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Abstract—It is well-known that the overall efficiency of a challenging to determine what such payments could be and
distributed system can suffer if the participating entities seek how, in practice, they could be enforced.
to maximize their individual performance. Consequently, mech- — pqr these reasons, it would therefore be ideal for networks

anisms have been designed that force the participants to behave d distributed ¢ if hani desi h I
more cooperatively. Most of these game-theoretic solutions rely and distributed systems I mechanism design schemes cou

on payments between participants. Unfortunately, such payments Pe implementedvithout any paymentsand without any kind
are often cumbersome to implement in practice, especially in of monetary transfer. Unfortunately, there are strong theorems
dynamic networks and where transaction costs are high. In jn economic literature that show that in general, the power of
this paper, we investigate the potential of mechanisms which ,ananisms without money is severely limited [2], [12].
Work wﬁho_ut payments. We consnjer the problem of thr.oughput The k b fi that tivat is that i
maximization in multi-channel environments and shed light onto € Key observalion thal molivales our paper 1S that in
the throughput increase that can be achieved with and without Certain practical cases, the mechanism designer is nonetheless
payments. We introduce and analyze two different concepts: the capable of improving the social welfamithout making any
worst-case leverage where we assume that players end up in payments at allSpecifically, we show for a basic network flow
the worst rational strategy profile, and the average-caséeverage - gptimization scenario, there is a form of mechanism design
where player select a random non-dominated strategy. Our . - .
theoretical insights are complemented by simulations. that does ne|the_r .mvolve monetary instruments nor pz_;\yme_nts
of any sort. Intuitively, we show that there are situations in
which a trusted entity can improve the social welfare of the
system, simply by making approprigteomises of payments
Non-cooperative and selfish behavior in networks and largée participants in case certain outcomes occur. In a way, these
scale distributed systems is an important challenge to theomises then work like insurances for the players, hedging
efficiency of such systems. And as these systems are beconthigm against unfavorable outcomes. This gives these rational
ever more decentralized, complex and heterogenous, this trgiayers more flexibility in their (selfish) decision which, as
is only going to increase further in the future. Driven by thisve show in this paper, can ultimately lead to a higher social
observation and the goal to contain the inefficiencies caussdifare.
by selfish behavior, researchers from various disciplines haveFormally, we define and study the concept lefrerage
investigated means to foster cooperation among autonomewsich captures how much increase in social welfare a mech-
participants. One common tool towards this ainmischanism anism designer can achieve for a certain amount of payment.
design which attempts to provide incentives to users sudks a particularly interesting and potentially important special
that they behave in more socially beneficial ways. In a workechse in practice, we study tieleverage which describes how
of money, in order to implement such behavior, numerowsuch social welfare can be improved without any payments
mechanisms have been designed which are based on paymatsall; simply by making appropriate insurance promises
In many situations, such payments are natural and can tbeplayers. The O-leverage is thus a concept of potentially
distributed (or, in case of negative paymersllected in an great relevance in networks and distributed systems in which
efficient manner. For instance, most governments today usechanisms based on monetary transfer are undesired.
a wide range of taxes and subsidies to achieve their goalsBefore being able to use these concepts in actual system
e.g., to limit inequalities within a society or to support certaidesign, we seek to understand their possibilities and limi-
industry sectors. tations. For this purpose, we study in this paper a simple
The problem is that in large-scale networks and highlyhroughput optimization game that is both sufficiently simple
distributed systems, employing such mechanisms that amd concise to allow for stringent reasoning and analysis, but
based on payments or that include the transfer of money at#l captures a typical, generic scenario that arises (in similar
often impracticable or inefficient. To give just one exampldashion) in many networks and systems. Specifically, we study
in systems such as multi-hop wireless networks, paymetite leverage in ghroughput maximization ganie which there
based incentives have for instance been proposed to encouiiageset of channels (of potentially different capacity), and a set
nodes to relay other nodes’ packets [15], [16]. However, it &f players each of which wants to find a route for its own flow

I. INTRODUCTION



with maximum capacity. For this game, we prove bounds aases in which the central coordinator does not end up paying
the achievable leverage with and without payments. We alanythingat all.
corroborate our findings using simulation results. Implications: If a global trusted entity can improve the
The remainder of this paper is structured as follows: Afta&jocial welfare simply by making the right set of promises, but
a motivating example in Section I, we review related work iithout actually making any payments, some benefits of mech-
Section Ill. We formally define both the throughput maximizaanism design could be achieved without having the practically
tion setting, as well as the framework for our studyieferage troublesome implications of money transfer. Such a scheme
in Section IV. After deriving some general results on outould enable new approaches towards designing distributed
game in Section V, Sections VI and VIl provide the analyticaystems that need to cope with selfish behavior. In this paper
results on mechanism design with and without paymentge therefore seek to shed light on what can be achieved with
respectively. Section VIII presents simulation results, befoemd without payments under such circumstances.
the paper concludes in Section IX.

II. MOTIVATING EXAMPLE 1. RELATED WORK

The question that we seek to shed light on in this paper isMost of the classic literature on load-balancing and through-
the impact of payments, and to what degree such paymepis maximization is based on the assumption that either, there
are indeed necessary. The key intuition for why this questieists a centralized controller that manages the flows effi-
is interesting is best conveyed with the following simpleiently, or that the distributed entities coexisting in the system

example using the classic prisoner’s dilemma. altruistically collaborate and follow their assigned protocol.
Uz) | | t Q@) [ 1 t The question of how to devise algorithms and mechanisms
| 3310/ | 111 2/0 to optimize system performance in the face of swelifish
¢ 40 | 11 t o2 | 0/0 participants is the focus ofalgorithmic mechanism design
[10].

