in the system.

Fortunately, many aggregation functions can be computed
in the network itself. Distributive (max, min, count, sum)
and algebraic (plus, minus, average, variance) aggregation
functions can be computed as follows [15]: In a first step, a
spanning tree is constructed on which the aggregations are
performed. The root sends a message along the spanning
tree, asking the leaves to start the aggregation. The inner
nodes of the spanning tree wait until all their children have
sent their values, and subsequently forward the aggregated
value to their respective parent. The time complexity of
these operations is O(D) where D denotes the diameter of
the spanning tree. Even order statistics and percentiles can
be computed efficiently by using a k-selection algorithm [10],
which computes the kth smallest element in the network.

Although a wide range of queries can be computed by
combining these aggregation functions, there are essential
queries that cannot be answered using any of these func-
tions, e.g., “How many disjoint elements are there in the
network?” or “Which element occurs most often among all
elements?”. While it has been shown that the number of
disjoint elements can be approximated efficiently [6], less is
known about the complexity of finding the mode, i.e., the
element which occurs most often, in a distributed fashion.
An algorithm to compute the mode distributively is a useful
tool for popularity analyses in large networks.

This paper presents a deterministic algorithm which com-
putes the mode in time O(D + k) for general distributions,
where D is the network diameter and k is the total number
of distinct elements; this is essentially tight up to logarith-
mic factors. Our main result however is a distributed Monte
Carlo algorithm to find the mode in general graphs. This
algorithm is especially suited for skewed distributions which
naturally arise in various contexts. For example, the fre-
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quencies of terms on webpages, files in file-sharing networks
etc., are distributed according to a power law [2, 12, 17].
We point out that the time complexity of our algorithm is
fairly low for such distributions, but our bound on the time
complexity is more general and holds for all distributions.
Most of our results are expressed in terms of the frequency
moments F` =

∑k
i=1 m`

i , where mi denotes the number of
occurrences of the element ei in the ordered list of occur-
rences, i.e., m1 > m2 ≥ . . . ≥ mk.1 The proposed algorithm
finds the mode in O(D+F2/m2

1 · log k) time with probability
at least 1 − 1/kc for a constant c ≥ 1. Moreover, we show
that it is generally hard to compute the mode for arbitrary
distributions by proving a lower bound of Ω(D+F5/(m5

1B)),
where B is the maximum message size.

The remainder of this paper is organized as follows. In
the subsequent section (Section 2), related work is reviewed.
The model used in this work is introduced in Section 3. Our
deterministic and randomized algorithms are both discussed
in Section 4, together with their respective analyses. In Sec-
tion 5, the aforementioned lower bound is proven. As an ex-
ample for skewed distributions, we give the time complexity
of the randomized algorithm in the case where the frequen-
cies of the elements follow power laws in Section 6. Finally,
the paper concludes in Section 7.

2. RELATED WORK
As mentioned before, while certain aggregation functions

such as the sum, minimum or maximum etc. can be com-
puted efficiently both in distributed and non-distributed set-
tings, other functions are more difficult. In a recent pa-
per by Kuhn et al. [10] a randomized algorithm for the k-
selection problem, where the goal is to find the kth smallest
element, is presented. In a graph of diameter D consist-
ing of n nodes, where each node holds a single element, the
time complexity is O(D logD n) with high probability, which
matches the lower bound of Ω(D logD n) also derived in this
work. Thus, finding the median is asymptotically more dif-
ficult than computing distributive and algebraic functions.

Flajolet et al. [6, 8] have studied the problem of determin-
ing the number of distinct elements in a multiset. In their
probabilistic LogLog algorithm, all elements are hashed
into sufficiently long binary strings in such a way that all
bits closely resemble random, independent and uniformly
distributed bits. As the number of elements that hash to a
value with a prefix of x 0-bits is k/2x in expectation, where
k denotes the number of distinct elements, the basic idea of
the algorithm is that the length of the longest prefix consist-
ing of 0-bits can be used as an approximation for log2 k. By
repeating this step m times and by correcting a systematic
bias in the asymptotic limit, the resulting estimate is asymp-
totically unbiased and the standard error is approximately
1.30/

√
m. A simple reduction from the set disjointness prob-

lem shows that the bit complexity to find the true value k is
at least Ω(k) [14]. This implies that, while finding the exact
number of distinct elements is in general hard, an accurate
estimate can be computed efficiently.

The problem of finding the mode, the most frequent ele-
ment in a list for random access machines has been studied
by Munro et al. [5, 13]. In [5], they give an algorithm which
needs n log n/m + o(n log n/m) + O(n) comparisons in the

1If m1 = m2, the algorithm simply finds any element that
occurs at least as often as all others.

worst-case, where n is the total number of elements in the list
and m is the frequency of the mode. This is asymptotically
optimal up to lower order terms. Farzan et al. [7] investigate
a cache-oblivious model, i.e., a random access memory model
with a memory hierarchy where the cache sizes are unknown.
The paper presents an optimal randomized algorithm and a
near-optimal deterministic algorithm to compute the mode
which minimize the number of cache misses.

Alon et al. [1] have studied the space complexity of ap-

proximating the frequency moments F` =
∑k

i=1 m`
i in a

streaming model (i.e., only one linear pass through the in-
put is done). Note that the frequency moment F∞ =

lim`→∞(F`)
1/` = max1≤i≤k mi is the number of occurrences

of the mode. In particular, in this work the lower bound
technique used in [11] is adapted to show that for any fixed
k ≥ 6 and γ < 1/2, given an input sequence I of at most
n elements taken from the set N = {1, 2, ..., n}, any ran-
domized algorithm that outputs a number Zk such that
P[|Zk − Fk| > 0.1Fk] < γ uses at leastΩ(n1−5/k) memory
bits. This implies a lower bound of Ω(n) on the bit com-
plexity to compute the frequency of the mode. It also follows
that computing the mode itself requires Ω(n) bits, as the fre-
quency of the mode can be computed trivially in O(D) time
once the mode is known.

While preparing the camera-ready version, we found a
paper by Charikar, Chen, and Farach-Colton studying the
space complexity of finding frequent elements in a streaming
model [3]. Using a different algorithm but somewhat similar
techniques, they give an algorithm with a space complexity
of O

(
(k+F2/m2

k)·log n
)

that finds k elements with frequency
at least (1 − ε)mk with high probability, where mk is the
frequency of the kth -most frequent element. Together with
some of the ideas of this paper, the techniques of [3] can be
adapted for the distributed scenario yielding an alternative
distributed algorithm with the same time complexity as the
algorithm introduced in this paper. Similarly, the techniques
of this paper could also be used to solve the problem of [3]
with the same space complexity.

We provide a deterministic algorithm which is essentially
asymptotically optimal for arbitrary frequency distributions.
Furthermore, we derive general upper and lower bounds on
the time complexity taking the frequency distribution of the
elements into account.

