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Abstract—It is well-known that the overall efficiency of a
distributed system can suffer if the participating entities seek
to maximize their individual performance. Consequently, mech-
anisms have been designed that force the participants to behave
more cooperatively. Most of these game-theoretic solutions rely
on payments between participants. Unfortunately, such payments
are often cumbersome to implement in practice, especially in
dynamic networks and where transaction costs are high. In
this paper, we investigate the potential of mechanisms which
work without payments. We consider the problem of throughput
maximization in multi-channel environments and shed light onto
the throughput increase that can be achieved with and without
payments. We introduce and analyze two different concepts: the
worst-case leverage where we assume that players end up in
the worst rational strategy profile, and the average-caseleverage
where player select a random non-dominated strategy. Our
theoretical insights are complemented by simulations.

I. I NTRODUCTION

Non-cooperative and selfish behavior in networks and large-
scale distributed systems is an important challenge to the
efficiency of such systems. And as these systems are becoming
ever more decentralized, complex and heterogenous, this trend
is only going to increase further in the future. Driven by this
observation and the goal to contain the inefficiencies caused
by selfish behavior, researchers from various disciplines have
investigated means to foster cooperation among autonomous
participants. One common tool towards this aim ismechanism
design, which attempts to provide incentives to users such
that they behave in more socially beneficial ways. In a world
of money, in order to implement such behavior, numerous
mechanisms have been designed which are based on payments.
In many situations, such payments are natural and can be
distributed (or, in case of negative payments,collected) in an
efficient manner. For instance, most governments today use
a wide range of taxes and subsidies to achieve their goals,
e.g., to limit inequalities within a society or to support certain
industry sectors.

The problem is that in large-scale networks and highly-
distributed systems, employing such mechanisms that are
based on payments or that include the transfer of money are
often impracticable or inefficient. To give just one example,
in systems such as multi-hop wireless networks, payment-
based incentives have for instance been proposed to encourage
nodes to relay other nodes’ packets [15], [16]. However, it is

challenging to determine what such payments could be and
how, in practice, they could be enforced.

For these reasons, it would therefore be ideal for networks
and distributed systems if mechanism design schemes could
be implementedwithout any payments, and without any kind
of monetary transfer. Unfortunately, there are strong theorems
in economic literature that show that in general, the power of
mechanisms without money is severely limited [2], [12].

The key observation that motivates our paper is that in
certain practical cases, the mechanism designer is nonetheless
capable of improving the social welfarewithout making any
payments at all. Specifically, we show for a basic network flow
optimization scenario, there is a form of mechanism design
that does neither involve monetary instruments nor payments
of any sort. Intuitively, we show that there are situations in
which a trusted entity can improve the social welfare of the
system, simply by making appropriatepromises of paymentsto
the participants in case certain outcomes occur. In a way, these
promises then work like insurances for the players, hedging
them against unfavorable outcomes. This gives these rational
players more flexibility in their (selfish) decision which, as
we show in this paper, can ultimately lead to a higher social
welfare.

Formally, we define and study the concept ofleverage,
which captures how much increase in social welfare a mech-
anism designer can achieve for a certain amount of payment.
As a particularly interesting and potentially important special
case in practice, we study the0-leverage, which describes how
much social welfare can be improved without any payments
at all; simply by making appropriate insurance promises
to players. The 0-leverage is thus a concept of potentially
great relevance in networks and distributed systems in which
mechanisms based on monetary transfer are undesired.

Before being able to use these concepts in actual system
design, we seek to understand their possibilities and limi-
tations. For this purpose, we study in this paper a simple
throughput optimization game that is both sufficiently simple
and concise to allow for stringent reasoning and analysis, but
still captures a typical, generic scenario that arises (in similar
fashion) in many networks and systems. Specifically, we study
the leverage in athroughput maximization gamein which there
is a set of channels (of potentially different capacity), and a set
of players each of which wants to find a route for its own flow



with maximum capacity. For this game, we prove bounds on
the achievable leverage with and without payments. We also
corroborate our findings using simulation results.

The remainder of this paper is structured as follows: After
a motivating example in Section II, we review related work in
Section III. We formally define both the throughput maximiza-
tion setting, as well as the framework for our study ofleverage
in Section IV. After deriving some general results on our
game in Section V, Sections VI and VII provide the analytical
results on mechanism design with and without payments,
respectively. Section VIII presents simulation results, before
the paper concludes in Section IX.

II. M OTIVATING EXAMPLE

The question that we seek to shed light on in this paper is
the impact of payments, and to what degree such payments
are indeed necessary. The key intuition for why this question
is interesting is best conveyed with the following simple
example using the classic prisoner’s dilemma.

U(x) l t
l 3/3 0/4
t 4/0 1/1

Q(x) l t
l 1/1 2/0
t 0/2 0/0

Example: In this game, two players,A andB can either say
the truth(t) or lie (l). Whereas the social optimum strategy
would be if both players lied (both players get utility of
Ui(l, l) = 3, see the table forU(x) above), the only Nash
equilibrium is if both players say the truth in which case,
Ui(l, l) = 1 for both players. That is, the social welfare in the
optimum and in the Nash equilibrium areU(Opt) = 6 and
U(NE) = 2, respectively.