Example: In this game, two playersi andB can either say  In recent years, many mechanism design results involving
the truth(¢) or lie (). Whereas the social optimum strategypayments of money, stamps, points or similar objects of
would be if both players lied (both players get utility ofvalue have been proposed for distributed systems, e.g., the
U;(1,1) = 3, see the table fof/(x) above), the only Nash work on routing and multicast in wireless multi-hop net-
equilibrium is if both players say the truth in which caseyorks [15], [16], network formation [1], or quota-based spam
U;(1,1) = 1 for both players. That is, the social welfare in theontrol [14]. More generally, approaches that are based on the
optimum and in the Nash equilibrium afé(Opt) = 6 and celebrated Vickrey-Clark-Groves mechanism (VCG) involve
U(NE) = 2, respectively. money transfer in one form or another. The fundamental

Now, assume that there exists a global entity that has theoblem with these schemes is that in practical distributed
power to make financial promises (i.e., insurances) to the twgstems, relying on monetary transfers often imposes a high
players in case certain outcomes occur. Further, assume ifeplementation barrier [6].
this mechanism designer promises payments as indicated itUnfortunately, the fundament@rrow’s Theorem[2], [12]
the table@(z). That is, if both players lie, the mechanismrshows that the power of mechanisms without money is
designer will payl to both players. The thing to recognize iseverely limited in general. However, there are instances
that with the addition of the insurance payments, the playetlsat show how in certain scenarios monetary paymeats
utility in a given outcomer has now changed from originally sometimes altogether be avoided [7]. There have been at
U;(x) to U;(z) +Q;(x). Because of this, the players now havéeast three general approaches to mechanism design without
a utility of 4 if both players lie, and the utilities in outcomespayments. Arguably the most famous such approach is the
(I,t) and (t,1) are (4,2) and (2,4), respectively. Hence, it barter-basedtit-for-tat mechanismin BitTorrent. However,
is now alwaysin both players’ best interest to lie, i.e., bothsuch barter systems come with their own set of problems
players lying has become a Nash equilibrium in the game. (e.g. reliance on altruistic seeders to solve the bootstrapping

The intriguing observation is that by making payments gfroblem, and are thus exploitable [8], [11]). Secondly, inter-
141 = 2 for the outcomg(, 1), the mechanism designer wasesting results have also been obtainedriter-domain routing
able to improve the social welfare I6y-2 = 4 and implement [7]. Distributed algorithmic mechanisms have been designed
(I,1) as a Nash equilibrium. That is, even if we subtract thehich achieve incentive compatibility in a collusion-proof ex-
payments made by the mechanism designer, there is still a npist Nash equilibrium without payments. Interestingly, the
gain of social welfare of in the system, simply because theéBorder Gateway Protocol—the standard inter-domain routing
mechanism designer made the right set of promised paymept®tocol—is an example of such a mechanism. And third, there

The example shows that with well-placed payments, ae systems that are based on the observation that computer
global coordinator is capable of significantly improving theystems typically have the ability to arbitrarily reduce service
social welfare. The increase in social welfare can even exceegslity (e.g., by dropping messages or insert delays). This
the cost invested by the global coordinator. The most startlings given raise tanoney-burning mechanisntkat demand
thing, however, is that—as we show in this paper—there apayments in the form of computation or bandwidth (e.g., in



the context of email spam or denial of service attacks) [13f.several players use the same channel, its capacity is distrib-
Optimal money-burning mechanisms are studied in [6]. uted evenly among the players. Concretelyplgt= | P(e;)| be
Compared to these works, we pursue a different approatihe number of players that select a charjelThethroughput
We assume the existence of a trusted mechanism designer Tiat;) of a playerp; that has selected channglis defined as
can makepayment promise$o participants, in case certain? (p;) = min{c(e;)/n;,d(p;)}. That is, a player’s throughput
unfavorable outcomes occur. Our paper builds upon ithe is either its fair share of the channel capacity or, in case
implementation model introduced by Monderer et al. [9Ihe channel has sufficient capacity, its full demand. Every
which has subsequently also been considered in [4], [5]. ThgZayer attempts to select its channel in a utility maximizing
papers give possibility and impossibility results for generahanner, i.e., it chooses the channel which maximizes its
games, and provide algorithms to compute optimal paymertisroughput without taking into consideration the other players’
Monderer et al. also point out an intriguing connection béhroughput.
tween O-implementations antbrrelated equilibria[3]. In a Notice that this abstract model captures a wide variety
correlated equilibrium the players act according to the publicf natural problems that arise in practical networking and
known random distributions over the strategies specified by tistributed systems scenarios. To give just one example, the
mechanism designer. The authors prove that every correlathffierent channels in our setting can correspond to actual
profile is 0-implementable with an appropriate implementationireless channels in a wireless networks, or to different
device. In this paper, we study a deterministic environment andtwork interfaces (say, Bluetooth, Wi-Fi, etc). Each player
explore k-implementations for a specific networking applicahas to choose on which such channel or interface it wants to
tion. We seek to shed light on the question of whether and transmit its data (flow).
what extent mechanism design without money can be used td et X denote the set of all possible strategy proffles.
improve throughput in selfish networks. As we will see, higlsiven a specific outcome of the gamec X, a playerp;’s
throughput implementations can often be computed efficientlytility U;(z) is its own throughput, i.el;(z) = T'(p;) in this
We compare the obtained throughput increase to mechanissogcome. The sum of all these utilities is tisecial utility
implementing a soci_allynaximumthrough_putwith pa)_/ments denoted byU (z) = Zmep U(x).
and discuss the “price of free mechanisms”. Besides worst-In this paper, we deal with two notions of rationalityash
case analyses, we provide average-case bounds obtained fsguiilibria and non-dominated strategieg\ strategy profilex
in silico experiments. is called a(pure) Nash equilibriunif no player can unilaterally
improve its utility (throughput) given the strategy of the other
IV. MODEL players. In this paper, we primarily look at the second concept