3. MODEL
We are given a connected graph G = (V, E) of diameter

D with node set V and edge set E. The diameter of a
graph is defined as the length of the longest shortest path
between any two nodes. Each node v ∈ V stores one or
more elements ei. There are K possible elements, i.e., each
element ei is chosen from an alphabet A, where |A| = K.
For simplicity, we will assume that the alphabet is the set
{1, ..., K}, henceforth denoted by [K]; this also implies that
the elements can be ordered. Each element ei ∈ A can
appear multiple times, and we define mi to be the frequency
of the element ei, where m1 > m2 ≥ ... ≥ mk. We assume
that the frequencies mi are chosen from the set [M ]. Let k
denote the total number of distinct elements, and let m =∑k

i=1 mi be the total number of elements. This paper will
often refer to the following definition.
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Definition 3.1. (Frequency Moments) The `th fre-
quency moment F` of a multiset containing mi elements of
type ei ∈ [K] is defined as F` =

∑k
i=1 m`

i .

Observe that F0 = k is the number of distinct elements in
the multiset, and F1 = m is the total number of elements.
For the sake of simplicity, when describing the algorithm we
will assume that the nodes know the frequency moments F0

and F2 as well as the frequency m1 of the mode. Estimates
of these quantities can be obtained efficiently in parallel to
the computation of the mode, as we will show in Section 4.3.

The nodes compute the mode by exchanging messages.
Two nodes can directly send a message to each other if
and only if they are connected by an edge in G. We
consider a classic synchronous message passing model as,
e.g., described in [15]. Our algorithms are described in
terms of synchronous rounds. In every round, each node
can receive a message from all adjacent nodes, perform
some local computations, and send messages to all adja-
cent nodes. The time complexity of an algorithm is the
number of rounds needed until every node terminates. Note
that all our results also hold if we allow asynchronous com-
munication since every synchronous algorithm can be re-
formulated as an asynchronous algorithm of the same time
complexity [15]. We restrict the size of each message to
B ∈ O(log K + log M + log n) bits. The main obstacle for
computations in the described model is edge congestion that
is caused by the bound on the size of the messages. In
fact, with arbitrarily large messages, a single convergecast—
a simple flooding-echo operation—would suffice to accumu-
late all elements at a single node, which could subsequently
solve any problem locally.

Finally, in this paper it is assumed that a breadth-first
search spanning tree rooted at the node initiating the algo-
rithm has been pre-computed. As computing such a tree
only takes 2D time and all our time bounds are at least
linear in D, this assumption is not critical.

4. ALGORITHMS
First, the deterministic algorithm to compute the mode

is presented, together with the proof of the lower bound
for arbitrary frequency distributions. In the second sub-
section, the randomized algorithm ALGmode whose running
time crucially depends on the frequency distribution is de-
scribed and analyzed. Finally, it is proven that ALGmode

has the same time complexity when a small quasi-random
family of hash functions is used, which permits the use of
small messages.

4.1 Deterministic Algorithm
There is a straightforward deterministic algorithm to find

the mode executed on the pre-computed spanning tree. We
assume that there is a total order on all the elements, i.e.,
e1 > . . . > ek. The algorithm starts at the leaves of the tree
which send element-frequency pairs 〈ei, mi〉 to their parents
in increasing order starting with the smallest element that
they possess. Any inner node v stores these pairs received
from its children and sums up the frequencies for each dis-
tinct element. Node v forwards 〈ei, mi〉, where mi is the
accumulated frequency of ei in the subtree rooted at v, to
its parent as soon as v has received at least one pair 〈ej , mj〉
from each of its children such that ej ≥ ei. Any node v sends
〈ei, mi〉 to its parent at time t ≤ h + i where h is the height

of the subtree rooted at v. This claim clearly holds for the
leaves as each leaf can send the ith smallest element ei at
latest at time i. Inductively, a node v thus receives at least
the ith smallest element after h+i−1 time, after which it can
forward the element including the accumulated frequency to
its parent. Observe that there is no congestion, as node v
has already sent all smaller element-frequency pairs in ear-
lier rounds. Thus, the algorithm terminates after at most
O(D+k) steps. Note that this algorithm does not only com-
pute the mode and its frequency m1, but also the frequencies
of all other elements.

Similarly to the lower bound for the number of distinct
elements, a lower bound for the mode problem follows by
reduction from the well-known set disjointness problem. It
has been shown that two entities each holding a set of ele-
ments of cardinality k/2 must exchange Ω(k) bits in order to
determine whether the two sets are disjoint, even using ran-
domization [9, 11, 16]. This bit complexity implies a time
lower bound of Ω(k/B), as by definition each message can
contain at most B bits. Since there are distributions where
determining if the sets are disjoint requires Ω(k/B) time and
computing the mode for these distributions solves the dis-
jointness problem,2 it follows that computing the mode also
requires Ω(k/B) time. As D is also a natural lower bound
in the distributed model, the time lower bound for the mode
problem is Ω(D + k/B).

Although this simple deterministic algorithm is optimal
up to a factor B, it is worth investigating other algorithms
which take the distribution of the elements into account. In
particular, the skewness of the distribution can reasonably
be expected to affect the efficiency of an algorithm to com-
pute the mode. In the following, we present a randomized
algorithm whose time complexity is considerably lower for
various distributions.

4.2 Randomized Algorithm
In this section the randomized algorithm ALGmode is in-

troduced, followed by a thorough analysis of its time com-
plexity. In order to compute the mode, ALGmode makes
extensive use of hash functions. Our analysis is organized
in two parts. First, we assume that the hash functions are
chosen independently and uniformly from the set of all pos-
sible hash functions mapping the elements ei ∈ [K] to a hash
value in the required range R. We require the size of the
range R to be only 2; however, selecting any of these 2K

possible hash functions at random still entails a large com-
munications overhead as choosing one hash function requires
the communication of K bits. Therefore, we subsequently
show that ALGmode still works if a random hash function is
selected from a much smaller set.

4.2.1 Algorithm
We first summarize the basic mechanism underlying the

algorithm ALGmode. Each node in the graph stores a local
counter c(ei), which is initially 0, for each of its t elements
e1, . . . , et. The algorithm uses hash functions that map each
element randomly to one of two bins with equal probability.
All nodes use the same hash function to compute and sub-
sequently forward the number of its elements that mapped
to the first and the second bin. Each counter c(ei) is incre-
mented by the number of elements that have been mapped

2If the frequency of the mode is 2, then this element must
appear in both sets and thus the sets are not disjoint.
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Algorithm 1 countElementsInBins(h) at node v with mul-
tiset 〈e1, . . . , et〉:
1: c0 = |{ei : h(ei) = −1}|
2: c1 = |{ei : h(ei) = +1}|
3: if Γ(v) = ∅ then
4: send 〈c0, c1〉 to p(v)
5: else
6: for all vj ∈ Γ(v) in parallel do

7: 〈c(j)
0 , c

(j)
1 〉 = countElementsInBins(h)

8: send 〈c0, c1〉+
∑

j∈Γ(v)〈c(j)
0 , c

(j)
1 〉 to p(v)

to the same bin as element ei. The idea is to determine the
mode by repeating this procedure using different hash func-
tions. Since the mode is likely to end up in the larger bin
more often than the other elements, the counter c(e1) will
grow faster than the counters of the other elements. After a
first phase, which reduces the set of candidates for the mode,
the frequency of each remaining candidate is computed sep-
arately in a second phase. The time complexity is bounded
by the time required to find a small set of candidates and
by the time to check these candidates.