Now, assume that there exists a global entity that has the
power to make financial promises (i.e., insurances) to the two
players in case certain outcomes occur. Further, assume that
this mechanism designer promises payments as indicated in
the tableQ(x). That is, if both players lie, the mechanism
designer will pay1 to both players. The thing to recognize is
that with the addition of the insurance payments, the player’s
utility in a given outcomex has now changed from originally
Ui(x) to Ui(x)+Qi(x). Because of this, the players now have
a utility of 4 if both players lie, and the utilities in outcomes
(l, t) and (t, l) are (4, 2) and (2, 4), respectively. Hence, it
is now always in both players’ best interest to lie, i.e., both
players lying has become a Nash equilibrium in the game.

The intriguing observation is that by making payments of
1 + 1 = 2 for the outcome(l, l), the mechanism designer was
able to improve the social welfare by6−2 = 4 and implement
(l, l) as a Nash equilibrium. That is, even if we subtract the
payments made by the mechanism designer, there is still a net-
gain of social welfare of2 in the system, simply because the
mechanism designer made the right set of promised payments.

The example shows that with well-placed payments, a
global coordinator is capable of significantly improving the
social welfare. The increase in social welfare can even exceeds
the cost invested by the global coordinator. The most startling
thing, however, is that—as we show in this paper—there are

cases in which the central coordinator does not end up paying
anythingat all.

Implications: If a global trusted entity can improve the
social welfare simply by making the right set of promises, but
without actually making any payments, some benefits of mech-
anism design could be achieved without having the practically
troublesome implications of money transfer. Such a scheme
could enable new approaches towards designing distributed
systems that need to cope with selfish behavior. In this paper
we therefore seek to shed light on what can be achieved with
and without payments under such circumstances.

III. R ELATED WORK

Most of the classic literature on load-balancing and through-
put maximization is based on the assumption that either, there
exists a centralized controller that manages the flows effi-
ciently, or that the distributed entities coexisting in the system
altruistically collaborate and follow their assigned protocol.
The question of how to devise algorithms and mechanisms
to optimize system performance in the face of suchselfish
participants is the focus ofalgorithmic mechanism design
[10].

In recent years, many mechanism design results involving
payments of money, stamps, points or similar objects of
value have been proposed for distributed systems, e.g., the
work on routing and multicast in wireless multi-hop net-
works [15], [16], network formation [1], or quota-based spam
control [14]. More generally, approaches that are based on the
celebrated Vickrey-Clark-Groves mechanism (VCG) involve
money transfer in one form or another. The fundamental
problem with these schemes is that in practical distributed
systems, relying on monetary transfers often imposes a high
implementation barrier [6].

Unfortunately, the fundamentalArrow’s Theorem[2], [12]
shows that the power of mechanisms without money is
severely limited in general. However, there are instances
that show how in certain scenarios monetary paymentscan
sometimes altogether be avoided [7]. There have been at
least three general approaches to mechanism design without
payments. Arguably the most famous such approach is the
barter-basedtit-for-tat mechanismin BitTorrent. However,
such barter systems come with their own set of problems
(e.g. reliance on altruistic seeders to solve the bootstrapping
problem, and are thus exploitable [8], [11]). Secondly, inter-
esting results have also been obtained forinter-domain routing
[7]. Distributed algorithmic mechanisms have been designed
which achieve incentive compatibility in a collusion-proof ex-
post Nash equilibrium without payments. Interestingly, the
Border Gateway Protocol—the standard inter-domain routing
protocol—is an example of such a mechanism. And third, there
are systems that are based on the observation that computer
systems typically have the ability to arbitrarily reduce service
quality (e.g., by dropping messages or insert delays). This
has given raise tomoney-burning mechanismsthat demand
payments in the form of computation or bandwidth (e.g., in



the context of email spam or denial of service attacks) [13].
Optimal money-burning mechanisms are studied in [6].

Compared to these works, we pursue a different approach.
We assume the existence of a trusted mechanism designer that
can makepayment promisesto participants, in case certain
unfavorable outcomes occur. Our paper builds upon thek-
implementation model introduced by Monderer et al. [9],
which has subsequently also been considered in [4], [5]. These
papers give possibility and impossibility results for general
games, and provide algorithms to compute optimal payments.
Monderer et al. also point out an intriguing connection be-
tween 0-implementations andcorrelated equilibria [3]. In a
correlated equilibrium the players act according to the publicly
known random distributions over the strategies specified by the
mechanism designer. The authors prove that every correlated
profile is 0-implementable with an appropriate implementation
device. In this paper, we study a deterministic environment and
explorek-implementations for a specific networking applica-
tion. We seek to shed light on the question of whether and to
what extent mechanism design without money can be used to
improve throughput in selfish networks. As we will see, high
throughput implementations can often be computed efficiently.
We compare the obtained throughput increase to mechanisms
implementing a sociallymaximumthroughputwith payments,
and discuss the “price of free mechanisms”. Besides worst-
case analyses, we provide average-case bounds obtained from
in silico experiments.

IV. M ODEL

In this section, we formally define the specific setting in
which we study the relative capabilities and limitations of
mechanism design with and without payments.

A. The Throughput Game: Definitions & Notations

We consider an abstract networking setting in which there
are n players P = {p1, . . . , pn} and m parallel channels
E = {e1, . . . , em}. Each channelej ∈ E has a certain
capacitycj = c(ej) > 0, which indicates how much flow it
can handle. In order to simplify the presentation, we assume
that the channels are ordered with respect to their capacities:
c1 ≥ c2 ≥ ... ≥ cm. (If this was not the case, an initial sorting
operation would yield an additional additiveO(m log m) term
in our time bounds.) On the other hand, each playerpi ∈ P
is associated with ademanddi = d(pi), which is the amount
of flow that the player wants to send through the network. In
this paper, we will primarily consider the case in which all
players have equal demands, i.e.,di = D, for all pi ∈ P . As
for notation, we say that a channelej is larger than channel
ek if cj > ck, equal if cj = ck, andsmaller otherwise.