In this section, we formally define the specific setting iqu rationality: non-dominated strategy profileénformally, a

which we study the relative capabilities and limitations OrPon-dor_nmated strategy IS a strategy for which th_ere IS no
mechanism design with and without payments. alternative strategy which elwaysbetter for a player, i.e., for
any strategy choice of the remaining players. Non-dominated

strategies do not assume anything about the behavior of other

players and are thus a very general notion of rationality,
We consider an abstract networking setting in which thefgaking significantly weaker assumptions on rational behavior

are nplayers P = {pi,...,pn,} and m parallel channels than Nash equilibria. Formally, let;;, 2/ < X; be two

E = {e1,...,en}. Each channek; € E has a certain strategies available to playgr. Strategyz; dominatesr, iff

CapaCitij = C(€j> > 0, which indicates how much flow it Ul(x“xil) > Ul(aci,ac,l) for every possible strategy prof”e

can handle. In order to simplify the presentation, we assurgg the other players._;, and if there exists at least one ;

that the channels are ordered with respect to their capacitigsy: which a strict inequality holds. A strategy (channel)

¢1 = 2 2 ... 2 ¢y (If this was not the case, an initial sortingjs the dominantstrategy for playerp; if it dominates every

operation would yield an additional additivé(rmn log m) term  other strategyr! € X;\{z;}. «; is a non-dominatedstrategy

in our time bounds.) On the other hand, each playee P if no other strategy dominates it. We denote the set of strategy

is associated with demandd; = d(p;), which is the amount profiles which are non-dominated By pom C X.

of flow that the player wants to send through the network. In e consider the following special social utilities.

this paper, we will primarily consider the case in which all
players have equal demands, i#.= D, for all p; € P. As
for notation, we say that a channel is larger than channel

A. The Throughput Game: Definitions & Notations

e The social optimumOpt is the strategy profile with max-
imum social utility, i.e.,U(Opt) = max,ecx U(z).

ex if ¢; > ¢, equalif ¢; = ¢, andsmaller otherwise. ° The worst-case non—dominated strategy profifeD o,
Each player chooses a single channel to route its flow. Let IS the non-dominated strategy profile (outcome of the
e(p;) denote the channel selected by playgrand letP(e;) game) with the worst social utility, i.el/(UDomy,.) =

be the set of players that have selected chaeneds their

channel. i.e. P(e ) — {p4|e(p-) — ¢ } The throughput a 1A strategy in our game corresponds to selecting a specific channel. Hence,
| ’b T jd S d k; . ?] | d th b Weguse the terminology strategy and channel interchangeably. Similarly, a
player obtains Is determined by its channel and the num ery tegy profile corresponds to an outcome of the game in which every player

other players that have selected the same channel. Specifically,selected one specific channel.



mingex, 5., U(x). It is the socially worst possible out-Q;(x), it is in fact possible for the mechanism designer to
come of the game if every player acts rationally and seleabkange the game in such a way as to increase the social wel-
a non-dominated strategy. fare. Formally, we say that a mechanism designgiements

e It may be overly pessimistic to assume that all ration& Strategy profile (ooutcom¢ z if it chooses its paymentQ
players select their non-dominated strategy in such a Wgysuch a way that it is in all rational players best interest to
thatU Dom,,. arises. Theverage non-dominated strategyS€lect the strategy that leads o Formally, the mechanism
profile UDom,,, is a random variable that denotes aﬁeagner mplgment& iff the o_n.Iy non-dominated strqtegy
outcome of the game that arises if every player selects deth® game isz. In our specific throughput game, if the
of its non-dominated strategies uniformly at random. TH8€chanism designer wants itaplementa certain assignment
utility U (U Dom,,,) is then defined as the expected sociaﬂf players to channels, it must choose the payment promises

utility of UDomagyy, i.€.,U(UDomayg) = E[UDomay,]. N such a way that it is in each selfish player’s best interest to

