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Stefan Schmid∗ Hanjo Täubig∗

Abstract

This paper investigates how to efficiently and locally linearize graphs—i.e., how to build a
sorted list of the nodes of a connected graph—in a distributed and self-stabilizing manner. This
problem has many interesting application domains; for instance, self-stabilizing algorithms for
graph linearization can serve as a building block to construct robust peer-to-peer overlays. A
foremost question addressed in this paper is how to measure the efficiency of a given algorithm.
We introduce a new model that takes into account the parallel complexity of a protocol. Our
model avoids the scalability problems and bottlenecks of existing frameworks. We also propose
two variants of a simple, local linearization algorithm. For each of these variants, we present
extensive formal analyses of their worst-case and best-case parallel time complexities, as well as
their performance under a greedy selection of the actions to be executed. In particular, we show
that one of the proposed algorithms achieves near-optimal parallel time complexity under such a
greedy selection. We validate the behavior of these algorithms by experiments which confirm our
formal findings and indicate that the runtimes may in fact be better in practice.

1 Introduction
Peer-to-peer systems such as open collaborative systems are becoming more and more popular these
days. These systems are based on so-called overlay networks. In a broad sense, an overlay network is
an application-based network formed by its participants on top of some physical network. In contrast
to wired networks, the topology of an overlay network can freely and easily be changed by the par-
ticipants. Such changes are also frequently necessary, for example because nodes enter or leave the
system voluntarily, or because of a failure in a node or in the underlying network. Faults and incon-
sistencies should be regarded as the norm rather than an exception in overlay networks, mandating
the need for highly efficient distributed update mechanisms to preserve desirable network properties.
Minimum requirements for distributed overlay network protocols to be useful in practice are that they
be local, simple, and self-stabilizing. Locality is important for fast distributed response times and for
minimizing the impact of topology changes on the overlay network properties; simplicity is important
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so that the protocols can be formally verified of their effectiveness; and self-stabilization is important
for automatic recovery from any illegal state since protocols requiring centralized intervention will
not necessarily scale to systems potentially spanning millions of sites.

In practice, many peer-to-peer systems—such as KaZaA, Bittorrent, and Kademlia—use heuristic
methods in order to maintain their topology. They seem to recover well from degraded states though
it is difficult to analyze that formally. Solutions presented in research publications mainly focus on
maintaining scalable and well-structured overlay networks in an efficient manner [ABKM01, AS03,
AS04, BKR+04, DR01, HJS+03, MNR02, RFH+01, SMK+01] but do not say much about how to
recover these from a degraded state. For overlay networks that are based on a sorted list or ring (e.g.,
[AS03, AS04, HJS+03, SMK+01]), recovery mechanisms have been proposed as long as the base
structure does not deviate significantly from a sorted list/ring (see Section 1.1). However, no efficient
local mechanisms have been proposed for recovering a network once the base structure is significantly
altered.

In this paper, we investigate how to recover a sorted list—i.e., how to linearize the graph—from
any connected state. A first and foremost question in this context is how to model or measure the
efficiency of a given distributed self-stabilizing algorithm. While researchers have proposed several
solutions over the last years, these known models are inappropriate to adequately model parallel
efficiency: either they are overly pessimistic in the sense that they can force the algorithm to work
serially, or they are too optimistic in the sense that contention or congestion issues are neglected. This
leads to a new family of execution models that distinguish actions proposed by an algorithm and a
more or less adversarial scheduler that selects some of them for parallel execution. We focus on a very
simple and natural linearization algorithm, such that the influence of the modeling becomes clear. We
also consider a modified linearization algorithm that proposes fewer, but perhaps better, actions to the
scheduler.

We specifically aim at exploring the parallel limitations (e.g., worst-case and best-case behavior)
of the simple linearization algorithms proposed. For that we will assume the existence of some hypo-
thetical schedulers. In particular, we consider a scheduler that always makes the worst possible, one
that always makes the best possible, one that makes a random, and one that makes a “greedy” selection
of actions to execute at any time step. Since the schedulers are only used for the complexity analysis
of the protocols proposed, for ease of explanation, we treat the schedulers as global entities and we
make no attempt to devise distributed, local mechanisms to implement them. (In fact, most likely
no such local mechanism exists for implementing the worst-case and best-case schedulers, while we
believe that local distributed implementations that closely approximate—within a constant factor of
the parallel complexity—the randomized and greedy schedulers presented here would not be hard to
devise.)

1.1 Related Work

The first paper to study self-stabilization in the context of distributed computing was [Dij74] by
E. W. Dijkstra. After Dijkstra’s seminal work on the token ring, researchers have investigated self-
stabilization in many other domains such as clock synchronization or fault containment. In 1991,
Awerbuch et al.[AV91] proved that every local algorithm can be made self-stabilizing if all nodes
keep a log of the state transitions until the current state. For a general overview of the field, the reader
is referred to [BS00, Dol00, Her02].

Our paper focuses on topological self-stabilization. The construction and maintenance of a given
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network structure is of prime importance in many distributed systems, for example in peer-to-peer
computing [DHvR07, DK08, SR05]. In the technical report of the distributed hash table Chord
[SMK+01], stabilization protocols are described which allow the topology to recover from certain
degenerate situations. Unfortunately, however, no algorithms are given to recover from arbitrary
states. Similarly, also skip graphs [AS03] can be repaired from certain states, namely states which
resulted from node faults and inconsistencies due to churn.