We will now study each step of the algorithm in greater
detail. The root node, i.e., the node interested in comput-
ing the mode, selects r1 hash functions h1, . . . , hr1 where
hi : A → {−1, +1}, i.e., each hash function maps every ele-
ment to one of the two bins. The parameter r1 will be deter-
mined later in the analysis of the algorithm. In the following,
we will represent the two bins as a tuple 〈c0, c1〉, where ci

denotes the number of elements that have been mapped to
bin i ∈ {0, 1}. All nodes then accumulate the mappings
by means of a flooding-echo procedure on the spanning tree
using the function countElementsInBins parameterized by
the hash function: Once the leaves have received informa-
tion about the hash function, their elements 〈e1, . . . , et〉 are
hashed and added to the two bins, i.e., c0 is set to the num-
ber of elements that mapped to the first bin and c1 is set to
the number of the remaining elements. This tuple is sent to
the parent node, which accumulates the tuples from all its
children and adds its own tuple. The resulting tuple is for-
warded recursively up to the root. Let p(v) and Γ(v) denote
the parent and the set of children of node v in the spanning
tree, respectively. The sum of two tuples 〈c′0, c′1〉 and 〈c′′0 , c′′1 〉
is defined as 〈c0, c1〉, where ci = c′i + c′′i for i ∈ {0, 1}. This
subroutine is summarized in Algorithm 1.

Once the root has computed the final tuple 〈c0, c1〉, this
tuple is distributed down the spanning tree. Any node that
receives this distribute message forwards it to its children
and updates its local counters according to the following
rule: For all elements ei that mapped to the larger of the
two bins, its counter c(ei) is increased by |c0 − c1|. These
steps can be carried out in parallel for all r1 hash functions,
i.e., the root can issue one of the r1 procedure calls in each
communication round. Once the r1 results have been ob-
tained and the tuples have all been distributed, Phase (1) of
the algorithm is completed.

In the second phase, the r2 elements—the parameter
r2 will also be specified later—with the largest counters
are accumulated at the root using the procedure getPoten-
tialModes. In this procedure, the nodes always forward the
element ei, including c(ei), if its counter is the largest among
all those whose element has not been sent yet. Moreover,

Algorithm 2 ALGmode

1: mode = ∅, freq = −∞
2: Phase (1):
3: for i = 1, . . . , r1 in parallel do
4: 〈c0, c1〉 = countElementsInBins(hi)
5: distribute(〈〈c0, c1〉, hi〉)
6: Phase (2):
7: 〈e1, . . . , er2〉 = getPotentialModes(r2)
8: for i = 1, . . . , r2 in parallel do
9: mi = getFrequency(ei)

10: if mi > freq then
11: mode = ei, freq = mi

12: return mode

an element is only forwarded, if its counter is among the
r2 largest counters ever forwarded to the parent node. Once
these elements arrive at the root, the root issues a request to
count the individual frequencies for all those elements and
the element with the largest frequency is returned as the
mode. The entire algorithm is depicted in Algorithm 2.

We will now specify the parameters and analyze the time
complexity of ALGmode.

4.2.2 Analysis
In Phase (1), ALGmode executes r1 iterations, where a

randomly chosen hash function hi ∈ {h1, h2, ..., hr1} assigns
all the elements ei ∈ A to one of the two bins in each it-
eration, i.e., h1, ..., hr1 : A → {−1, +1}. First, we need to
prove a bound on the number r1 of required hash functions
to substantially reduce the set of candidates.

Throughout the rest of this section, we will make use of
the following helper lemma.

Lemma 4.1. For i = 1, . . . , k, let Yi be independent ran-
dom variables with

Yi =

{
yi, with P = 1/2

−yi, with P = 1/2

If Y =
∑k

i=1 Yi and F2[Y ] =
∑k

i=1 y2
i is the second frequency

moment of a set with frequencies y1, . . . , yk, then we have
that

P
[
Y ≥ λ

√
F2[Y ]

]
≤ e−λ2/2.

Proof. It holds that

P
[
Y ≥ λ

√
F2[Y ]

]
≤

γ>0

E[eγY ]

eγλ
√

F2[Y ]
=

∏k
i=1 E[eγYi ]

eγλ
√

F2[Y ]

≤
∏k

i=1
eγyi+e−γyi

2

eγλ
√

F2[Y ]

=

∏k
i=1 cosh(γyi)

eγλ
√

F2[Y ]

≤
∏k

i=1 eγ2y2
i /2

eγλ
√

F2[Y ]
=

eγ2 ∑k
i=1 y2

i /2

eγλ
√

F2[Y ]

≤ e−λ2/2

since (ex + e−x)/2 = cosh(x) ≤ ex2/2 and by setting γ =

λ/
√

F2[Y ]. Note that F2[Y ] = Var(Y ).
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The goal of Phase (1) is to reduce the set of elements that
could potentially be the mode to a small set of size r2. The
following lemma bounds the number r1 of hash functions
required to ensure that the counter of the mode is larger
than the counter of a large fraction of all elements.

Lemma 4.2. If r1 ∈ O(F2/m2
1 log(k/ε)) then ∀ei : mi <

m1/2 it holds that c(ei) < c(e1) with probability at least 1−ε.

Proof. First, we focus only on the events where the
mode e1 and the element e′ with the maximum frequency
among all elements whose frequency is less than half of
the frequency e1 of the mode are put into different bins.
All other elements are added randomly to one of the bins,
and this procedure is repeated r1 times. Alternatively, we
can say that there are (k − 2)r1 elements α1, . . . , α(k−2)r1

that are placed randomly into the two bins. It holds that∑r1(k−2)
i=1 α2

i < r1 · F2. Before the elements α1, . . . , αr1(k−2)

are put into the bins, it holds that c(e1) > c(e′) + r1 ·m1/2.
In order to ensure that c(e1) > c(e′) after all elements have
been placed in one of the bins, the probability that the other
elements compensate this imbalance of at least r1·m1/2 must
be small. Let the Bernoulli variable Zi indicate into which
bin the element αi is placed. In particular, in case Zi = −1,
the element is put into the bin where the mode is, and if
Zi = 1, the element is placed into the other bin. By setting
r1 = 8F2/m2

1 ln(2k/ε) and applying Lemma 4.1 we get that

P




(k−2)r1∑
i=1

αiZi ≥ r1 ·m1/2


 < e

− r2
1(

m1
2 )2

2
∑(k−2)r1

i=1 α2
i

< e
− r1m2

1
8F2 =

ε

2k
.