. hoose the corresponding channel.
Whereas Dom,,. captures the worst-possible outcome o(f b . 9 . .
Cost of Implementation: The cost of an implementation

the game if participants behave rationallyDom,,, can be ) :
considered as describing the game’s “typical’ oancome. in the-s the payment amount that the mechanism designer actually

analysis section, we derive analytical upper and lower boun%%sthto pay In tréehend)thcan bﬁ very ?ffe'rent dep.endmtgh
for U,(UDom); in our simulation-based evaluation, we sho n the game, and how the mechanism designer assigns the

results for both concepts. payments. We say that if thg implementation entails a cost
Q(z) = k, then outcomez is k-implementable That is,
a payment ofk is sufficient to make sure that outcome
} ) o i will occur. If it is possible to implement a strategyithout
The example in Section Il shows that it is possible for @qailing any paymentst all, the outcome ig-implementable
mechanism designer which seeks to influence and improve K¢ giscussed in the introduction, O-implementable outcomes
outcome of the game, to offer payments in such a way asdfi, of particular interest because they can be enforced by
improve the social outcome of the game in excess of the tofgl, mechanism designer without any actual monetary transfer,
amount of payments that it invested. This overall increase Qfap if all players act selfishly.
the social good by means of a global mechanism designer isi_everage: The mechanism designer seeks to improve the
captured by th? def|n|t|_on deverage social welfare (i.e., the overall throughput) using a certain
The mgchanlsm designer oﬁgrs a paymentz) to every amount of payment promises that it is willing to make. To
playerp; in case the game ends in outcomerormally, these %uantify this achieved gain we introduce two measures.

Ea:]yCngts Cin be described by ahtgze Of r;?n-nﬂz%aztlve pay ftI'heworst-case leveragis the absolute improvement by the
uW'Lh tiQ N (Q.l’%’ N "Q"t)’ w h le nA b t.I_mechanism divided by the socially optimal welfare. In doing
! € promised payments, €ach player now has a utl '%, we assume a pessimistic view and assume that the players

of Uy () +Qi(x) in outcome € X.. In ot_her words_, given an always end up in thevorst non-dominated strategy profile.
outcomez, each playemp; not only achieves a utility/; (z) - .

; . . . Definition 4.1 (Worst-Case Leveradge,.): The worst-
as in the original game, but it also receives the payments . : g

. . : ; case leverag@®,,.(x) of implementing a strategy profile in
Q.(x) that it was promised by the mechanism designer I ) .
. . : .. a game is defined as

case outcomer occurs. Notice that ifQ;(x) = 0, i.e., if
no payments have been promised o for outcomex, p; U(z) — U(UDomuy.) — Q(x)
has the exact same utility (i.e., simply its throughput) as it Pye(z) = U(OPT)
had in the original gamel/;(x). With these promises made
by the mechanism designer, the players’ choices of strategié®e worst-case leveragk,,. of a game is the maximal worst-
(i.e., channels) now change accordingly: each player select&e leverage over all outcomes®,,. = max,cx Pye().

a non-dominated strategy in the game with utility functionghe term U(z) — U(UDom.,.) captures the absolute in-
Ui(z) + Qi(z). 3 crease in social welfare that the mechanism designer was
Payment Amount: For a specific outcomer of the able to achieve. Subtracting from this the cost of the

game, the sum of the payments the mechanism desigfaiplementation—i.e., the payment amou@(z) that the
makes to all players is denoted by tigayment amount mechanism designer has to invest to enforce the outcome

B. Implementation Theory & Leverage

_Q(CC) = >_,.ep Qi(z). Hence, _the payment amoud}(z) z—yields the absolute leverage that the mechanism designer
is the amount that the mechanism designer actually endsggh achieve. Finally, we normalize this value by the social
paying given the outcome. optimum U(OPT). Clearly, ®,,. is at most 1. It is positive

Implementation: As we have seen in the example off the mechanism designer can implement some outcome in
Section lll, the key insight is that by making the right promiseghich the increase in social welfare exceeds its invested
payment amount. At the extreme, if the mechanism designer is

20ne way to look at it is to consider these payments as a kind of insuran%pame of achieving the socially optimal outcome at no cost
The mechanism designer is willing to pay a certain amount to protect th . . . ’
e,kgereas the worst non-dominated strategy in the original game

players from certain undesirable outcomes. By doing so, it encourages pla))é! >
to act in a socially more optimal fashion, which then results in the leverag@as social valu®, then the leverage would be,,. = 1.



The worst-case leverage tends to be pessimistic because it Proof: The first summand follows from the fact that the
assumes that the rational players act in the socially worsftroughput cannot exceed the total demand, hén@@pt) >
possible way. We therefore also consider #heerage-case nD, and thatU(Opt) > I'D holds by the definition of". If

leverage which we define analogously as follows. I' > n, the second term evaluates to 0. Otherwise, there are at
Definition 4.2 (Average-Case Leverageg,,): The leastn — I" remaining players whose demaidl is not fully
average-case leveragk,,,(x) of implementing a strategy satisfied. Assuming thdt players have already been allocated
profile z in a game is defined as to the channels, the residual capacity of each chaaned at
_ _ mostc; < D. If n —T' > m all this residual capacity is
Dopg(z) = Ul@) U(g%(:;f“g) Q) used up, i.e., all channels are completely utilizeds ¥ T" <
( ) m, the socially optimal solution is achieved if the remaining
The average-case leveragk,,, of a game is the maxi- n —T" players utilize then — I channels with largest residual
mal average-case leverage over all outcomes®,,, = capacity,cy),-..,Csn—r), DECaAUSE it is always feasible and
maxzex Povg (). worthwhile to assign a player to the channel with largest free
Special Leveragesin the context of our work, we specifi- residual capacity. ]
cally distinguish between the following three special cases of The following corollary follows immediately.
the (worst-case and average) leverage: Corollary 5.2: The socially optimal welfare can be com-
o TheO-Leveraged!,, (and®,,) is the leverage than can bePuted in timeO(min{n, m}). N
achieved without making any payments at gi(z) = 0. Definitions 4.1 and 4.2 require knowledge of the utility of

the worst non-dominated strategyrofile in the absence of a

e The Opt-Leverage®2%! (and ®%) is the achievable . . .
. 9/ | . mechanism. The following lemma characterizes the structure
leverage when the mechanism designer implements t

social optimum, i.e., the implementedmust be the social OF UDore a.nd shows how its utility can be computed. .
optimum Lemma 5.3:The worst-case non-dominated strategy profile