In order to gain insights into how to construct or self-stabilize more complex topologies such as
hypercubic networks, in the last years, researchers started to analyze line and ring networks. The
Iterative Successor Pointer Rewiring Protocol [CF05] and the Ring Network [SR05] organize the
nodes in a sorted ring. Unfortunately, both protocols have a large runtime. In [AAC+05], Aspnes
et al. present an efficient asynchronous algorithm which takes an initially weakly connected pointer
graph and constructs a linked list with low contention. However, their algorithm is not self-stabilizing.
In a follow-up paper [AW07], a self-stabilizing algorithm is given which assumes that nodes initially
have out-degree 1.

The papers closest to ours are by Onus et al. [ORS07] and by Clouser et al. [CNS08]. In [ORS07],
a local-control strategy called linearization is presented for converting an arbitrary connected graph
into a sorted list. However, it is only studied in a synchronous environment, and the strategy does
not scale since in one time round it allows a node to communicate with an arbitrary number of its
neighbors (which can be as high as Θ(n) for n nodes). Clouser et al. [CNS08] formulated a variant
of the linearization technique for arbitrary asynchronous systems in which edges are represented as
Boolean shared variables. Any node may establish an undirected edge to one of its neighbors by
setting the corresponding shared variable to true, and in each time unit, a node can manipulate at
most one shared variable. If these manipulations never happen concurrently, it would be possible
to emulate the shared variable concept in a message passing system in an efficient way. However,
concurrent manipulations of shared variables can cause scalability problems because even if every
node only modifies one shared variable at a time, the fact that the other endpoint of that shared
variable has to get involved when emulating that action in a message passing system implies that a
single node may get involved in up to Θ(n) many of these variables in a time unit.

1.2 Our Contributions

The main contributions of this paper are two-fold. First, we present an alternative approach to model-
ing scalability of distributed, self-stabilizing algorithms that does not require synchronous executions
like in [ORS07] and also gets rid of the scalability problems in [CNS08, ORS07] therefore allowing us
to study the parallel time complexity of proposed linearization approaches. Second, we propose two
variants of a simple, local linearization algorithm. For each of these variants, we present extensive for-
mal analyses of their worst-case and best-case parallel time complexities, as well their performances
under a random and a greedy selection of the actions to be executed. In particular, we show that
one of the proposed algorithms achieves near-optimal parallel time complexity under such a greedy
selection. We also validate the behavior of these algorithms by experiments which not only confirm
our formal findings, but indicate that the runtimes may in fact be better in practice. Finally, this paper
discusses a particular situation that illustrates how the new model compares to others proposed in the
literature.
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1.3 Paper Organization
The remainder of this paper is organized as follows. In Section 2, we describe our model and the graph
linearization problem, and introduce our model for the parallel time complexity. Section 3 presents
a self-stabilizing algorithm together with a formal analysis. We report on our simulation results in
Section 4. After a discussing our approach and comparing our model to alternative frameworks in
Section 5, we conclude the paper in Section 6.

2 Model
We are given a system consisting of a fixed set V of n nodes. Every node has a unique (but otherwise
arbitrary) integer identifier. In the following, if we compare two nodes u and v using the notation
u < v or u > v, we mean that the identifier of u is smaller than v or vice versa. For any node v,
pred(v) denotes the predecessor of v (i.e., the node u ∈ V of largest identifier with u < v) and
succ(v) denotes the successor of v according to “<”. Two nodes u and v are called consecutive if and
only if u = succ(v) or v = succ(u).

Connections between nodes are modeled as shared variables. Each pair (u, v) of nodes shares a
Boolean variable e(u, v) which specifies an undirected adjacency relation: u and v are called neigh-
bors if and only if this shared variable is true. The set of neighbor relations defines an undirected
graph G = (V, E) among the nodes. A variable e(u, v) can only be changed by u and v, and both
u and v have to be involved in order to change e(u, v). (More details on this will be given below.)
For any node u ∈ V , let u.L denote the set of left neighbors of u—the neighbors which have smaller
identifiers than u—and u.R the set of right neighbors of u.

In this paper, deg(u) will denote the degree of a node u and is defined as deg(u) = |u.L ∪ u.R|.
Moreover, the distance between two nodes dist(u, v) is defined as dist(u, v) = |{w : u < w ≤ v}|
if u < v and dist(u, v) = |{w : v < w ≤ u}| otherwise. The length of an edge e = {u, v} ∈ E is
defined as len(e) = dist(u, v).

We consider distributed algorithms which are run by each node in the network. The algorithm or
program executed by each node consists of a set of variables and actions. An action has the form

< name > : < guard > → < commands >

where < name > is an action label, < guard > is a Boolean predicate over the (local and shared)
variables of the executing node and < commands > is a sequence of commands that may involve any
local or shared variables of the node itself or its neighbors. Given an action A, the set of all nodes
involved in the commands is denoted by V (A). Every node that either owns a local variable or is part
of a shared variable e(u, v) accessed by one of the commands in A is part of V (A). Two actions A
and B are said to be independent if V (A) ∩ V (B) = ∅. For an action execution to be scalable we
require that the number of operations involving interactions between the nodes (and therefore |V (A)|)
is independent of n. An action is called enabled if and only if its guard is true. Every enabled action
is passed to some underlying scheduling layer (to be specified below). The scheduling layer decides
whether to accept or reject an enabled action. If it is accepted, then the action is executed by the
nodes involved in its commands. A scheduling layer is called fair if no action ever starves, i.e., if it is
enabled for an unbounded amount of time, it will eventually be selected by the scheduler.