Each player chooses a single channel to route its flow. Let
e(pi) denote the channel selected by playerpi, and letP (ej)
be the set of players that have selected channelej as their
channel, i.e.,P (ej) = {pi|e(pi) = ej}. The throughput a
player obtains is determined by its channel and the number of
other players that have selected the same channel. Specifically,

if several players use the same channel, its capacity is distrib-
uted evenly among the players. Concretely, letnj = |P (ej)| be
the number of players that select a channelej . Thethroughput
T (pi) of a playerpi that has selected channelej is defined as
T (pi) = min{c(ej)/nj , d(pi)}. That is, a player’s throughput
is either its fair share of the channel capacity or, in case
the channel has sufficient capacity, its full demand. Every
player attempts to select its channel in a utility maximizing
manner, i.e., it chooses the channel which maximizes its
throughput without taking into consideration the other players’
throughput.

Notice that this abstract model captures a wide variety
of natural problems that arise in practical networking and
distributed systems scenarios. To give just one example, the
different channels in our setting can correspond to actual
wireless channels in a wireless networks, or to different
network interfaces (say, Bluetooth, Wi-Fi, etc). Each player
has to choose on which such channel or interface it wants to
transmit its data (flow).

Let X denote the set of all possible strategy profiles.1

Given a specific outcome of the gamex ∈ X, a playerpi’s
utility Ui(x) is its own throughput, i.e.Ui(x) = T (pi) in this
outcome. The sum of all these utilities is thesocial utility
denoted byU(x) =

∑
pi∈P Ui(x).

In this paper, we deal with two notions of rationality,Nash
equilibria and non-dominated strategies. A strategy profilex
is called a(pure) Nash equilibriumif no player can unilaterally
improve its utility (throughput) given the strategy of the other
players. In this paper, we primarily look at the second concept
of rationality: non-dominated strategy profiles. Informally, a
non-dominated strategy is a strategy for which there is no
alternative strategy which isalwaysbetter for a player, i.e., for
any strategy choice of the remaining players. Non-dominated
strategies do not assume anything about the behavior of other
players and are thus a very general notion of rationality,
making significantly weaker assumptions on rational behavior
than Nash equilibria. Formally, letxi, x

′
i ∈ Xi be two

strategies available to playerpi. Strategyxi dominatesx′i iff
Ui(xi, x−i) ≥ Ui(x′i, x−i) for every possible strategy profile
by the other playersx−i, and if there exists at least onex−i

for which a strict inequality holds. A strategy (channel)xi

is the dominantstrategy for playerpi if it dominates every
other strategyx′i ∈ Xi\{xi}. xi is a non-dominatedstrategy
if no other strategy dominates it. We denote the set of strategy
profiles which are non-dominated byXUDom ⊆ X.

We consider the following special social utilities.

• The social optimumOpt is the strategy profile with max-
imum social utility, i.e.,U(Opt) = maxx∈X U(x).

• The worst-case non-dominated strategy profileUDomwc

is the non-dominated strategy profile (outcome of the
game) with the worst social utility, i.e.,U(UDomwc) =

1A strategy in our game corresponds to selecting a specific channel. Hence,
we use the terminology strategy and channel interchangeably. Similarly, a
strategy profile corresponds to an outcome of the game in which every player
has selected one specific channel.



minx∈XUDom
U(x). It is the socially worst possible out-

come of the game if every player acts rationally and selects
a non-dominated strategy.

• It may be overly pessimistic to assume that all rational
players select their non-dominated strategy in such a way
thatUDomwc arises. Theaverage non-dominated strategy
profile UDomavg is a random variable that denotes an
outcome of the game that arises if every player selects one
of its non-dominated strategies uniformly at random. The
utility U(UDomavg) is then defined as the expected social
utility of UDomavg, i.e.,U(UDomavg) = E[UDomavg].

WhereasUDomwc captures the worst-possible outcome of
the game if participants behave rationally,UDomavg can be
considered as describing the game’s “typical” outcome. In the
analysis section, we derive analytical upper and lower bounds
for Uwc(UDom); in our simulation-based evaluation, we show
results for both concepts.

B. Implementation Theory & Leverage

The example in Section II shows that it is possible for a
mechanism designer which seeks to influence and improve the
outcome of the game, to offer payments in such a way as to
improve the social outcome of the game in excess of the total
amount of payments that it invested. This overall increase of
the social good by means of a global mechanism designer is
captured by the definition ofleverage.

The mechanism designer offers a paymentQi(x) to every
playerpi in case the game ends in outcomex. Formally, these
payments can be described by a tuple of non-negative payoff
functionsQ = (Q1, Q2, . . . , Qn), whereQi : X → R+.2

With the promised payments, each player now has a utility
of Ui(x)+Qi(x) in outcomex ∈ X. In other words, given an
outcomex, each playerpi not only achieves a utilityUi(x)
as in the original game, but it also receives the payments
Qi(x) that it was promised by the mechanism designer in
case outcomex occurs. Notice that ifQi(x) = 0, i.e., if
no payments have been promised topi for outcomex, pi

has the exact same utility (i.e., simply its throughput) as it
had in the original game,Ui(x). With these promises made
by the mechanism designer, the players’ choices of strategies
(i.e., channels) now change accordingly: each player selects
a non-dominated strategy in the game with utility functions
Ui(x) + Qi(x).