. is UDomye. = (ey,€y,...,ey), Wherey is the maximum
o The generalk-Leverage denoted by®;,. and ®f,., re- y_ 11 ;) such thate, > <. Furthermore, it holds that
spectively, where we allow the mechanism designer to ir@-(UDome) = min{c,,nD}. "
plement arbitrary profiles and to make arbitrary payments.  pyoof: When player p; chooses some channel;,
Because 0-Levgrage and Ogt-Levekrage areOsEemaIkcaseﬁ]gf resulting utility is U;(e;,2_;) = min{c;/n;, D} >
thek-Leverage, itholds thab,,. < ®;,. and®y;2" < @y min{c;/n, D}. Hence, the minimum utility a player can
In this paper, we will focus on leverage§,. and®22¢, leaving achieve, regardless of the strategies of other playet§ is
the study of®* . as interesting future research. min{c;/n, D} by choosing the channel with largest capacity.
This strategy profile is dominated by all channels for
which ¢, > ¢;/n. By definition, the (not necessarily unique)
Before proving the various bounds on the achievable levermallest channel which fulfills this propertyds. The proof is
age in throughput games, we start by characterizing som@ncluded by observing that the social welfare is minimized if
general properties of our game. Specifically, in order tll players select channel, in which case, either all demand
compute the worst-case leverage, we need to have bounds be satisfied on, or U(UDom..) = c,. [ ]
on the social optimum as well as on the worst-case non-From Lemma 5.3, it follows that the worst non-dominated
dominated outcom& Dom,,.. For this purpose, we need somestrategy profile can be found trivially simply by determining
additional definitions. For any channgl, definen; = |¢;/D| channele,. Since we assume that the channels are already
to be the number of players for which it can satisfy their fuborted in the input, we have the following corollary.
demands. Furthermore, l&t = c¢; — n;D be theresidual Corollary 5.4: The worst non-dominated strategy profile
capacityof channele; that is left after entirely satisfying; can be computed in tim@(m).
demands. Finally, lep(1), ¢(2),...,¢(m) denote the indices For mechanisms where we seek to entirely avoid payments,
of channels when ordered in non-increasing order of thditash equilibria play a crucial role. The following claim is a
residual capacity, i.e., for any two channelse;, if ¢; > ¢, direct consequence of the analysis by Monderer et al. [9].

V. GENERAL RESULTS

then¢(j) < ¢(k). The social optimum is as follows. Fact 5.5: A strategy profilexr can be 0-implemented if and
Lemma 5.1:The total throughput in the social optimum isonly if z is a Nash equilibrium.
given by Using this fact, we can derive that in the throughput
min{m.n—T} maximization game, there always exist outcomes that can be
U(Opt) = min{n,T}- D + Z Zati)s ) implemented without any monetary payments by the mecha-

nism designer.

Lemma 5.6:Every throughput game has at least one out-
where ' = 377" 7; is defined as the total number ofcomex that can be implemented without paymer@$z) = 0.
players whose demand can be fully satisfied in the network. Proof: We show that a simple best-response strategy
In the backlogged cas&X — oo), this reduces td/(opt) = efficiently converges to a Nash equilibrium. Together with

Z;T‘:i’i{"”"’} ¢ Fact 5.5, the claim follows. Assume that initially, no player is

Jj=1



assigned a channel; and that one player after the other seléttboth cases, if there is no suéhe {1,...,m}, thenk =
a channel in a best response fashion: it will select a chanmek 1.
e; that maximizes#. Proof: We prove the bounds by means of contradiction.

By induction over the number of players, we show thdtirst, consider the lower bound. We show that there exists
after thei*" player has selected its channel, no player hasNash equilibrium in which players use the fifgt,, — 1
an incentive to change its choice, that is, the configurati@hannels. Assume for contradiction that the first unused chan-
constitutes a Nash equilibrium. For the first player, the claimel is ey: with ¢/ < 6., such that% Zf:_ll c; < cgr. First,
holds trivially: it will choose the largest channels, which note that no other channel, for £ > 6’ can be used (up to
constitutes a Nash equilibrium (and a social optimum). For theorderings of channels of equal capacity), because otherwise,
induction step, assume that the induction hypothesis is true antth a player would have an incentive to switctega Thus,
that U, (z,,2_,) > Uy(z),,z_,), for all of thei playersp,. assume that only the firgf channels are used. In this case,
According to the best response strategy, player selects the the average throughput of all players is at m%szf:‘ll i
channele; which maximizesnfil. Therefore, for allk # j, and hence, there must exist a playgr € P, for which
it holds that %4 < n;fH Thus, no player on channel, U; < %Zf;l ¢;. However, because def:ll ¢ < cgr, this
would be better off by switching to an alternative channel player would have an incentive to switch to channe] which
By the induction hypothesis, it also follows that no player ooontradicts the assumption that it was a Nash equilibrium. It
any channek; # e; has an incentive to change its strategyhus follows that at least the firg},,, — 1 channels are used