We model distributed computation as follows. The assignments of all local and shared variables
defines a system state. Time proceeds in rounds. In each round, the scheduling layer may select any
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set of independent actions to be executed by the nodes. The work performed in a round is equal to
the number of actions selected by the scheduling layer in that round. A computation is a sequence
of states such that for each state si at the beginning of round i, the next state si+1 is obtained after
executing all actions that were selected by the scheduling layer in round i. A distributed algorithm is
called self-stabilizing w.r.t. a set of system states S and a set of legal states L ⊆ S if for any initial
state s1 ∈ S and any fair scheduling layer, the algorithm eventually arrives at a state s ∈ L.

Notice that this model can cover arbitrary asynchronous systems in which the actions are imple-
mented so that the sequential consistency model applies (i.e., the outcome of the executions of the
actions is equivalent to a sequential execution of them) as well as parallel executions in synchronous
systems. In a round, the set of enabled actions selected by the scheduler must be independent as
otherwise a state transition from one round to another would, in general, not be unique, and further
rules would be necessary to handle dependent actions that we want to abstract from in this paper.

2.1 Linearization
In this paper we are interested in designing distributed algorithms that can transform any initial graph
into a sorted list (according to the node identifiers) using only local interactions between the nodes.
A distributed algorithm is called self-stabilizing in this context if for any initial state that forms a
connected graph, it eventually arrives at a state in which for all node pairs (u, v),

e(u, v) = 1 ⇔ u = succ(v) ∨ v = succ(u)

i.e., the nodes indeed form a sorted list. Once it arrives at this state, it should stay there, i.e., the state
is a fixpoint of the algorithm. In the distributed algorithms studied in this paper, each node u ∈ V
repeatedly performs simple linearization steps in order to arrive at that fixpoint.

A linearization step involves three nodes u, v, and v′ with the property that u is connected to v
and v′ and either u < v < v′ or v′ < v < u. In both cases, u may command the nodes to move
the edge {u, v′} to {v, v′}. If u < v < v′, this is called a right linearization and otherwise a left
linearization (see also Figure 1). Since only three nodes are involved in such a linearization, this can
be formulated by a scalable action. In the following, we will also call u, v, and v′ a linearization triple
or simply a triple.

v’ v u v’vu

Figure 1: Left and right linearization step.

2.2 Schedulers
Our goal is to find linearization algorithms that spend as little time and work as possible in order
to arrive at a sorted list. In order to investigate their worst, average, and best performance under
concurrent executions of actions, we consider different schedulers.
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1. Worst-case scheduler Swc: This scheduler must select a maximal independent set of enabled
actions in each round, but it may do so to enforce a runtime (or work) that is as large as possible.

2. Randomized scheduler Srand: This scheduler considers the set of enabled actions in a random
order and selects, in one round, every action that is independent of the previously selected
actions in that order.

3. Greedy scheduler Sgreedy: This scheduler orders the nodes according to their degrees, from
maximum to minimum. For each node that still has enabled actions left that are independent of
previously selected actions, the scheduler picks one of them in a way specified in more detail
later in this paper when our self-stabilizing algorithm has been introduced. (Note, that ’greedy’
refers to a greedy behavior w.r.t. the degree of the nodes; large degrees are preferred. Another
meaningful ’greedy’ scheduler could favor triples with largest gain w.r.t. the potential function
that sums up all link lengths.)

4. Best-case scheduler Sopt: The enabled actions are selected in order to minimize the runtime
(or work) of the algorithm. (Note, that ’best’ in this case requires maximal independent sets
although there might be a better solution without this restriction.)

The worst-case and best-case schedulers are of theoretical interest to explore the parallel time com-
plexity of the linearization approach. The greedy scheduler is a concrete algorithmic selection rule
that we mainly use in the analysis as a lower bound on the best-case scheduler. The randomized
scheduler allows us to investigate the average case performance when a local-control randomized
symmetry breaking approach is pursued in order to ensure sequential consistency while selecting and
executing enabled actions.

As noted in the introduction, for ease of explanation, we treat the schedulers as global entities and
we make no attempt to formally devise distributed, local mechanisms to implement them (that would
in fact be an interesting, orthogonal line for future work). The schedulers are used simply to explore
the parallel time complexity limitations (e.g., worst-case, average-case, best-case behavior) of the
linearization algorithms proposed. In practice the algorithms LINall and LINmax to be presented below
may rely on any local-control rule (scheduler) to decide on a set of locally independent actions—
which trivially leads to global independence—to perform at any given time.

3 Algorithms and Analysis
We now introduce our distributed and self-stabilizing linearization algorithms LINall and LINmax.
Section 3.1 specifies our algorithms formally and gives correctness proofs. Subsequently, we study
the algorithms’ runtime.

3.1 LINall and LINmax

We first describe LINall. Algorithm LINall is very simple. Each node constantly tries to linearize its
neighbors according to the linearize left and linearize right rules in Figure 1. In doing so, all possible
triples on both sides are proposed to the scheduler. More formally, in LINall every node u checks the
following actions for every pair of neighbors v and w:

linearize left(v, w) : (v, w ∈ u.L ∧ w < v < u) → e(u, w) := 0, e(v, w) := 1
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linearize right(v, w) : (v, w ∈ u.R ∧ u < v < w) → e(u, w) := 0, e(v, w) := 1

LINmax is similar to LINall: instead of proposing all possible triples on each side, LINmax only
proposes the triple which is the furthest on the corresponding side. Concretely, every node u ∈ V
checks the following actions for every pair of neighbors v and w:

linearize left(v, w):
(v, w ∈ u.L) ∧ w < v < u ∧ @x ∈ u.L \ {w} : x < v) → e(u, w) := 0, e(v, w) := 1

linearize right(v, w):
(v, w ∈ u.R) ∧ u < v < w ∧ @x ∈ u.R \ {w} : x > v) → e(u, w) := 0, e(v, w) := 1

We first show that these algorithms are correct in the sense that eventually, a linearized graph will be
output.