In order to ensure that the elements e1 and e′ are of-
ten placed into different bins, the number of rounds is in-
creased to r1 = 32F2/m2

1 ln(2k/ε). Let the random vari-
able U denote the number of times that the two elements
are placed into the same bin. Using a simple Chernoff
bound we get that the probability that 32F2/m2

1 ln(2k/ε)
rounds do not suffice to bound the probability of failure to
ε/(2k), because e1 and e′ are put into different bins less
than 8F2/m2

1 ln(2k/ε) times, is itself bounded by P[U >

24F2/m2
1 ln(2k/ε)] < e−F2/m2

1 ln(2k/ε) < ε/(2k). Thus, the
probability that c(e1) > c(e′) is at least 1 − ε/k. Let
Υ = {ei : mi < m1/2} denote the set of all elements for
which we want to prove that their counters are lower than
the counter of the mode. The probability that any element
e∗ in this set has a counter larger than the mode is P[∃e∗ ∈
Υ : c(e∗) > c(e1)] <

∑
e∈Υ P[c(e) > c(e1)] < k · (ε/k) = ε,

which concludes the proof.

Note that technically we cannot determine r1 unless we
know F2, m1, and k. In the following section, we show that
these quantities can all be estimated efficiently. Using this
bound on the number of hash functions, we are now in the
position to prove the following theorem.

Theorem 4.3. The time complexity of ALGmode to com-
pute the mode with probability at least 1− ε on an arbitrary
graph G of diameter D is

O

(
D +

F2

m2
1

log
k

ε

)
.

Proof. In Phase (1) of the algorithm, r1 hash functions
are applied to all elements and the sum of elements hashed to
each bin is accumulated at the root using a simple flooding-
echo procedure. It is important to see that all these hash
functions can be handled in parallel as opposed to comput-
ing the resulting bin sizes for each hash function sequen-
tially, i.e., the number of communication rounds required is
bounded by O(D + r1) and not O(D · r1). Each result is
distributed back down the tree in order to allow each node
to updates its counters for all its stored elements, which re-
quires O(D) time. Hence, the time complexity of the first
phase is bounded by O(D + r1).

In Phase (2), the r2 elements with the largest counters
are accumulated at the root, and the element with the high-
est number of occurrences out of this set is returned as the
mode. The procedure getPotentialModes performs this op-
eration in O(D + r2) time, as the ith largest value arrives
at the root after at most D + i rounds of communication.
Naturally, the frequency of r2 elements can also be deter-
mined in O(D + r2) time, and thus the entire phase requires
O(D + r2) time.

The parameter r2 has to be large enough to ensure that
the mode is in fact in this set of elements with high prob-
ability. Let Ῡ = {ei : mi ≥ m1/2} be the complement
of Υ. According to Lemma 4.2, if r1 = 32F2/m2

1 ln(2k/ε),
then the mode is in Ῡ with probability at least 1 − ε. We
have that |Ῡ|(m1/2)2 ≤ ∑

ei∈Ῡ m2
i ≤ F2, implying that

|Ῡ| ≤ 4F2/m2
1. Thus, by setting r2 = 4F2/m2

1, both phases
complete after O(D+F2/m2

1 log(k/ε)) rounds and the mode
is found with probability 1− ε.

4.3 Estimators for F2, m1, and k
In order to estimate F2, the algorithm described by Alon

et al. [1] can be used, which employs a set of four-wise in-
dependent hash functions mapping elements to either −1 or
1. A set H of hash functions is called four-wise independent
if for any four elements e1, . . . , e4, the values h(ei) of a ran-
domly chosen hash function h from the set are statistically
independent. Hence, for any elements e1, . . . , e4 and any
choice c1 . . . , c4 ∈ {−1, 1} there are |H|/16 hash functions
h ∈ H for which it holds that h(ei) = ci for all i = {1 . . . , 4}.
It is shown that, by using s := 32 lg(1/ε′)

λ2 of these hash func-
tions h1, . . . , hs, where each function hj is used to compute

Xj :=
∑k

i=1 hj(ei) ·mi, these values Xj can be used to com-

pute an estimate F̂2 which deviates from F2 by at most λF2

with probability 1 − ε′. The transition from the streaming
model to our model is straightforward: The values Xj can be
computed by usig two counters c−1 and c+1 that sum up the
values that map to −1 and +1 (just like in our algorithm),

as it holds that Xj =
∑k

i=1 hj(ei) · mi = c+1 − c−1. Since
λ is a constant, we can aggregate all counters and thus all
values Xj for all hash functions j ∈ {1, . . . , s} at the node
that wishes to approximate F2 in O(D+log(1/ε′)) time and

compute the estimate F̂2 locally.
As mentioned in Section 2, there is a probabilistic algo-

rithm to estimate k = F0 efficiently [6, 8]. The algorithm
uses hash functions that map elements to bit strings. The
key idea is that the length of the longest prefix consisting of
0-bits can be used as an approximation for log2 k. Several
runs of this procedure using randomly chosen hash functions
are used in order to bound the variance. In the distributed
version of this algorithm, the lengths of the longest prefix of
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0-bits for each hash function are accumulated and then used
to compute an estimate k̂, which also takes O(D) time.3

Thus, estimators F̂2 and k̂ for both F2 and k can be com-
puted in parallel to the computation of the mode. Since the
variances are bounded, we can in fact compute estimates for
which it holds that F̂2 ≥ F2 and k̂ ≥ k with a certain proba-
bility 1− ε′′ by modifying the original estimates. Given the
estimators F̂2 and k̂, an estimator m̂1 for m1 can be obtained
as follows. We know that after r1 = 32F2/m2

1 log(2k/ε)
time, the first phase of the algorithm may terminate. After
each distribution of 〈〈c0, c1〉, hi〉 we determine the frequency
of any element ei whose counter is currently the largest in
O(D) time and use this frequency as the new estimator for
m̂1, if this frequency is greater than any frequency encoun-
tered before. Aggregation rounds are performed iteratively
as long as 32F̂2/m̂2

1 log 2k̂/ε < T , where T denotes the num-
ber of aggregation rounds executed so far. Once this in-
equality does no longer hold, we can conclude that the al-
gorithm must have executed enough aggregation rounds, as
m̂1 ≤ m1. The algorithm does not run much longer than
needed, since m̂1 ≥ m1/2 after 32F̂2/m̂2

1 log(2k̂/ε) ≥ r1

rounds.
Note that, since all algorithms exhibit a certain error prob-

ability, the number of rounds r1 of the first phase must be
increased slightly by a small constant factor to ensure that
the mode is still computed correctly with probability at least
1− ε. We dispense with the analysis of the exact factor.