Payment Amount: For a specific outcomex of the
game, the sum of the payments the mechanism designer
makes to all players is denoted by thepayment amount
Q(x) :=

∑
pi∈P Qi(x). Hence, the payment amountQ(x)

is the amount that the mechanism designer actually ends up
paying given the outcomex.

Implementation: As we have seen in the example of
Section III, the key insight is that by making the right promises

2One way to look at it is to consider these payments as a kind of insurance.
The mechanism designer is willing to pay a certain amount to protect the
players from certain undesirable outcomes. By doing so, it encourages players
to act in a socially more optimal fashion, which then results in the leverage.

Qi(x), it is in fact possible for the mechanism designer to
change the game in such a way as to increase the social wel-
fare. Formally, we say that a mechanism designerimplements
a strategy profile (oroutcome) x if it chooses its paymentsQ
in such a way that it is in all rational players best interest to
select the strategy that leads tox. Formally, the mechanism
designer implementsx iff the only non-dominated strategy
in the game isx. In our specific throughput game, if the
mechanism designer wants toimplementa certain assignment
of players to channels, it must choose the payment promises
in such a way that it is in each selfish player’s best interest to
choose the corresponding channel.

Cost of Implementation: The cost of an implementation
(i.e., the payment amount that the mechanism designer actually
has to pay in the end) can be very different depending
on the game, and how the mechanism designer assigns the
payments. We say that if the implementation entails a cost
Q(x) = k, then outcomex is k-implementable. That is,
a payment ofk is sufficient to make sure that outcomex
will occur. If it is possible to implement a strategywithout
entailing any paymentsat all, the outcome is0-implementable.
As discussed in the introduction, 0-implementable outcomes
are of particular interest because they can be enforced by
the mechanism designer without any actual monetary transfer,
even if all players act selfishly.

Leverage: The mechanism designer seeks to improve the
social welfare (i.e., the overall throughput) using a certain
amount of payment promises that it is willing to make. To
quantify this achieved gain we introduce two measures.

Theworst-case leverageis the absolute improvement by the
mechanism divided by the socially optimal welfare. In doing
so, we assume a pessimistic view and assume that the players
always end up in theworst non-dominated strategy profile.

Definition 4.1 (Worst-Case LeverageΦwc): The worst-
case leverageΦwc(x) of implementing a strategy profilex in
a game is defined as

Φwc(x) =
U(x)− U(UDomwc)−Q(x)

U(OPT )
.

The worst-case leverageΦwc of a game is the maximal worst-
case leverage over all outcomesx: Φwc = maxx∈X Φwc(x).
The term U(x) − U(UDomwc) captures the absolute in-
crease in social welfare that the mechanism designer was
able to achieve. Subtracting from this the cost of the
implementation—i.e., the payment amountQ(x) that the
mechanism designer has to invest to enforce the outcome
x—yields the absolute leverage that the mechanism designer
can achieve. Finally, we normalize this value by the social
optimum U(OPT ). Clearly, Φwc is at most 1. It is positive
if the mechanism designer can implement some outcome in
which the increase in social welfare exceeds its invested
payment amount. At the extreme, if the mechanism designer is
capable of achieving the socially optimal outcome at no cost,
whereas the worst non-dominated strategy in the original game
has social value0, then the leverage would beΦwc = 1.



The worst-case leverage tends to be pessimistic because it
assumes that the rational players act in the socially worst-
possible way. We therefore also consider theaverage-case
leverage, which we define analogously as follows.

Definition 4.2 (Average-Case LeverageΦavg): The
average-case leverageΦavg(x) of implementing a strategy
profile x in a game is defined as

Φavg(x) =
U(x)− U(UDomavg)−Q(x)

U(OPT )
.

The average-case leverageΦavg of a game is the maxi-
mal average-case leverage over all outcomesx: Φavg =
maxx∈X Φavg(x).

Special Leverages:In the context of our work, we specifi-
cally distinguish between the following three special cases of
the (worst-case and average) leverage:

• The0-LeverageΦ0
wc (andΦ0

avg) is the leverage than can be
achieved without making any payments at all,Q(x) = 0.

• The Opt-LeverageΦopt
wc (and Φopt

avg) is the achievable
leverage when the mechanism designer implements the
social optimum, i.e., the implementedx must be the social
optimum.

• The generalk-Leverage, denoted byΦk
wc and Φk

avg, re-
spectively, where we allow the mechanism designer to im-
plement arbitrary profiles and to make arbitrary payments.
Because 0-Leverage and Opt-Leverage are special cases of
thek-Leverage, it holds thatΦ0

wc ≤ Φk
wc andΦOpt

wc ≤ Φk
wc.

In this paper, we will focus on leveragesΦ0
wc andΦopt

wc , leaving
the study ofΦk

wc as interesting future research.

V. GENERAL RESULTS

Before proving the various bounds on the achievable lever-
age in throughput games, we start by characterizing some
general properties of our game. Specifically, in order to
compute the worst-case leverage, we need to have bounds
on the social optimum as well as on the worst-case non-
dominated outcomeUDomwc. For this purpose, we need some
additional definitions. For any channelej , defineηj = bcj/Dc
to be the number of players for which it can satisfy their full
demands. Furthermore, let̃cj = cj − ηjD be the residual
capacityof channelej that is left after entirely satisfyingηj

demands. Finally, letφ(1), φ(2), . . . , φ(m) denote the indices
of channels when ordered in non-increasing order of their
residual capacity, i.e., for any two channelsej , ek if c̃j > c̃k,
thenφ(j) < φ(k). The social optimum is as follows.