Theorem 3.1. LINall and LINmax are self-stabilizing and converge to the linearized fixpoint.

Proof. We first show that a linearization step of LINall and LINmax cannot disconnect a connected
graph. Without loss of generality, consider a triple u, v, w ∈ V with u < v < w, {u, v} ∈ E, and
{u, w} ∈ E (cf Figure 1), which is right-linearized. (The proof for left-linearizations follows from
symmetry arguments.) Clearly, the addition of a new edge cannot disconnect the network, and hence,
it suffices to study the effect of removing the edge e := {u, w} from E. Consider two arbitrary
distinct nodes x, y ∈ V that were connected before the linearization step. If there is a path between
x and y that does not use e, then this path also exists after the linearization step, and connectivity is
preserved. On the other hand, if all paths between x and y use e, then x and y must still be connected
as well, as e can be emulated by the edges {u, v} and {v, w}, and the claim follows.

It remains to prove convergence to a line topology. Consider the potential function Ψ that sums
up the lengths (hop distances) of all existing links with respect to the linear ordering of the nodes, i.e.,
Ψ =

∑
e∈E len(e). A linearization step reduces the potential Ψ by at least the length of the shorter

edge in the triple, i.e., by len({u, v}) ≥ 1. Thus, if there is a single topology having a minimum
value for potential Ψ, then this topology will eventually be reached by linearizing appropriate triples.
The only topology respecting connectivity with minimum Ψ is the desired line topology. In any
other connected state there must exist a triple (u, v, w) that allows a linearization step (which strictly
reduces the value of Ψ). Therefore, the network converges to a line in a finite number of rounds, and
the claim follows.

3.2 Runtime
We first study the worst case scheduler Swc for both LINall and LINmax.

Theorem 3.2. Under a worst-case scheduler Swc, LINmax terminates after O(n2) work (single lin-
earization steps), where n is the total number of nodes in the system. This is tight in the sense that
there are situations where under a worst-case scheduler Swc, LINmax requires Ω(n2) rounds.

Proof. Upper Bound: Let ζl(v) denote the length of the longest edge out of node v ∈ V to the left
and let ζr(v) denote the length of the longest edge out of node v to the right. If node v does not
have any edge to the left, we set ζl(v) = 1/2, and similarly for the right. We consider the potential
function Φ which is defined as

Φ =
∑
v∈V

[(2ζl(v)− 1) + (2ζr(v)− 1)] =
∑
v∈V

2(ζl(v) + ζr(v)− 1)
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Observe that initially, Φ0 < 2n2, as ζl(v) + ζr(v) < n for each node v. We show that after round i,
the potential is at most Φi < 2n2− i. Since LINmax terminates (cf. also Theorem 3.1) with a potential
Φj > 0 for some j (the term of each node is positive, otherwise the node would be isolated), the
claim follows. In order to see why the potential is reduced by at least one in every round, consider
a triple u, v, w which is right-linearized and where u < v < w, {u, v} ∈ E, and {u, w} ∈ E.
(Left-linearizations are similar and not discussed further here.) During the linearization step, {u, w}
is removed from E and the edge {v, w} is added if it did not already exist.

We distinguish two cases.
Case 1: Assume that {u, w} was also the longest edge of w to the left. This implies that during

linearization of the triple, we remove two longest edges (of nodes u and w) of length len({u, w}) from
the potential function. On the other hand, we may now have the following increase in the potential:
u has a new longest edge {u, v} to the right, v has a new longest edge {v, w} to the right, and w has
a new longest edge of length up to len({u, w})− 1 to the left. Summarizing, we get

∆Φ ≤ (2·len({u, v})−1)+(2·len({v, w})−1)+(2(len({u, w})−1)−1)−(4 · len({u, w})− 2) ≤ −3

since len({u, w}) = len({u, v}) + len({v, w}).
Case 2: Assume that {u, w} was not the longest edge of w to the left. Then, by this linearization

step, we remove edge {u, w} from the potential function but may add edges {u, v} (counted from
node u to the right) and {v, w} (counted from node v to the right). We have

∆Φ ≤ (2 · len({u, v})− 1) + (2 · len({v, w})− 1)− (2 · len({u, w})− 1) ≤ −1

since len({u, w}) = len({u, v}) + len({v, w}). Since in every round, at least one triple can be
linearized, this concludes the proof.

Lower Bound: We consider a simple network over a set of nodes V = {1, . . . , n}, and show that
there is a scheduling strategy for this network that creates a large number of blocked nodes in each
round, ending up with only constant work per round and a quadratic number of rounds. Our sample
network resembles a complete bipartite graph where the first half of all nodes is completely connected
to the second half (see Figure 2). In addition, all nodes are adjacent to their predecessors and succes-
sors, i.e., all links of the desired linearized topology are already present. (During linearization, we
will delete one link in each step.)