4.4 Selecting Hash Functions
ALGmode makes extensive use of hash functions. In Sec-

tion 4.2, we assumed that the hash functions can be chosen
uniformly at random from the set of all 2K possible hash
functions. However, in order to select one of these hash func-
tions at random, K bits have to be communicated, which is
not allowed in our model where we restrict message sizes
to at most O(log K + log M + log n) bits. In the following,
we show that our algorithm still works if a random hash
function is chosen from a much smaller set.

We first need a few definitions. Let S ⊆ [K] × [M ] be
a subset of all possible element-frequency pairs and let h :
[K] → {−1, +1} be a hash function. We define the imbalance
λS(h) of h with respect to S as

λS(h) =

∑
(ei,mi)∈S h(ei) ·mi√

F2[S]
, (1)

where F2[S] is the second frequency moment of the set S.
We call a hash function h λ-good with respect to a set S ∈
[K]× [M ] if |λS(h)| ≤ λ.

Let H be a family of hash functions h : [K] → {−1, 1}.
Further, let He,e′ ⊆ H be the set of hash functions h for
which h(e) 6= h(e′). We call H a quasi-random hash family
with parameters δ, ε ∈ (0, 1) if the following conditions hold.

Let `1 = d
√

2 ln(5(2 + δ)K2/ε)/δe.

(I) 2-independence: For all e, e′ ∈ [K],
∣∣He,e′

∣∣ ≥ (1 −
δ) ·

∣∣H
∣∣/2.

(II) Exponentially small imbalance: For all e, e′ ∈ [K],
S ⊆ (

[K] \ {e, e′}) × [M ], and all integers ` ≤ `1, the

3It has been pointed out that the somewhat ideal proper-
ties of the hash functions assumed in the original work are
not required and that by slightly modifying the algorithm it
suffices to use a set of linear hash functions [1].

number of hash functions h ∈ He,e′ that are not δ`-

good with respect to S is at most (2 + δ) · e−(δ`)2/2.

(III) Independence of imbalance sign: For all e, e′ ∈
[K], S ⊆ ([K] \ {e, e′})× [M ], and all integers ` ≤ `1,
let Λe,e′,S(`) be the set of hash functions h ∈ He,e′

that are not (δ` − 1)-good but that are δ`-good with
respect to S. We have

∣∣∣
∣∣{h ∈ Λe,e′,S(`)

∣∣λS(h) · h(e) < 0
}∣∣−

∣∣{h ∈ Λe,e′,S(`)
∣∣λS(h) · h(e) > 0

}∣∣
∣∣∣

≤ δ ·
(
e−δ2(`−1)2/2 − e−δ2`2/2

)
· |He,e′ |.

Note that the family of all 2K hash functions clearly is
a quasi-random family for all δ and ε (cf. Lemma 4.1).
However, we will show that there are exponentially smaller
quasi-random hash families and that our algorithm achieves
the same bounds if the hash functions h1, . . . , hr1 are cho-
sen uniformly from any quasi-random family H with ap-
propriate values of δ and ε. We proceed as follows: We
first show that choosing O(F2/m2

1 · log(k/ε)) hash func-
tions from a quasi-random family results in a time com-
plexity of O(D + F2/m2

1 · log(k/ε)) rounds if the algo-
rithm is allowed to err with probability at most ε. Sub-
sequently, we prove that quasi-random hash families of size
O(poly(K, M)) exist, allowing to run ALGmode with mes-
sages of size O(log M + log K + log n).

Assume that we are given a set S ⊆ [K]× [M ] of elements
e1, . . . , ek ∈ [K] with frequencies m1 ≥ . . . ≥ mk ∈ [M ]
and a quasi-random hash family H. The hash functions
h1, . . . , hr1 in ALGmode are chosen independently and uni-
formly at random from H. Let ei be an element that oc-
curs less than half as often as the mode, i.e., mi < m1/2.
As above, let He1,ei ⊆ H be the set of hash functions
h for which h(e1) 6= h(ei). As in Section 4.2 for ran-
dom hash functions, we again need to choose the num-
ber of rounds r1 such that c(e1) > c(ei) with sufficiently
large probability. Let Sei = S \ {(e1, m1), (ei, mi)} and let
Hei = He1,ei ∩ {h1, . . . , hr1} be the set of chosen hash func-
tions h for which h(e1) 6= h(ei). The difference ∆ei between
c(e1) and c(ei) after r1 rounds can be computed as

∆ei = |Hei | · (m1 −mi) + Nei , (2)

where

Nei =
∑

h∈Hei

h(e1)·
∑

(e,m)∈Sei

h(e)·m =
∑

h∈Hei

h(e1)·λSei
(h)·

√
F2[Sei ].

Thus, we have to show that Nei > −|Hei |(m1 − mi) >
−|Hei | · m1/2 with sufficiently high probability. We need
to start with some additional definitions. Recall that `1 =
d
√

2 ln(5(2 + δ)K2/ε)/δe. We partition the hash functions
h ∈ He1,ei according to the value of h(e1)λSi(h). For in-
tegers 1 ≤ ` ≤ `1, let Λ+(`) be the set of hash func-
tions h ∈ He1,ei for which h(e1)λSi(h) ∈ (δ(` − 1), δ`] and
let Λ−(`) be the set hash functions h ∈ He1,ei for which
h(e1)λSi(h) ∈ [−δ`,−δ(` − 1)). Further let Λ∞ be the set
of hash functions h ∈ He1,ei for which

∣∣λSi(h)
∣∣ > δ`1. In

order to lower bound the value of Nei , we need the following
lemma.
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Lemma 4.4. For every constant c2 > 1, there is a con-
stant c1 > 0, such that

P


 ∑

h∈Hei
\Λ∞

λ2
Sei

(h) > c1 ·
∣∣Hei

∣∣

 < c

−|Hei
|

2 .

Proof. For simplicity, assume that 1/δ ∈ Z such that
every integer λ = δ` for some integer `. Then by using
Condition (II) of the quasi-randomness definition, we obtain
that for every λ ∈ N, the number of hash functions h ∈
He1,ei that is not λ-good is at most (2+ δ) · |He1,ei | · e−λ2/2.
The probability that we want to bound is maximized if for
all λ ∈ N we have that

βλ =

∣∣{h ∈ He1,ei

∣∣h is not λ-good
}∣∣

∣∣He1,ei

∣∣

=

{
(2 + δ) · e−λ2/2 if λ ≥ d

√
2 ln(2 + δ)e

1 otherwise.