® and hencel/(0Best) > ng’{“_l ¢;. Clearly, it also holds that
VI. WITHOUT PAYMENTS: 0-LEVERAGE @Y U(0Best) cannot exceed.D. .
we We now prove the upper bound obi(0Best). Again,

In this section, we characterize what improvements to the(gBest) < nD is clear. Assume for contradiction that there
social welfare can be achieved by mechanism design if Roa Nash equilibrium in which some player routes its flow on
monetary payments are to be made at all. Notice that Whgﬁlanneka,,, for 8" > 6,,,. The tility this player obtains is
implementing a strategy profile, the mechanism designer canyin{,,, D}. In order for this player to have no incentive to
(and sometimes does!) promise to each playen arbitrarily gwitch to a higher capacity channej, j < ¢”, it must hold
large amount of money)(z’) = occ for all outcomesz’ that that % < ¢, and hencen; > CfTJ — 1. Summing up over

will eventually be dominated, and hence will not océdthe g Cﬁ;‘;‘;e@h ... egr_1 yields
mechanism designer will only have to make the payments in
" . . . 0" —1 0" —1 Onigh—1

profile x, and hence, this promised money is not actually spent. cj ¢

The key ingredient to characteriz€’ . is to derive a Z nj oz Z con -1z Z 0 -1

- - - i high
lower bound on the utility of an outcome that can be 0- 7=! J=1 =1 !
implemented. The challenge is that not all 0-implementable 1 Omend
outcomes yield the same throughput. For instance, in a game = > ¢ —bhign+1 > n—1
high j=1

with two players and two channels with = ¢, /2, the profiles

(e1,€1) and (e, e2) are both Nash equilibria, and can hencehe second inequality is due ®’ > 6., and the final
be 0-implemented [9]. However, their utilities are different inequality follows from the definition oB,;,,. Since there

(c1 ande; + c2, respectively). Thus, in order to maximize thesan be most — 1 players oney, ..., eg._; if one player is
leverage, we need to implement the best Nash equilibriumon channek,. this is a contradiction. u
Lemma 6.1:Let 0Best denote the best O-implementable\/\/e are now ready to prove lower and upper bounds on the
strategy profile. We can bound the utility 0Best as 0O-leverage.
row—1 Onigh—1 Theorem 6.2:For D — oo, the worst-case O-leveragel) .
min{nD, Y ¢} < U(0Best) < min{nD, Y ¢}, canbe bounded as follows
- i = (Z?I:oi Ci) Gy (Zf:fh Ci) —Cy
whereb;,,, and ;4 are defined as Y Py R e < T ;
k—1 i1 G D=1 G
0100 = MiN k S.t. —Zci > ¢ where ¢, 010, and ., are as defined in Lemmas 5.3
i and 6.1, respectively. For gener@l it holds
k—1
. 1 010w Onigh
Onign = min k s.t. — Z ¢ —k>n—1. Yoimi ci—U(UDomy.) <0 < dini"ci—U(UDomy)
k=1 U(Opt) - oves U(Opt) ’

30f course, in practice, instead of using infinite payment promises, With U (U Dom,,.) and U(Opt) as derived in Lemmas 5.1
mechanism designer will offer a payment which is, e.g., slightly larger thagind 5.3.

the maximal utility in the game. In this paper, for simplicity, we will denote Proof: The claim follows immediately by Substituting the
this value byoco. :

41n order to O-implement, e.g(e1, e2), setQ (e1,e:) — oo for i = 2 €rms in Definition 4.1 wi_th the results in Lemmas 5.1, 6.1,
andQz(ej,e2) = oo for j > 1. and 5.3 and the observation th@f-) = 0. |



VII. M ECHANISMS WITH PAYMENTS networks, this number is too large for an exhaustive search

While in distributed systems, 0-implementable solutions afé special profiles. Fortunately, the cheapest implementable
often desirable, they constitute only a subset of all possi#@timum profile—and hencég?! can be computed efficiently.
implementations. In this section—in order to understand the Theorem 7.2:Given a game with. players andn channels,
relative possibilities and limitations of implementations witf®%. can be computed in ime (nm).
and without payments—we allow payments and see whether Proof: In order to calculateb¢:! (cf Definition 4.1), we