Now consider a node having an incident edge which is a longest link for some other node. Note
that initially, only the leftmost and the rightmost node (if nodes are ordered with respect to their IDs)
fulfill this property (the longest edges of the nodes on the right all end at the leftmost node, and vice
versa). In the following, we will count the number of longest left and right links incident at a node
v ∈ V and will denote such a link a (left-ink or right-link) pebble. For instance, in Figure 2, node 1
has the longest left-link pebbles of nodes n/2 + 1, . . . , n, whereas node n has the longest right-link
pebbles of nodes 1, . . . , n/2. In the first round, the scheduler decides to (left-)linearize node n/2 + 1
(which automatically involves nodes 1 and 2 according to LINmax) and to right-linearize node n/2
(which automatically involves nodes n − 1 and n). Observe that these two actions block all other
linearization steps since any other tipple would involve some non-blocked node having a pebble, but
nodes 1 and n are the only nodes with pebbles and are blocked. Therefore, in the first round, the
edges {n/2, n} and {1, n/2 + 1} are removed, and the longest left-link pebble of node n/2 + 1 is
moved from node 1 to node 2 and the longest right-link pebble of node n/2 is moved from node n to
node n− 1.
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Figure 2: Bad case for linearizing a complete bipartite network.
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In the next round, the scheduler decides to (left-)linearize node n/2+2 and to right-linearize node
n/2− 1. Again, this involves nodes 1 and 2, as well as nodes n− 1 and n. Therefore all nodes with
pebbles are blocked which prevents any further action. Besides removing the respective edges the
effect of the round is that the longest left-link pebble of node n/2 + 2 moves from node 1 to node 2
and the longest right-link pebble of node n/2−1 moves from node n to node (n−1). This procedure
is repeated until all longest left-link pebbles (except the one of node n) have moved from node 1 to
node 2 and all longest right-link pebbles (except the one of node 1) have moved from node n to node
n−1. The length of this first phase is n/2 rounds. Note that there are always exactly two linearization
triples in each round (except for the last two rounds, where only one triple is linearized). At the end
of this first phase, there is one link left from node 1 to node n, which is later linearized in parallel to
the next phase. At this point, the scheduler has created again a complete bipartite network, which is
smaller by one node on both sides.

In applying the same method recursively, the scheduler implements a series of phases where in
each phase all longest left-link pebbles (except one) move one node to the right and all longest right-
link pebbles (except one) move one node to the left (one left-pebble and one right-pebble per round).
At the end of the phase, only one triple of the inner part can be linearized. At this time, the single
outer edge is also linearized (in all rounds before, both of the outmost nodes of the inner part are
blocked, therefore this large edge persists until then). Such a Phase i takes n/2 + 1 − i rounds. The
total number of rounds is thus at least

n/2∑
i=1

(n

2
+ 1− i

)
=

n/2∑
i=1

i ∈ Ω(n2).

For the LINall algorithm, we obtain a slightly higher upper bound. In the analysis, we need the
following helper lemma.

Lemma 3.3. Let Ξ be any positive potential function, where Ξ0 is the initial potential value and Ξi

is the potential after the ith round of a given algorithm ALG. Assume that Ξi ≤ Ξi−1 · (1 − 1/f)
and that ALG terminates if Ξj ≤ Ξstop for some j ∈ N. Then, the runtime of ALG is at most
O(f · log (Ξ0/Ξstop)) rounds.

Proof. From Ξi ≤ Ξi−1 · (1− 1/f), it follows that Ξj ≤ Ξ0 · (1− 1/f)j .
Now consider j = f · ln Ξ0

Ξstop
, which leads to (using ln(1 + x) ≤ x for all x > −1)

Ξj ≤ Ξ0 · (1− 1/f)
f ·ln Ξ0

Ξstop = Ξ0e
f ·

“
ln

Ξstop
Ξ0

”
·ln (1−1/f) ≤ Ξ0e

f ·
“
ln

Ξ0
Ξstop

”
·(−1/f)

= Ξ0e
− ln

Ξ0
Ξstop = Ξstop.

Theorem 3.4. LINall terminates after O(n2 log n) many rounds under a worst-case scheduler Swc,
where n is the network size.

Proof. We consider the potential function Ψ =
∑

e∈E len(e), for which it holds that Ψ0 < n3. We
show that in each round, this potential is multiplied by a factor of at most 1− Ω(1/n2).

Consider an arbitrary triple u, v, w ∈ V with u < v < w which is right-linearized by node u.
(Left-linearizations are similar and not discussed further here.) During a linearization step, the sum of
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the edge lengths is reduced by at least one. Similarly to the proof of Theorem 3.5, we want to calculate
the amount of blocked potential in a round due to the linearization of the triple (u, v, w). Nodes u, v,

and w have at most d̂eg(u) + d̂eg(v) + d̂eg(w) < n many independent neighbors. In the worst case,
when the triple’s incident edges are removed (blocked potential at most O(n2)), these neighbors fall
into different disconnected components which cannot be linearized further in this round; in other
words, the remaining components form sorted lines. The blocked potential amounts to at most Θ(n2).
Thus, together with Lemma 3.3, the claim follows.

Besides Swc, we are interested in the following type of greedy scheduler. In each round, both
for LINall and LINmax, Sgreedy orders the nodes with respect to their remaining (total) degrees: after a
triple has been fired, the three nodes’ incident edges are removed. For each node v ∈ V selected by
the scheduler according to this order (which still has enabled actions left which are independent of
previously selected actions), the scheduler greedily picks the enabled action of v which involves the
two most distant neighbors on the side with the larger remaining degree (If the number of remaining
left neighbors equals the number of remaining neighbors on the right side, then an arbitrary side
can be chosen.) The intuition behind Sgreedy is that neighborhood sizes are reduced quickly in the
linearization process.

Under this greedy scheduler, we get the following improved bound on the time complexity of
LINall.

Theorem 3.5. Under a greedy scheduler Sgreedy, LINall terminates in O(n log n) rounds, where n is
the total number of nodes in the system.

Proof. We consider the potential function

Ψ =
∑
e∈E

len(e).