Let H′ = He1,ei \ Λ∞ and t =
∣∣H′

∣∣, and let

p := P


 ∑

h∈H′
λ2

Sei
(h) > c′1 · t




We have

p ≤ P


 ∑

h∈H′

⌈|λSei
(h)|⌉2

> c′1 · t



<
γ>0

E
[
e

γ
∑

h∈H′
⌈
|λSei

(h)|
⌉2

]

eγc′1t

=

∏
h∈H′ E

[
e

γ
⌈
|λSei

(h)|
⌉2

]

eγc′1t

≤
(∑∞

λ=1 (βλ − βλ−1) · eγλ2

eγc′1

)t

≤

 (2 + δ) ·∑∞

λ=1

(
e−(λ−1)2/2 − e−λ2/2

)
· eγλ2

eγc′1




t

=


 (2 + δ) ·∑∞

λ=1 eλ2(γ−1/2) ·
(
eλ−1/2 − 1

)

eγc′1




t

.

There are constants c′1 and γ such that the above expression
is at most c−t

2 for a constant c2 > 1. The claim now follows
because for a hash function h that is chosen uniformly at
random from He1,ei , P

[
h ∈ Λ∞

] ≤ ε/(5K2) and therefore

t = Ω(|Hei |) with probability e−Θ(|He1,ei
|).

We can now bound the value of Nei with high probability.

Lemma 4.5. If δ < 1/(8c · K · ln3/2(K/ε)) and |Hei | ≥
c ·F2[Sei ]/m2

1 · ln(k/ε) for a sufficiently large constant c ≥ 1,
we get

P
[
Nei ≤ −m1

2
· |Hei |

]
<

ε

k
.

Proof. Note that K ≥ k > F2[Sei ]/m2
1. In order to

simplify the analysis, we define λ̃Sei
(h) = δ(`− 1) for every

h ∈ Λ+(`) and λ̃Sei
(h) = −δ(` − 1) for every h ∈ Λ−(`).

Instead of Nei , we now consider the random variable

Ñei =
∑

h∈Hei

h(e1) · λ̃Sei
(h) ·

√
F2[Sei ] (3)

and get

Nei > Ñei − δ ·
∣∣Hei

∣∣ ·
√

F2[Sei ],

since we change no λSei
(h)-value by more than δ. We

set d(`) =
∣∣|Λ−(`)| − |Λ+(`)| to the difference between

the sizes of two symmetric sets of the described partition
of He1,ei . Since H is a quasi-random family, we have

d(`) ≤ δ(e−δ2(`−1)2/2 − e−δ2`2/2)|He1,ei | (independence of
imbalance sign). For each 1 ≤ ` ≤ `1, remove d(`) hash func-
tions from the larger of the two sets Λ+(`) and Λ−(`) and
add them to a set Λ`. We then have |Λ+(`)| = |Λ−(`)| for

1 ≤ ` ≤ `1. Let H1 =
⋃`1

`=1 Λ+(`)∪Λ−(`) be the hash func-
tions in some Λ+(`) or Λ−(`) and letH2 = He1,ei\(H1∪Λ∞)
be the set of hash functions from the sets Λ`. We define

Xei =
∑

h∈H1∩Hei

h(e1) · λ̃Sei
(h)

Yei =
∑

h∈H2∩Hei

h(e1) · λ̃Sei
(h)

Zei =
∑

h∈Λ∞∩Hei

h(e1) · λSei
(h) ,

and then have Ñei = (Xei + Yei + Zei) ·
√

F2[Sei ]. Because
|Λ+(`)| = |Λ−(`)| for 1 ≤ ` ≤ `1, for every hash function
h ∈ H1, there is a corresponding hash function h′ ∈ H1 such
that λ̃Sei

(h) = −λ̃Sei
(h′). We can therefore use Lemma 4.1

to bound Xei and get that

P


Xei ≤ −α ·

√ ∑

h∈H1

λ̃2
Sei

(h)


 ≤ e−α2/2.

Together with Lemma 4.4 and because λSei
(h)/λ̃Sei

(h) ≥ 1
for every h ∈ H1, we obtain that for every constant c2 > 1,
there is a constant c1 > 0 such that

P
[
Xei < −α ·

√
c1 · |Hei |

]
< e−α2/2 + c

−|Hei
|

2 .

Choosing α =
√

2 ln(5k/ε) and an appropriate constant c2

(note that |Hei | ≥ c ln(k/ε)), we have

P

[
Xei < −

√
2 · c1 · ln

(
5k

ε

)
· |Hei |

]
<

2ε

5k
. (4)

In order to bound the value of Yei , remember that |Λ`| =

d(`) ≤ δ(e−δ2(`−1)2/2 − e−δ2`2/2)|He1,ei |. Hence, the proba-
bility that we choose at least one hash function h from H2

with |λSei
(h)| > λ is at most |Hei | · δ · e−λ2/2. Hence, there

is a constant c3 > 0 such that

P

[
max

h∈H2∩Hei

∣∣λSei
(h)

∣∣ > c3 ·
√

ln

(
k + |Hei |

ε

)]
≤ ε

5k
.

(5)
Let us now consider the size of the set H2. By Condition
(III) of the quasi-randomness definition, we have |H2| ≤
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δ · e · |He1,ei |. The probability for choosing a hash function
h ∈ H2 is therefore at most δe. Using Chernoff and E

[|Hei ∩
H2|

] ≤ e/
√

ln(K/ε), we conclude that there is a constant
c4 > 0 such that

P

[
∣∣Hei ∩H2

∣∣ > c4 ·
√

ln

( |He1 |
ε

)]
≤ ε

5k
. (6)

Combining Inequalities (5) and (6), we obtain

P
[
Yei < −c3c4 · ln

(
k

ε

)]
≤ 2ε

5k
. (7)

Finally, by the definition of `1, we have that

P
[
Zei < 0

] ≤ P
[|Λ∞| > 0

]

≤ 2(1 + δ) · |Hei | · e−δ2`21/2 ≤ ε

5k
. (8)

Let

ν :=

(
δ · |Hei |+

√
c′1 · ln

(
k

ε

)
· |Hei |+ c3c4 · ln

(
k

ε

))

for some constant c′1. Combining Inequalities (3), (4), (7),
and (8), we get that

P
[
Nei < −ν ·

√
F2[Sei ]

]
<

ε

k
(9)

for a constant c′1 > 0. Using 1 ≤ F2[Sei ]/m2
1 ≤ k ≤ K, we

obtain

δ · |Hei | ·
√

F2[Sei ] <

√
F2[Sei ] · |Hei |

8cK ln3/2(K/ε)

≤ m2
1 · |Hei |

8c
√

F2[Sei ] ln
3/2(K/ε)

<
m1

8
· |Hei |.

For the second term in the sum of Inequality (9), we have
√

c′1 · ln
(

k

ε

)
· |Hei | · F2[Sei ] ≤

√
c · c′1 · F2[Sei ] ln(k/ε)

m1

≤ m1

8
· |Hei |

if c is chosen sufficiently large. Finally, the third term of
Inequality (9) can be bounded by

c3c4 · ln
(

k

ε

)
·
√

F2[Sei ] ≤
m1

8
· |Hei | (10)

with
√

F2[Sei ] ≥ m1 and c large enough. Combining In-
equalities (9) – (10) completes the proof.