Lemma 5.1:The total throughput in the social optimum is
given by

U(Opt) = min{n, Γ} ·D +
min{m,n−Γ}∑

j=1

c̃φ(j), (1)

where Γ =
∑m

j=1 ηj is defined as the total number of
players whose demand can be fully satisfied in the network.
In the backlogged case (D → ∞), this reduces toU(opt) =∑min{n,m}

j=1 cj .

Proof: The first summand follows from the fact that the
throughput cannot exceed the total demand, henceU(Opt) ≥
nD, and thatU(Opt) ≥ ΓD holds by the definition ofΓ. If
Γ ≥ n, the second term evaluates to 0. Otherwise, there are at
leastn − Γ remaining players whose demandD is not fully
satisfied. Assuming thatΓ players have already been allocated
to the channels, the residual capacity of each channelej is at
most c̃j < D. If n − Γ ≥ m all this residual capacity is
used up, i.e., all channels are completely utilized. Ifn− Γ <
m, the socially optimal solution is achieved if the remaining
n− Γ players utilize then− Γ channels with largest residual
capacity,c̃φ(1), . . . , c̃φ(n−Γ), because it is always feasible and
worthwhile to assign a player to the channel with largest free
residual capacity.

The following corollary follows immediately.
Corollary 5.2: The socially optimal welfare can be com-

puted in timeO(min{n,m}).
Definitions 4.1 and 4.2 require knowledge of the utility of

the worst non-dominated strategyprofile in the absence of a
mechanism. The following lemma characterizes the structure
of UDomwc and shows how its utility can be computed.

Lemma 5.3:The worst-case non-dominated strategy profile
is UDomwc = (eγ , eγ , ..., eγ), where γ is the maximum
` = {1, . . . ,m} such thatc` > c1

n . Furthermore, it holds that
U(UDomwc) = min{cγ , nD}.

Proof: When player pi chooses some channelej ,
the resulting utility is Ui(ej , x−i) = min{cj/nj , D} ≥
min{cj/n,D}. Hence, the minimum utility a player can
achieve, regardless of the strategies of other players isUi ≥
min{c1/n, D} by choosing the channel with largest capacity.
This strategy profile is dominated by all channelsek for
which ck > c1/n. By definition, the (not necessarily unique)
smallest channel which fulfills this property iseγ . The proof is
concluded by observing that the social welfare is minimized if
all players select channeleγ in which case, either all demand
can be satisfied oneγ or U(UDomwc) = cγ .

From Lemma 5.3, it follows that the worst non-dominated
strategy profile can be found trivially simply by determining
channeleγ . Since we assume that the channels are already
sorted in the input, we have the following corollary.

Corollary 5.4: The worst non-dominated strategy profile
can be computed in timeO(m).

For mechanisms where we seek to entirely avoid payments,
Nash equilibria play a crucial role. The following claim is a
direct consequence of the analysis by Monderer et al. [9].

Fact 5.5: A strategy profilex can be 0-implemented if and
only if x is a Nash equilibrium.

Using this fact, we can derive that in the throughput
maximization game, there always exist outcomes that can be
implemented without any monetary payments by the mecha-
nism designer.

Lemma 5.6:Every throughput game has at least one out-
comex that can be implemented without payments,Q(x) = 0.

Proof: We show that a simple best-response strategy
efficiently converges to a Nash equilibrium. Together with
Fact 5.5, the claim follows. Assume that initially, no player is



assigned a channel; and that one player after the other selects
a channel in a best response fashion: it will select a channel
ej that maximizes cj

nj+1 .
By induction over the number of players, we show that

after the ith player has selected its channel, no player has
an incentive to change its choice, that is, the configuration
constitutes a Nash equilibrium. For the first player, the claim
holds trivially: it will choose the largest channelse1, which
constitutes a Nash equilibrium (and a social optimum). For the
induction step, assume that the induction hypothesis is true and
that Uv(xv, x−v) ≥ Uv(x′v, x−v), for all of the i playerspv.
According to the best response strategy, playeri+1 selects the
channelej which maximizes cj

nj+1 . Therefore, for allk 6= j,
it holds that ck

nk+1 ≤ cj

nj+1 . Thus, no player on channelej

would be better off by switching to an alternative channelek.
By the induction hypothesis, it also follows that no player on
any channelek 6= ei has an incentive to change its strategy.

VI. W ITHOUT PAYMENTS: 0-LEVERAGE Φ0
wc

In this section, we characterize what improvements to the
social welfare can be achieved by mechanism design if no
monetary payments are to be made at all. Notice that when
implementing a strategy profilex, the mechanism designer can
(and sometimes does!) promise to each playerpi an arbitrarily
large amount of moneyQ(x′) = ∞ for all outcomesx′ that
will eventually be dominated, and hence will not occur.3 The
mechanism designer will only have to make the payments in
profilex, and hence, this promised money is not actually spent.

The key ingredient to characterizeΦ0
wc is to derive a

lower bound on the utility of an outcome that can be 0-
implemented. The challenge is that not all 0-implementable
outcomes yield the same throughput. For instance, in a game
with two players and two channels withc2 = c1/2, the profiles
(e1, e1) and (e1, e2) are both Nash equilibria, and can hence
be 0-implemented [9].4 However, their utilities are different
(c1 andc1 + c2, respectively). Thus, in order to maximize the
leverage, we need to implement the best Nash equilibrium.