Initially, Ψ0 must be smaller than n2(n−1), since there are less than n2 edges of length at most n−1.
At the end we have Ψstop = n − 1. We will prove that in each round, the potential is multiplied by
a factor of at most 1 − 1/(24 · n), i.e., f(n) ≤ 24n. Given this factor bound and Ψ0/Ψstop < n2,
Lemma 3.3 implies that the total number of rounds is in O(n log n).

It remains to prove that the potential is indeed reduced by a factor of 1 − Θ(1/n) in each round.
First, observe that firing a triple reduces the potential Ψ, but prevents other triples from being fired in
the same round. For our analysis, we want to bound this blocked potential. Recall our definition of the
greedy scheduler Sgreedy which always chooses the node with the largest remaining degree and selects
for the linearization operation the two neighbors which are furthest away from this node on the side of
larger degree. Consider any triple v1, v2, v3 ∈ V of nodes with v1 < v2 < v3 and {v1, v3}, {v1, v2} ∈
E which is right-linearized (left-linearizations are similar and not described further here). As we
will see, removing the edge {v1, v3} and adding (if necessary) edge {v2, v3} reduces Ψ by at least
d̂eg(v1)/2− 1 ≥ d̂eg(v1)/4, where d̂eg(v1) is the number of neighbors of v1 if the edges incident to
the already processed nodes in this round by the greedy scheduler are removed: Note that by removing
{v1, v3} and possibly adding {v2, v3}, the potential is reduced by at least dist(v1, v3)− dist(v2, v3) =
dist(v1, v2). Since—according to Sgreedy—v1 has at least as many remaining neighbors on the right as
it has on the left, we have that dist(v1, v2) ≥ d̂eg(v1)/2− 1 ≥ d̂eg(v1)/4.

By firing the triple, we may lose the option to linearize other nodes. In order to bound the blocked
potential by this linearization step, we consider the components that remain after nodes v1, v2 and
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v3 (plus incident edges) have been removed. Let w be an arbitrary neighbor of vi, for i ∈ {1, 2, 3}.
Consider the connected component after vi has been removed which includes w. We distinguish two
different cases.

Case 1: If this connected component forms a line where nodes are ordered, the nodes in the
component cannot be linearized or scheduled further in this step. Thus, the component blocks the
potential contained in this line, which is however at most n. Moreover, we lose the edge {vi, w}
which also has a potential of at most n, yielding a total potential of at most 2n.

Case 2: If the component has any other form, there must exist triples in it that can still be fired
later in this round, and hence, the blocked potential is accounted for similarly during the linearization
of another triple. Thus, we only have to take into account the blocked potential due to the lost edge
incident to the triple which is at most n.

The total amount of blocked potential is therefore at most 6 · d̂eg(v1) · n: As Sgreedy chooses the
node with largest remaining degree, it holds that d̂eg(v1) ≥ max{d̂eg(v2), d̂eg(v3)}. Since we have
at most a blocked potential of 2n per neighbor of vi, for i ∈ {1, 2, 3}, the blocked potential is at most
3 · d̂eg(v1) · 2n.

Since d̂eg(v1)/2− 1 ≥ d̂eg(v1)/4, we have that Ψi ≤ (1− 1/(24 ·n))Ψi−1 = (1−Θ(1/n))Ψi−1,
and the claim follows.

Finally, we have also investigated an optimal scheduler Sopt.

Theorem 3.6. Even under an optimal scheduler Sopt, both LINall and LINmax require at least Ω(n)
rounds in certain situations.

Proof. Let v1, v2, . . . , vn ∈ V denote the nodes in sorted order, i.e., v1 < v2 < . . . < vn. Consider
the following initial topology G0 = (V, E) where ∀i such that 0 < i < n − 1: {vi, vi+1} ∈ E.
Additionally, E contains a long edge e := {v1, vn} ∈ E. In the beginning, edge e has length of
len(e) = n− 1. Observe that in each round, both for LINall and LINmax, the length of e is reduced by
at most one. Thus, by induction, it takes at least a linear number of rounds to sort G0, as the execution
is inherently sequential.

3.3 Degree Cap

It is desirable that the nodes’ neighborhoods or degrees do not increase much during the sorting
process. We investigate the performance of LINall and LINmax under the following degree cap model.
Observe that during a linearization step, only the degree of the node in the middle of the triple can
increase (see Figure 1). We do not schedule triples if the middle node’s degree would increase, with
one exception: during left-linearizations, we allow a degree increase if the middle node has only one
left neighbor, and during right-linearizations we allow a degree increase to the right if the middle node
has degree one. In other words, we study a degree cap of two.

We find that both our algorithms LINall and LINmax still terminate with a correct solution under
this restrictive model.

Theorem 3.7. With degree cap, LINmax terminates in at most O(n2) many rounds under a worst-case
scheduler Swc, where n is the total number of nodes in the system. Under the same conditions, LINall

requires at most O(n3) rounds.
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Proof. Bound for LINmax: The claim follows from the same arguments as used in Theorem 3.2. We
only need to prove additionally that in each round there exists a triple which can be right or left
linearized. In order to see that at least one triple can be linearized, consider the node u of largest order
which has two neighbors to the right. (If there does not exist any node with two neighbors that can be
right-linearized, we apply the same argument to the left. If there is no node with two left neighbors
that can be left-linearized, this implies that the graph is already sorted.)

Let v and w be u’s two neighbors to the right, where v < w. The triple consisting of the three
nodes u, v and w can definitely be right-linearized without violating the degree cap constraint: v is
the only node whose degree increases during the linearization step. However, v’s degree to the right
cannot be more than two after linearization, otherwise we have a contradiction to our assumption that
u is the largest node with two neighbors to the right.