Next, an upper bound on the time complexity of ALGmode

is derived if the hash functions are chosen from a quasi-
random family. The following theorem shows that we obtain
the same asymptotic running time as with hash functions
that are chosen uniformly from all possible hash functions.

Theorem 4.6. If the hash functions are chosen from a
quasi-random family H with parameters δ < 1/(8c · K ·
ln3/2(log(K/ε)) and ε ∈ (0, 1), ALGmode needs O(D +
F2/m2

1 log(k/ε)) rounds to compute the mode with probabil-
ity at least 1− ε.

Proof. We need to show that when using r1 = O(D +
F2/m2

1 log(k/ε)) hash functions, the counters c(ei) of all el-
ements ei with multiplicity mi < m1/2 are smaller than the
counter c(e1) of the mode with probability at least 1−ε. This
follows almost immediately from Equation (2) and Lemma
4.5. It only remains to show that |Hei | = Ω(r1) with high
probability. This follows immediately from Condition (I) (2-
independence) in the quasi-randomness definition by using
a Chernoff bound.

Since we only allow messages of size O(log K + log M +
log n), ALGmode is efficient only when applied to a quasi-
random family H of size polynomial in K, M , and n. In
the following, using the probabilistic method we show that
indeed, small quasi-random hash families exist. We prove
that if we choose sufficiently many random hash functions,
they form a quasi-random family with positive (in fact high)
probability.

Theorem 4.7. For all parameters δ ∈ (0, 1) and ε ∈
(0, 1), there is a quasi-random hash family H of size |H| =
O((K + M + log(1/δ) + log log(1/ε))/δ6).

Proof. Let H =
{
h1, . . . , hq

}
be q hash functions that

are chosen independently and uniformly at random from the
set of all 2K possible hash functions h : [K] → {0, 1}. We
need that H is a quasi-random family with parameters δ and
ε with positive probability. Let us now examine the three
conditions of the quasi-randomness definition.

2-independence:
For two elements e and e′ from [K], we have P

[|He,e′ | <

(1− δ) · |H/2
]

< e−δ2q/4 by Chernoff’s inequality. By using
a union bound, we therefore get that

P
[H does not satisfy Condition (I)

]
< K2 · e−δ2q/4. (11)

Exponentially small imbalance:
We assume that H satisfies Condition (1). Let e, e′ ∈ [K],
S ⊆ (

[K] \ {e, e′}) × [M ], and ` ≤ `1. Further, let X be
the fraction of hash functions h ∈ He,e′ that are not δ`-
good with respect to S. By Lemma 4.1 and by Chernoff’s

inequality, P
[
X > (2 + δ)e−δ2`2/2

]
< e−δ22e−δ2`2/2|He,e′ |/8.

Note that being in He,e′ and being δ`-good with respect to
S are independent. With a union bound, we get

P
[H does not satisfy Condition (II)

]
<

K2 · 2K · 2M · `1 · e−δ22e−δ2`21/2(1−δ)q/16.

Independence of imbalance sign:
We assume that H satisfies Conditions (I) and (II). Let
e, e′ ∈ [K], S ⊆ (

[K]\{e, e′})×[M ], and ` ≤ `1. Let Λ be the
set of hash functions h ∈ H for which |λS(h)| ∈ (δ(`−1), δ`].
Further let Λ+ ⊆ Λ be the hash functions h for which
h(e) · λS(h) > 0 and let Λ− = Λ \ Λ+. We need to
bound the value of Y =

∣∣|Λ+| − |Λ−|
∣∣. Because the value

of h(e) is independent of λS(h), for γ ∈ (0, 1), we get

P
[
Y > γ · |Λ|] < 2e−γ2|Λ|/4 by using Chernoff’s inequal-

ity. We define Φ = e−δ2(`−1)2/2 − e−δ2`2/2 and assume that
|Λ| = β · Φ · q. We then have

P
[
Y > δ · Φ · q] = P

[
Y >

δ

β
· |Λ|

]

< 2e−δ2|Λ|/(4β2)

= 2e−δ2Φ·q/(4β).
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Based on the assumption that H satisfies Condition (II), we
have

β

Φ
≤ (2 + δ)e−δ2(`−1)2/2

(
e−δ2(`−1)2/2 − e−δ2`2/2

)2

=
2 + δ(

1− e−δ2(`−1/2)
)2 · e−δ2(`−1)2/2

.

The bound on β/Φ is largest if ` = 1. We then get β/Φ ≤
(2 + δ)/(δ2/2− δ4/4)2. Hence, we obtain

P
[H does not satisfy Condition (III)

]
<

K2 · 2K · 2M · `1 · 2e
− δ2

4 ·
(

δ2
2 − δ4

4

)2
·q

.

If we choose

q ≥ C

δ6
·
(

K + M + log

(√
ln(K/ε)

δ

))

for a sufficiently large constant C, the right-hand sides of the
inequalities become less than 1/3 and it is therefore possible
to satisfy Conditions (I)-(III). This concludes the proof.

Theorems 4.6 and 4.7 conclude our analysis of ALGmode:
We have shown that ALGmode needs no more than O(D +
F2/m2

1 · log(k/ε)) rounds for a given error probability ε, and
that there indeed exist sufficiently small sets of hash func-
tions yielding the desired message size.

Remark: A natural generalization of our models pre-
sented so far is to allow weighted elements, i.e., each element
ei ∈ A has a corresponding weight wi. The task of find-
ing the mode would then translate into finding the element
which maximizes the product of the frequency and weight,
i.e., the mode is defines as the element ei maximizing wimi.
It is easy to see that our algorithms can be generalized to
the case of weighted elements as well.

5. LOWER BOUND
In this section, we show that for every m1, F5 ∈ N with

F5 ≥ m5
1, there is a graph G with diameter D and a fre-

quency distribution with maximum frequency m1 and a 5th

frequency moment F5 such that finding the mode requires
Ω(D + F5/(B ·m5

1)) rounds. Here B denotes the number of
bits that can be transmitted in a single message.

To prove our lower bound, we use a reduction from the set
disjointness problem, a well-known problem from communi-
cation complexity theory [11]. Assume that two nodes u1

and u2 have sets of elements S1 and S2 with |S1| = |S2| = `
such that |S1 ∩ S2| ∈ {0, 1}. In [16], Razborov showed that
in order to distinguish between the case where S1 and S2

are disjoint and the case where they intersect in exactly one
element, u1 and u2 have to exchange Ω(`) bits even if we
allow them to err with probability ε ≤ ε0 for a constant ε0.
In order to derive a lower bound on the space complexity for
approximating the frequency moments F` of a distribution
in a streaming model, Alon et al. extended Razborov’s lower
bound to a scenario with more than two nodes [1]. Assume
that there are d nodes u1, . . . , ud with sets S1, . . . , Sd with
|S1| = . . . = |Sd| = ` such that either the sets are pairwise
disjoint or there is an element e such that Si ∩ Sj = {e} for
all 1 ≤ i < j ≤ d. The following theorem is proven in [1].