Lemma 6.1:Let 0Best denote the best 0-implementable
strategy profile. We can bound the utility of0Best as

min{nD,

θlow−1∑

i=1

ci} ≤ U(0Best) ≤ min{nD,

θhigh−1∑

i=1

ci},

whereθlow andθhigh are defined as

θlow := min k s.t.
1
n

k−1∑

i=1

ci > ck

θhigh := min k s.t.
1
ck

k−1∑

i=1

ci − k > n− 1.

3Of course, in practice, instead of using infinite payment promises, a
mechanism designer will offer a payment which is, e.g., slightly larger than
the maximal utility in the game. In this paper, for simplicity, we will denote
this value by∞.

4In order to 0-implement, e.g.,(e1, e2), set Q1(e1, ei) = ∞ for i 6= 2
andQ2(ej , e2) = ∞ for j > 1.

In both cases, if there is no suchk ∈ {1, . . . , m}, thenk =
m + 1.

Proof: We prove the bounds by means of contradiction.
First, consider the lower bound. We show that there exists
a Nash equilibrium in which players use the firstθlow − 1
channels. Assume for contradiction that the first unused chan-
nel is eθ′ with θ′ < θlow, such that1n

∑θ′−1
i=1 ci < cθ′ . First,

note that no other channelek for k > θ′ can be used (up to
reorderings of channels of equal capacity), because otherwise,
such a player would have an incentive to switch toeθ′ . Thus,
assume that only the firstθ′ channels are used. In this case,
the average throughput of all players is at most1

n

∑θ′−1
i=1 ci

and hence, there must exist a playerpi ∈ P , for which
Ui ≤ 1

n

∑θ′−1
i=1 ci. However, because of1n

∑θ′−1
i=1 ci < cθ′ , this

player would have an incentive to switch to channeleθ′ , which
contradicts the assumption that it was a Nash equilibrium. It
thus follows that at least the firstθlow − 1 channels are used
and hence,U(0Best) ≥ ∑θlow−1

i=1 ci. Clearly, it also holds that
U(0Best) cannot exceednD.

We now prove the upper bound onU(0Best). Again,
U(0Best) ≤ nD is clear. Assume for contradiction that there
is a Nash equilibrium in which some player routes its flow on
channeleθ′′ , for θ′′ ≥ θhigh. The utility this player obtains is
min{cθ′′ , D}. In order for this player to have no incentive to
switch to a higher capacity channelej , j < θ′′, it must hold
that cj

nj+1 < cθ′′ and hence,nj >
cj

cθ′′
− 1. Summing up over

all channelse1, . . . , eθ′′−1 yields

θ′′−1∑

j=1

nj ≥
θ′′−1∑

j=1

(
cj

cθ′′
− 1

)
≥

θhigh−1∑

j=1

(
cj

cθhigh

− 1
)

=
1

cθhigh

θhigh−1∑

j=1

cj − θhigh + 1 > n− 1.

The second inequality is due toθ′′ ≥ θhigh and the final
inequality follows from the definition ofθhigh. Since there
can be mostn − 1 players one1, . . . , eθ′′−1 if one player is
on channeleθ′′ this is a contradiction.
We are now ready to prove lower and upper bounds on the
0-leverage.

Theorem 6.2:For D →∞, the worst-case 0-leverageΦ0
wc

can be bounded as follows(∑θlow

i=1 ci

)
− cγ

∑min{n,m}
i=1 ci

≤ Φ0
wc ≤

(∑θhigh

i=1 ci

)
− cγ

∑min{n,m}
i=1 ci

,

where cγ , θlow, and θhigh are as defined in Lemmas 5.3
and 6.1, respectively. For generalD, it holds
∑θlow

i=1 ci−U(UDomwc)
U(Opt)

≤ Φ0
wc ≤

∑θhigh

i=1 ci−U(UDomwc)
U(Opt)

,

with U(UDomwc) and U(Opt) as derived in Lemmas 5.1
and 5.3.

Proof: The claim follows immediately by substituting the
terms in Definition 4.1 with the results in Lemmas 5.1, 6.1,
and 5.3 and the observation thatQ(·) = 0.



VII. M ECHANISMS WITH PAYMENTS

While in distributed systems, 0-implementable solutions are
often desirable, they constitute only a subset of all possible
implementations. In this section—in order to understand the
relative possibilities and limitations of implementations with
and without payments—we allow payments and see whether
larger leverages are possible as compared to Section VI.

A. The OPT-LeverageΦopt
wc

One goal a mechanism designer might pursue is to im-
plement the socially optimal profile (cf Lemma 5.1). Unfor-
tunately, it is often not possible to 0-implement the social
optimum or in other words, it is not generally possible to
maximize throughput for free. As an example, consider a
game with two players and two channels where the channel
capacities arec1 = 12 and c2 = 4. In this game, the social
optimum (e1, e2) (utility of 16) can be implemented at cost
2, while the dominant, 0-implementable Nash equilibrium
(e1, e1) has utility 12 only. In other words, payments are
unavoidable if the social optimum should be implemented in
this example. We thus seek to implement the optimal outcome
at minimal costs, and study the resulting leverage.