Bound for LINall: We consider again the potential function Ψ =
∑

e∈E len(e) summing up all
edge lengths in the graph. Note that initially, Ψ0 < n3, and each linearization step reduces Ψ by at
least one. When the graph is sorted, Ψ < n. Therefore, for the O(n3) bound, it remains to prove that
the system cannot deadlock and there is progress in every round. However, this holds for the same
reasons as discussed above for the LINmax bound.

Interestingly, as we will see in the experimental section (Section 4), the runtime of LINall and
LINmax is typically much better than shown in Theorem 3.7. Moreover, it turns out that even without
imposing a degree cap, LINall and LINmax do not increase the maximal degrees during their computa-
tions automatically.

4 Experiments
In order to improve our understanding of the parallel complexity and the behavior of our algorithms,
we have implemented a simulation framework which allows us to study and compare different algo-
rithms, topologies and schedulers. In this section, some of our findings will be described in more
detail.

We will consider the following graphs.

1. Random graph: Any pair of nodes is connected with probability p, i.e., if V = {v1, . . . , vn},
then P[{vi, vj} ∈ E] = p for all i, j ∈ {1, . . . , n}. If necessary, edges are added to ensure
connectivity.

2. Bipartite backbone graph (k-BBG): For n = 3k for some positive integer k define the following
k-bipartite backbone graph on the node set V = {v1, . . . , vn}. It has n nodes that are all
connected to their respective successors and predecessors (except for the first and the last node).
This structure is called the graph’s backbone. Additionally, there are all (n/3)2 edges from
nodes in {v1, . . . , vk} to nodes in {v2k+1, . . . , vn}.

3. Spiral graph: The spiral graph G = (V, E) is a sparse graph forming a spiral, i.e.,
V = {v1, . . . , vn} where v1 < v2 < . . . < vn and
E = {{v1, vn}, {vn, v2}, {v2, vn−1}, {vn−1, v3}, . . . , {vdn/2e, vdn/2e+1}}.

4. k-local graph: This graph avoids long-range links. Let V = {v1, . . . , vn} where vi = i for
i ∈ {1, . . . , n}. Then, {vi, vj} ∈ E if and only if |i− j| ≤ k.
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We will constrain ourselves to two schedulers here: the greedy scheduler Sgreedy which we have al-
ready considered in the previous sections, and a randomized scheduler Srand which among all possible
enabled actions chooses one uniformly at random.

Many experiments have been conducted to shed light onto the parallel runtime of LINall and
LINmax in different networks. Figure 3 (left) depicts some of our results for LINall. As expected, in
the k-local graphs, the execution is highly parallel and yields a constant runtime—independent of
n. The sparse spiral graphs appear to entail an almost linear time complexity, and also the random
graphs perform better than our analytical upper bounds suggest. Among the graphs we tested, the
BBG network yielded the highest execution times. Figure 3 (right) gives the corresponding results
for LINmax.

A natural yardstick to measure the quality of a linearization algorithm—besides the parallel
runtime—is the node degree. For instance, it is desirable that an initially sparse graph will remain
sparse during the entire linearization process. It turns out that LINall and LINmax indeed maintain a
low degree. Figure 4 shows how the maximal and average degrees evolve over time both for LINall

and LINmax on two different random graphs. Note that the average degree cannot increase because
the rules only move or remove edges. The random graphs studied in Figure 4 have a high initial
degree, and it is interesting to analyze what happens in case of sparse initial graphs. Figure 5 plots
the maximal node degree over time for the spiral graph. While there is an increase in the beginning,
the degree is moderate at any time and declines again quickly.

Finally, we have studied the behavior of LINall and LINmax under a degree cap constraint, where
triples can only be linearized if the center node’s degree does not grow to more than a certain thresh-
old in the corresponding direction. Figure 6 (left) indicates that all the runtime remains roughly linear
even for a degree cap of two. For degree caps larger than two, the performance is better. How-
ever, interestingly, it seems that the number of rounds does not decrease monotonously with larger
caps—rather, a lower degree cap might help to speed-up the linearization process under certain cir-
cumstances.

5 Discussion and Model Comparison

This section provides a short discussion of our model. We also compare our approach to alternative
models, e.g., to the so-called critical path model introduced in [BL98, BL99].

One may wonder whether our actions (left and right linearization) really have to be executed in
an independent way in order to maintain sequential consistency. It turns out that the independence
requirement is not necessary in this particular case as it would be sufficient if each node initiates a
new linearization only after its previously initiated linearization has been completed (or canceled).
However, for a model for concurrent executions of actions to be scalable, only a bounded number of
executions of actions should be allowed to overlap at any node at any time. In order to come up with
a simple and general model taking this into account, we decided to constrain the scheduling layer to
independent sets of actions in each round.

An alternative model to study parallel complexity is the worst-case critical path [BL98, BL99]
(i.e., the longest possible sequence of action executions that depend on each other) of a distributed
execution of our linearization approach. However, it turns out that one can identify critical paths of
length up to Θ(n3) for our linearization approach, which is so far away from its real performance that
the critical path notion is not meaningful in our context.