larger leverages are possible as compared to Section VI. heed to compute the utility of the worst non-dominated strat-
opt egy profile, the socially optimal utility, and the implementation
A. The OPT-Leverage:y: cost. From Corollaries 5.2 and 5.4, we know that the worst
One goal a mechanism designer might pursue is to imen-dominated strategy profile and the social optimum can
plement the socially optimal profile (cf Lemma 5.1). Unforpe computed in time(m) and O(min{n, m}), respectively.
tunately, it is often not possible to O-implement the socidihus, it only remains to study the implementation costs.
optimum or in other words, it is not generally possible to The number of players that a channgl can hold before
maximize throughput for free. As an example, consider igiis completely full is [¢;/D]. We distinguish between
game with two players and two channels where the chanpgke 3~ _ - [c;/D] andn > Y, _ [c;/D]. In the former
capacities are; = 12 and ¢, = 4. In this game, the social case, the following greedy algorithm yields an optimal channel
optimum (e1, e2) (utility of 16) can be implemented at costassignment which constitutes a social optimum with minimal
2, while the dominant, O-implementable Nash equilibriurgost: For one playep; after another, we assign the channel
(e1,e1) has utility 12 only. In other words, payments arguhich increases the social welfare the most. Observe that 1)
unavoidable if the social optimum should be implemented &very player can actually improve the social welfare, 2) this is
this example. We thus seek to implement the optimal outconigieed optimal as the choices of different players are indepen-
at minimal costs, and study the resulting leverage. dent, and 3) the greedy algorithm terminates in tith@m).
Notice that in contrast to the O-implementation in Seqf n > 3~ . [c;/D], we apply our greedy algorithm until an
tion VI, the OPT-Leverageby?’ can actually be negative in additional’ player cannot improve the social welfare anymore
certain cases. To see this, consider a simple network wite,, to the firsty", _, [c;/D] players). Then, we distribute
two links of capacityl ande, and two players with infinite the remaining players among the channels. Note that the social
demand. In this example, the social optimum ise, whereas welfare is not a affected by this distribution, but in order to
the best non-dominated outcome is if both players are on tGgtimize ®9°!, we need to minimize the implementation cost.
channel with capacity 1. Furthermore, implementing the socighis can be achieved by letting the remaining players choose
optimum requires forcing one of the two players to usedhe their channel one after another by a best-response strategy
channel, which incurs a cost of at ledgR — e. It follows that  which maximizes the corresponding player’s utility. In other
in this example®! = (1+e—1—-1/2+¢)/(1+¢€) = —1/2. words, given the assignments of the first phase of the greedy
We first derive a formula for the implementation cost of agigorithm, the remaining players compute a Nash equilibrium.

arbitrary strategy profile. By a similar argument as used in the proof of Lemma 5.6,
Lemma 7.1:Let e,, = e(p;) denote the channel used bythe cost is indeed minimized. The total additional runtime in

player p;. In order to implement a strategy profile = order to compute this equilibrium i (nm). [

(e1,....€n), @ mechanism designer needs to pay exactly We can now derive an expression fdf?’ in the case of

_ . cj . Cps n<y. erle/Dl.
Q) = Zmax{mm{a;&if{nﬁrl}}_mm{l)v 0 Theorem 7.3:If n < m and for D — oo, the worst-case

vpieP Opt-leverage is
Proof: In order to implement an outcome= (e, ..., e,,), D D (%1 — Cj)
for eachp; € P, the mechanism can promise an arbitrarily P> 1 — in . (2)
=1 "7

large payment amounP(z’) = oo for all profiles 2’ # z.
As these outcomes will be dominated (and hence, will nethere E< C E is the set of channels; for which it holds
occur), no actual payments will result. However, paymentsat <- > c;, andc, is as defined in Lemma 5.3.
made in profilez itself will be substantiated. Consider the Proof: The leverage is computed according to Defini-
paymentQ;(x) that needs to be made g in z. Without any tion 4.1. Lemma 5.1 shows that fd@» — oo andn < m, the
mechanismp; obtains a utility ofU;(z) = min{D, ¢,, /n,,}. social optimum solution picks the highest capacity channels,
In order to dominate all ofp,’s alternative strategies, it yielding U(Opt) = >, ¢;. In such an optimal configuration
must hold that this utility plus the payment is at least, according to Lemma 7.1, the mechanism designer has to
min{D, c¢(e;)/(n; + 1)} for all alternative channels; # ¢,,. pay each playep; the difference of its utilityU;(z) = c,
Hence, the mechanism designer must pay the difference bethe largest possible utility it could get. n, for n < m,
tweenmax., ., {min{D,c(e;)/(n; + 1)}} andU;(x). The this best possible alternative is/2. Finally, we know from
lemma follows by summing up over all players. m Lemma 5.3 thal/ (U Domy,.) = c,. [ ]
Observe that in a game with players andm channels, Note that for smallerD, similar expressions can be derived
there arem™ possible strategy profiles. Already for smalbased on the more exact value in Lemma 5.1.



VIII. EVALUATION 1
We proceed to investigate the potential for mechanism 08 1A WC-0
design without payments in “typical” scenarios. Specifically, 0.6 AVG-0

. —a—WC-OPT
given that the worst-case leverage tends to be overly pes- —B-AVG-OPT

simistic as the number of player increases, we are interested in
the average-case leveragg,,: we assume players end-up in 027
arandom non-dominated strategy profilef Definition 4.2). o -

Simulation Methodology: We compute the average-case 2 4 1020 30 #‘:i >0 6070 80 90 100
ayers
and worst-case leverage®{’”, @9, , ®OFT, and 99, ) us- v

ing the algorithms described in Sections VI and VII. For

each test-run, we create 100 sample points (random non- 1 - a
dominated ;trategy profiles) and pre;ent the average. Error g 08 WC-0
bars are omitted as the amount of variance is generally small. 0.6 Ve AVG-0
Unless otherwise stated, there ar@) channels each with 04 = WC-OPT

capacity100. 02 —B-AVG-OPT
Impact of Number of Players: A first set of experiments .

shows the effect of add_ltlonal players on_the Ieverage._ Fig- 5 4 10 20 30 40 50 60 70 8 90 100

ures 1 and 2 show the different leverages in a system with 16 #Players

and 32 Chann?'_s’ for both constant and umformly distribut . 1. Leverage as a function of the number of players for (a) 16 and (b) 32
channel capacities. Player demandsld@ It can be observed channels. Channel capacities are constgnt= 100 for all e; € E. Notice
that in all cases, the worst-case leverages tend to reach lahgethe curves fo 02" and @9, and for®g%; and 9, overlap.