Theorem 5.1. [1] For every ` ≥ d4, the total number of
bits that the nodes u1, . . . , ud have to communicate in order

to distinguish between the case where the sets are pairwise
disjoint and the case where they intersect in exactly one ele-
ment is Ω(`/d3). This also holds for randomized algorithms
with error probability ε < 1/2.

We prove the lower bound for computing the mode in
two steps. We first look at a special type of frequency dis-
tributions where the frequencies m2, . . . , mk are equal up
to a factor of 2 and then generalize the result to arbitrary
frequency distributions. In the following, we will assume
that all the nodes know about the frequency distribution
are bounds m+

1 and m−
i for i 6= 2 such that it is guaranteed

that m+
1 /2 ≤ m1 ≤ m+

1 and that m−
i ≤ mi ≤ 2m−

i < m+
1 /2.

We require that an algorithm works for all distributions sat-
isfying the given bounds and for all assignments of elements
to nodes. We first look at the case where the bound m−

i is
the same for all i.

Theorem 5.2. Let m1, F5 ∈ N such that F5 ≥ m5
1. There

is a frequency distribution m1 > m2 ≥ m3 ≥ . . . ≥ mk with
F5 =

∑k
i=1 m5

i such that for every D > 1, there is a graph
G with diameter D on which finding the mode needs

Ω

(
D +

F5

m5
1 ·B

)

rounds where B is the number of bits that can be sent in a
single message.

Proof. We set m2 = m3 = . . . = mk = 1, which implies
that F5 =

∑k
i=1 m5

i = m5
1 + k − 1. Let k′ be the maximal

integer k′ ≥ k such that m1 divides k′ − 1. We assume that
the algorithm knows that the elements ek′+1, . . . , ek need
not be considered. It then remains to solve the problem for
the frequency distribution m1, . . . , mk′ . Note that finding
the mode for this distribution can be at most as hard as
finding the mode for the frequency distribution m1, . . . , mk

because additional information cannot make the problem
harder. We can further assume that F5 ≥ 2m5

1 since oth-
erwise the statement of the theorem becomes trivial. This
implies that k − 1 ≥ m5

1 and thus k′ > m5
1 −m1 + 1.

Let G be a star graph with m1 + 1 nodes, i.e., G consists
of an inner node of degree m1 and m1 leaves u1, . . . , um1 .
There is a total of m1 + k′ − 1 elements (element e1 occurs
m1 times, all other k′ − 1 elements occur only once). We
distribute these elements among the m1 leaf nodes such that
every leaf node receives e1 exactly once and (k′ − 1)/m1 of
the other elements. Let Si be the set of elements of leaf
node ui. For i 6= j, we have Si ∩ Sj = {e1}. we can
apply Theorem 5.1 to show that the total number of bits
the nodes u1, . . . , ud have to communicate in order to find
e1 is Ω(k′/m1/m3

1) = Ω(k′/m4
1). This is due to the fact

that any algorithm ALG which computes e1 can be used
to solve the problem of Theorem 5.1 as follows. If ALG
terminates without returning a value e1, we know that the
sets S1, . . . , Sd are pairwise disjoint. If ALG returns a value
e1, we can test whether e1 indeed is in all sets Si be ex-
changing a logarithmic number of additional bits. Note that
we have 1 + (k′ − 1)/m1 ≥ m4

1 (corresponding to the con-
dition ` ≥ d4 in Theorem 5.1) because we assumed that
F5 ≥ m5

1. Because k ≥ k′ > k(1 − 1/m4
1), we also obtain

Ω(k′/m4
1) = Ω(k/m4

1). Hence, since one of the leaf nodes
has to send at least Ω(k/m5

1) bits, the number of rounds is
at least Ω(k/(m5

1B)).
From G, we obtain a graph with diameter D on which the

lower bound becomes Ω(D + k′/(m5
1B)) by replacing each
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edge in G by a path of length D/2. We get a lower bound
of Ω(D + F5/(m5

1B)) because

F5

m5
1

=

∑k
i=1 m5

i

m5
1

=
m5

1 + (k − 1)

m5
1

<
2k

m5
1

.

The inequality follows because we assume that F5 = m5
1 +

k − 1 ≥ 2m5
1.

6. POWER LAW DISTRIBUTIONS
An interesting and widely studied distribution is the

power-law distribution p(x) ∝ x−α for some constant α > 0
[2, 12, 17], that is, by normalization, mi = 1/iα. Let

m =
∑k

i=1 mi. It holds that n ∈ Θ(k1−α) for α < 1,
m ∈ Θ(log k) for α = 1 and m ∈ Θ(1) for α > 1. For
ALGmode, we hence obtain the following upper bounds on
the running time T :

T ∈





O
(
D + k1−2α · (log k + log (1/ε))

)
, if α < 1/2

O
(
D + log k · (log k + log (1/ε))

)
if α = 1/2

O
(
D + log k + log (1/ε)

)
, if α > 1/2.

We observe an interesting threshold phenomenon. If
α < 1/2, our randomized algorithm needs polynomial time
whereas for α ≥ 1/2, the mode can be determined in poly-
logarithmic time. Our lower bound on the time T needed to
find the mode becomes Ω

(
D + k1−5α/(B log k)

)
if α < 1/5.

For α ≥ 1/5, we do not obtain a non-trivial lower bound.
Hence, indeed, there seems to exist a value α0 ≥ 1/5 such
that the time complexity of every algorithm is polynomial
in k if α < α0.

7. CONCLUSIONS
This paper has shown that the mode can be computed de-

terministically in time O(D+k) in arbitrary graphs and that
there are distributions for which this is tight up to a logarith-
mic factor. In an effort to exploit properties of the actual
frequency distribution, we presented a randomized Monte
Carlo type algorithm which finds the mode with high prob-
ability in time O(D + F2/m2

1 · log k). We did not prove that
this is tight; however, the lower bound of Ω(D +F5/(m5

1B))
rounds shows that the general dependence of the upper
bound on the skewness of the distribution is correct. We
believe that at least up to polylogarithmic factors the upper
bound is the correct bound for all distributions. An improve-
ment of the lower bound would most likely also solve an open
problem from [1]: It is shown that in a streaming model, F0,
F1, and F2 can be approximated in polylogarithmic space,
whereas polynomial space is needed to approximate F` for
` ≥ 6. It is conjectured in [1] that approximating F3, F4,
and F5 also requires polynomial time.

We formulated all our results for a message passing
model where communication is constricted by congestion on
edges—note that we do not bound congestion at nodes—and
by the adjacency relationships of the underlying network
graph. However, our general approach directly applies to all
distributed models (e.g. gossiping [4]) where aggregation can
be studied. The time complexity of our algorithm is then
equal to the time complexity of computing O(F2/m2

1 · log k)
independent basic aggregation functions such as computing
the sum or the maximum of all elements.
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