Notice that in contrast to the 0-implementation in Sec-
tion VI, the OPT-LeverageΦopt

wc can actually be negative in
certain cases. To see this, consider a simple network with
two links of capacity1 and ε, and two players with infinite
demand. In this example, the social optimum is1+ε, whereas
the best non-dominated outcome is if both players are on the
channel with capacity 1. Furthermore, implementing the social
optimum requires forcing one of the two players to use theε-
channel, which incurs a cost of at least1/2−ε. It follows that
in this example,Φopt

wc = (1+ ε−1−1/2+ ε)/(1+ ε) ≈ −1/2.
We first derive a formula for the implementation cost of an

arbitrary strategy profile.
Lemma 7.1:Let epi = e(pi) denote the channel used by

player pi. In order to implement a strategy profilex =
(e1, ..., en), a mechanism designer needs to pay exactly

Q(x) =
∑

∀pi∈P

max
{

min{D, max
ej 6=epi

{ cj

nj +1
}}−min{D,

cpi

npi

}, 0
}

Proof: In order to implement an outcomex = (e1, ..., en),
for eachpi ∈ P , the mechanism can promise an arbitrarily
large payment amountP (x′) = ∞ for all profiles x′ 6= x.
As these outcomes will be dominated (and hence, will not
occur), no actual payments will result. However, payments
made in profilex itself will be substantiated. Consider the
paymentQi(x) that needs to be made topi in x. Without any
mechanism,pi obtains a utility ofUi(x) = min{D, cpi/npi}.
In order to dominate all ofpi’s alternative strategies, it
must hold that this utility plus the payment is at least
min{D, c(ej)/(nj + 1)} for all alternative channelsej 6= epi .
Hence, the mechanism designer must pay the difference be-
tweenmaxej 6=epi

{min{D, c(ej)/(nj + 1)}} and Ui(x). The
lemma follows by summing up over all players.

Observe that in a game withn players andm channels,
there aremn possible strategy profiles. Already for small

networks, this number is too large for an exhaustive search
of special profiles. Fortunately, the cheapest implementable
optimum profile—and henceΦopt

wc can be computed efficiently.
Theorem 7.2:Given a game withn players andm channels,

Φopt
wc can be computed in timeO(nm).

Proof: In order to calculateΦopt
wc (cf Definition 4.1), we

need to compute the utility of the worst non-dominated strat-
egy profile, the socially optimal utility, and the implementation
cost. From Corollaries 5.2 and 5.4, we know that the worst
non-dominated strategy profile and the social optimum can
be computed in timeO(m) andO(min{n,m}), respectively.
Thus, it only remains to study the implementation costs.

The number of players that a channelej can hold before
it is completely full is dcj/De. We distinguish between
n ≤ ∑

ej∈E dcj/De and n >
∑

ej∈E dcj/De. In the former
case, the following greedy algorithm yields an optimal channel
assignment which constitutes a social optimum with minimal
cost: For one playerpi after another, we assignpi the channel
which increases the social welfare the most. Observe that 1)
every player can actually improve the social welfare, 2) this is
indeed optimal as the choices of different players are indepen-
dent, and 3) the greedy algorithm terminates in timeO(nm).
If n >

∑
ej∈E dcj/De, we apply our greedy algorithm until an

additional player cannot improve the social welfare anymore
(i.e., to the first

∑
ej∈E dcj/De players). Then, we distribute

the remaining players among the channels. Note that the social
welfare is not a affected by this distribution, but in order to
optimizeΦopt

wc , we need to minimize the implementation cost.
This can be achieved by letting the remaining players choose
their channel one after another by a best-response strategy
which maximizes the corresponding player’s utility. In other
words, given the assignments of the first phase of the greedy
algorithm, the remaining players compute a Nash equilibrium.
By a similar argument as used in the proof of Lemma 5.6,
the cost is indeed minimized. The total additional runtime in
order to compute this equilibrium isO(nm).

We can now derive an expression forΦopt
wc in the case of

n ≤ ∑
ej∈E dcj/De.

Theorem 7.3:If n ≤ m and for D → ∞, the worst-case
Opt-leverage is

Φopt
wc ≥ 1−

cγ +
∑

ej∈E<

(
c1
2 − cj

)
∑n

i=1 ci
(2)

whereE< ⊆ E is the set of channelsej for which it holds
that c1

2 > cj , andcγ is as defined in Lemma 5.3.
Proof: The leverage is computed according to Defini-

tion 4.1. Lemma 5.1 shows that forD →∞ andn ≤ m, the
social optimum solution picks then highest capacity channels,
yielding U(Opt) =

∑n
i=1 ci. In such an optimal configuration

x, according to Lemma 7.1, the mechanism designer has to
pay each playerpi the difference of its utilityUi(x) = cei

to the largest possible utility it could get. Inx, for n ≤ m,
this best possible alternative isc1/2. Finally, we know from
Lemma 5.3 thatU(UDomwc) = cγ .
Note that for smallerD, similar expressions can be derived
based on the more exact value in Lemma 5.1.



VIII. E VALUATION

We proceed to investigate the potential for mechanism
design without payments in “typical” scenarios. Specifically,
given that the worst-case leverage tends to be overly pes-
simistic as the number of player increases, we are interested in
the average-case leverageΦavg: we assume players end-up in
a random non-dominated strategy profile(cf Definition 4.2).

Simulation Methodology: We compute the average-case
and worst-case leverages (ΦOPT

avg , Φ0
avg, Φ

OPT
wc , and Φ0

wc) us-
ing the algorithms described in Sections VI and VII. For
each test-run, we create 100 sample points (random non-
dominated strategy profiles) and present the average. Error
bars are omitted as the amount of variance is generally small.
Unless otherwise stated, there are100 channels each with
capacity100.