Leverage
~

1.2

Leverage

values quickly. The reason is that in such networks, the worst 12
non-dominated outcome is typically very bad compared to the 14 o _
social optimum,U (U Dom,,.) < U(Opt), especially as the s TN S "
number of players grows. In contrast, the average leverages I o wc-0
behave differently. After an initial spike (the maximum being & °° AVG-0

. Q = WC-OPT
roughly around the point Wheth_\ = |E]|), the average = 047 e AVG-OPT
leverages decay and go to O |3| increases. The reason is 0.2
that with a large number of channels, the randomly selected [ o
non-dominated outcomes become increasingly better, and in 2 4 10 20 30 40 50 60 70 80 90 100

the limit reach the social optimum. f#Players

An interesting phenomenon can be observed in Figure 2 for

uniform channel capacity distributions. Whereas, again, both ! "W
®0 . and @9FT reach high numbers very quickly, there is a 08 we-0

[

oo
temporary decline when the number of players roughly equals § 0.6 AVG-0
the number of available channels in bob9”"” and ®9/7. 8 04 :K/ch;
This phenomenon can be explained as follows: in order to im- 0.2
plement a socially optimal strategy profile, each channel must P e = =
be occupied by exactly one player. As the weakest channels 2 4 10 20 30 40 50 60 70 80 90 100

are taken last, a large cost accrues when the last free channels #Players

are assigned. After that, the implementation become cheapigr 2. Leverage as a function of the number of players for (a) 16 and (b)
again. In order to substantiate this explanation, Figure 3@2) channels. Channel capacities are uniformly distributeld,in00].

plots the total implementation costy(Opt) as a function of

the number of players:. It can be seen that for different small capacities®,, will ignore these channels, whereas
this implementation cost drastically increases at around @aOfgt will still try to implement them, thereby causing an
increase in payment@(z). This also highlights the impact on

Impact of Demand: Figure 3(b) shows the impact of the AT A >
players’ demand on the different average leverages. The mig channel capacity distributions on the achievable leverages.

interesting take-away is that in all but one case, the leveragdmpact of Scale: Figure 4(a) shows the impact of scale
increases and reaches a stable point roughly between 00B5the leverage. In particular, we define the paramBteas

and 0.4. The only exception @g}’; for uniformly distributed the ratio between the number of players and the number of
channel capacity. While surging faster than the other threbannels, i.e|P| = W-|E|. We keeplV fixed and increase the
values, it then drops and stabilizes on a significantly lowaumber of channels (and hence also the number of players). It
leverage. The reason is that compared)ﬁqg, @3%’; is much can be seen that for different valuesldf, the leverage stabi-

more susceptible to large diversities in channel capacities. lies on different average 0-Ieveragk§Jg. Since the demands
for instance, there is a large number of channels with veegual the channel capacities, we can analyze this experiment



5 1000 m=16 Leverage at Saturation Throughput: Finally, we want
S 800 m=32 to understand the behavior at saturation throughput. For this
§ e A purpose, again use the above definitionVgf but now set
2 the players’ demands t® = Cap/W, where Cap is the
£ (constant) channel capacity of all channels. That is, we keep
| the totalload on the network fixed, but increase/decrease the
E number of players/demand. Figure 4(b) shows that initially,
both®9,, and@fg’gt behave similarly. However, after reaching
#Players a peak at aboutV = 1, <I>2Ug drops off more sharply.
045 The reason is that becausk),, is not allowed to make
093? any payments, it often loses out on optimizations that can
g 03 impIement@aOg’; cheaply as the number of players increases.
% 062; IX. CONCLUSION
= Obl.i In view of ever-growing and ever more highly decentralized
0.05 ﬁzg:(()),;l'ozztnst networks and distributed systems, there is a growing need to
O T L S S S S ST —Avgo, U[0,100] prevent the potentially harmful outcomes of selfish behavior.
oo I;nen;oan:  ——Avg-0PT, U[0,100] The key tool that enables such incentives is mechanism

design. Unfortunately, monetary payments are often an integral

Fig. 3. (a) Implementation cost as a function of the number of players, f@bmponent in such approaches, which severely limits their

different number of channels and uniformly distributed channel capacities.
Average leverages as a function of the players’ demands with both const;

and uniformly distributed channel capacities ([0,100]).

hplicability in many decentralized systems.
This paper takes a different approach. It sheds light on the
possibilities and limitations ofeverage a mechanism design

0.45
0.4 that doesnot require any payments. We find it intriguing
. 003: w=0.33 w=0.5 that while often not achieving as good a performance as
& 0.5 - h payment-based schemes, many improvements can theoretically
2 02 be achieved even without payments in our setting.
= 0.15
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