14



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  100  200  300  400  500  600

nu
m

be
r 

of
 r

ou
nd

s

number of nodes

5-local
10-local
20-local

Random .1
Random .2

Spiral
BBG

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  100  200  300  400  500  600

nu
m

be
r 

of
 r

ou
nd

s

number of nodes

5-local
10-local
20-local

Random .1
Random .2

Spiral
BBG

Figure 3: Top: Parallel runtime of LINall for different graphs under Srand: two k-local graphs with
k = 5, k = 10 and k = 20, two random graphs with p = .1 and p = .2, a spiral graph and a
n/3-BBG. Bottom: Same experiments with LINmax.
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Figure 4: Top: Maximum and average degree during a run of LINall and LINmax on a random graph
with edge probability p = .1. Bottom: The same experiment on a random graph with p = .2.
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Figure 5: Evolution of maximal degree on spiral graphs under a randomized scheduler Srand.

The critical path model can be defined in our framework in the following way. Consider a worst
case scheduler that schedules one action (triple) per round. These triples form the nodes of a directed
acyclic graph (DAG). An edge from an Action A to a later Action B is present, iff a connection that B
requires to be present (or absent) was created (deleted) by A.

A simple graph family where the differences of the models become clear are the k-BBG graphs
(cf Section 4).

In the critical path model, LINall needs Θ(n3) rounds to linearize the n/3-BBG, while in our
model, LINall needs at most O(n2 log n) rounds in the worst case (cf Theorem 3.4). In the following,
we will show a lower bound for LINall on the n/3-BBG.

Theorem 5.1. There is a graph, where a worst case scheduler Swc for LINall needs time Ω(n2) to
finish.

Proof. Consider the following graph: the (even) nodes v2, v4, . . . , vk−2, vk have all edges to the nodes
v2k+1, . . . , v3k. A worst case scheduler can transform this graph in k rounds of LINall into the graph
where the (odd) nodes v3, v5, . . . , vk−1, vk+1 have all edges to the nodes v2k+1, . . . , v3k: In the first
round, node triple (v2, v3, v2k+1) “moves” the “first” edge of node v2 to node v3, simultaneously with
(v4, v5, v2k+2) and so on, the ith even node “moving” its ith edge. More generally, in the jth round,
the ith even node “moves” its (i+ j mod k)th edge to its right odd neighbor. After k such rounds the
above described second graph is reached. The actions of one round form a maximal independent set
because all long edges end at positions v2, . . . , vk+1, and are hence blocked by one of the described
triples.
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In total, a worst case scheduler can perform the above k rounds k times by exchanging odd for
even and shifting the left side further to the right. Additionally it uses a left shifted version of the
above k rounds to transform the n/3 bipartite backbone graph into the described initial graph.

Figure 6 (right) plots the performance of LINall and LINmax on the BBG under different sched-
ulers. Unfortunately, as some simulations require much computing resources, we have only generated
experimental data up to certain network sizes. However, we can already see that while LINall is slow
under Sgreedy, the other times are comparable and roughly linear.

For the critical path model, the picture looks quite different.

Theorem 5.2. Under the critical path model, LINall needs time Θ(n3) for the n/3-BBG.

Proof. Note that a single long edge {v1, vn}will take n−1 linearization steps using backbone edges—
edges between consecutive (w.r.t. IDs) nodes—before it is deleted. There are many such reduction
sequences, one of them has as a last edge {v1, v3}, another one has {vn−2, vn}. The gist of the
construction is to force all long edges to be deleted in this way at least between vk and v2k+1, and to
make all these sequences depend on each other to form a long critical path.

More precisely, consider the long edges in order of increasing length (and for example increasing
left endpoint). In this order, the edges get alternating colors red and blue. The semantics of the colors
is that red edges are reduced to {vk, vk+2}, whereas blue edges are reduced to {v2k−1, v2k+1} before
they get deleted in one step.

Every edge is first changed to {vk, v2k+1} using the backbone (these actions will not be part of
the critical path). Because there are no shorter long edges, the edge does not become parallel to
another long edge (which would mean it gets deleted). Then a red edge is reduced to {vk, v2k−1}
using the previous blue edge, and then this blue edge is deleted. Similarly, a blue edge is reduced to
{vk+2, v2k+1} using the previous red edge, and then this red edge is deleted. Then, in k − 3 steps, a
red edge is reduced to {vk, vk+2}, a blue edges to {v2k−1, v2k+1}.

In the critical path model, the shrinking of one edge along the middle part of the backbone depends
on the previous edge already being reduced to an edge of length two. In total, this yields a sub-path
of length k − 3 on the critical path for every long edge, i.e., a critical path of length k2(k − 3) ∈
Θ(n3).

Finally, it remains to mention that in the model studied in [ORS07], an adapted version of LINall

would reduce the number of links in the n/3-BBG network from Θ(n2) to O(n) in only three rounds—
performing a linear work per node and round, and thus ignoring the large contention. Subsequently,
the linearization process requires a linear number of rounds until the graph is competely linearized.
We believe that this behavior is not intuitive and that the insights that can be obtained with this model
are severely limited.

6 Conclusion
This paper has investigated the distributed complexity of self-stabilizing graph linearization. We have
proposed a new model which we believe is more appropriate and intuitive than existing frameworks,
and we provided a first analysis of the parallel time complexity of a simple self-stabilizing algorithm.
We also conducted extensive simulations of the algorithms proposed: In fact, the experiments indicate
that our upper bounds can be improved and may even match the lower bounds.
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We consider this paper as a first step, and hope that our model will spark discussions and future
research in the community. We have three different directions of impact on our own research agenda.
First, we plan to analyze more sophisticated graph linearization algorithms, perhaps even pinpointing
the complexity of the problem and not of an algorithm. Second, we seek further self-stabilizing
construction of other topologies such as hypercube graphs or skip graphs. Finally, we want to port
our model into the realm of local-control message-passing systems.
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