Impact of Number of Players: A first set of experiments
shows the effect of additional players on the leverage. Fig-
ures 1 and 2 show the different leverages in a system with 16
and 32 channels, for both constant and uniformly distributed
channel capacities. Player demands are100. It can be observed
that in all cases, the worst-case leverages tend to reach large
values quickly. The reason is that in such networks, the worst
non-dominated outcome is typically very bad compared to the
social optimum,U(UDomwc) ¿ U(Opt), especially as the
number of players grows. In contrast, the average leverages
behave differently. After an initial spike (the maximum being
roughly around the point when|P | = |E|), the average
leverages decay and go to 0 as|P | increases. The reason is
that with a large number of channels, the randomly selected
non-dominated outcomes become increasingly better, and in
the limit reach the social optimum.

An interesting phenomenon can be observed in Figure 2 for
uniform channel capacity distributions. Whereas, again, both
Φ0

wc and ΦOPT
wc reach high numbers very quickly, there is a

temporary decline when the number of players roughly equals
the number of available channels in bothΦOPT

wc and ΦOPT
avg .

This phenomenon can be explained as follows: in order to im-
plement a socially optimal strategy profile, each channel must
be occupied by exactly one player. As the weakest channels
are taken last, a large cost accrues when the last free channels
are assigned. After that, the implementation become cheaper
again. In order to substantiate this explanation, Figure 3(a)
plots the total implementation costsQ(Opt) as a function of
the number of playersm. It can be seen that for differentm
this implementation cost drastically increases at aroundm.

Impact of Demand: Figure 3(b) shows the impact of the
players’ demand on the different average leverages. The most
interesting take-away is that in all but one case, the leverage
increases and reaches a stable point roughly between 0.35
and 0.4. The only exception isΦOpt

avg for uniformly distributed
channel capacity. While surging faster than the other three
values, it then drops and stabilizes on a significantly lower
leverage. The reason is that compared toΦ0

avg, ΦOpt
avg is much

more susceptible to large diversities in channel capacities. If,
for instance, there is a large number of channels with very

Fig. 1. Leverage as a function of the number of players for (a) 16 and (b) 32
channels. Channel capacities are constantcj = 100 for all ej ∈ E. Notice
that the curves forΦOpt

wc andΦ0
wc, and forΦOpt

avg andΦ0
avg overlap.

Fig. 2. Leverage as a function of the number of players for (a) 16 and (b)
32 channels. Channel capacities are uniformly distributed in[0, 100].

small capacities,Φ0
avg will ignore these channels, whereas

ΦOpt
avg will still try to implement them, thereby causing an

increase in paymentsQ(x). This also highlights the impact on
the channel capacity distributions on the achievable leverages.

Impact of Scale: Figure 4(a) shows the impact of scale
on the leverage. In particular, we define the parameterW as
the ratio between the number of players and the number of
channels, i.e.,|P | = W ·|E|. We keepW fixed and increase the
number of channels (and hence also the number of players). It
can be seen that for different values ofW , the leverage stabi-
lizes on different average 0-leveragesΦ0

avg. Since the demands
equal the channel capacities, we can analyze this experiment



Fig. 3. (a) Implementation cost as a function of the number of players, for
different number of channels and uniformly distributed channel capacities. (b)
Average leverages as a function of the players’ demands with both constant
and uniformly distributed channel capacities ([0,100]).

Fig. 4. (a) 0-LeverageΦ0
avg as a function ofW , with constant channel

capacities. (b) Leverages as a function ofW , with demands adjusted ap-
propriately to keep the load at saturation throughput. Channel capacities are
uniformly distributed in [0,100].

formally. The social optimum is to have at least one player on
every channel and since this is a Nash equilibrium, this can
be 0-implemented by Fact 5.5. In an average non-dominated
outcome, however, every player will select one of its channels
independently at random (if channel capacities are constant.
Hence, the expected utilityU(UDomavg) in this case is the
number of channels with at least one player. This can be
expressed asU(UDomavg) = n(1− 1

m )n = n(1− W
n )n. The

resultingΦ0
avg is thereforeΦ0

avg = n−n(1−W
n )n

n ≈ 1 − W
eW .

This is maximized forW = 1 leading toΦ0
avg = 1 − 1/e,

which is the value obtained in the simulations.

Leverage at Saturation Throughput: Finally, we want
to understand the behavior at saturation throughput. For this
purpose, again use the above definition ofW , but now set
the players’ demands toD = Cap/W , where Cap is the
(constant) channel capacity of all channels. That is, we keep
the total load on the network fixed, but increase/decrease the
number of players/demand. Figure 4(b) shows that initially,
bothΦ0

avg andΦOpt
avg behave similarly. However, after reaching

a peak at aboutW = 1, Φ0
avg drops off more sharply.

The reason is that becauseΦ0
avg is not allowed to make

any payments, it often loses out on optimizations that can
implementΦOpt

avg cheaply as the number of players increases.

IX. CONCLUSION

In view of ever-growing and ever more highly decentralized
networks and distributed systems, there is a growing need to
prevent the potentially harmful outcomes of selfish behavior.
The key tool that enables such incentives is mechanism
design. Unfortunately, monetary payments are often an integral
component in such approaches, which severely limits their
applicability in many decentralized systems.

This paper takes a different approach. It sheds light on the
possibilities and limitations ofleverage, a mechanism design
that doesnot require any payments. We find it intriguing
that while often not achieving as good a performance as
payment-based schemes, many improvements can theoretically
be achieved even without payments in our setting.
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