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Abstract. This paper shows how to build and maintain a distributed
heap which we call SHELL. In contrast to standard heaps, our heap
is oblivious in the sense that its structure only depends on the nodes
currently in the network but not on the past. This allows for fast join
and leave operations which is desirable in open distributed systems with
high levels of churn and frequent faults. In fact, a node fault or depar-
ture can be fixed in SHELL in a constant number of communication
rounds, which significantly improves the best previous bound for dis-
tributed heaps. SHELL has interesting applications. First, we describe a
robust distributed information system which is resilient to Sybil attacks
of arbitrary scale. Second, we show how to organize heterogeneous nodes
of arbitrary non-uniform capabilities in an overlay network such that the
paths between any two nodes do not include nodes of lower capacities.
This property is useful, e.g., for streaming. All these features can be
achieved without sacrificing scalability: our heap has a de Bruijn like
topology with node degree O(log®n) and network diameter O(logn), n
being the total number of nodes in the system.

1 Introduction

In recent years, peer-to-peer systems have received a lot of attention both inside
and outside of the research community. Major problems for these systems are how
to handle a large churn, adversarial behavior, or participants with highly varying
availability and resources. This is particularly the case in open peer-to-peer
systems, where any user may join and leave at will. In this paper, we argue that
many of these challenges can be solved by organizing the nodes in a distributed
heap called SHELL[ SHELL is oblivious, which implies that its structure only
depends on the nodes currently in the system but not on the past. It has turned
out that this is a crucial property for systems with frequent membership changes
as recovery and maintenance is simpler and faster. In fact, in SHELL, a join
operation can be handled in O(logn) time and a leave operation in constant
time, which is much better than the O(log? n) runtime bound previously known
for scalable distributed heaps [3].

* Partly supported by the DFG-Project SCHE 1592/1-1. For the full version see [15].

! The name SHELL is due to the fact that nodes are organized in different layers
in our network, where nodes “higher” in the heap can be protected and operate
independently of nodes “lower” in the heap.
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SHELL has a number of interesting applications. As a first case study, we
construct a fault-tolerant distributed information system called -SHELL which
is resilient to churn and Sybil attacks of any size. Sybil attacks are a particularly
cumbersome problem in open distributed systems: a user may join the system
with a large number of identities in order to, e.g., take over responsibility for
an unfair amount of the resources in the system, control or isolate certain parts
of the overlay network, or flood the system with futile traffic. The key idea of
i-SHELL is that nodes only connect to older nodes in the system so that nodes
that were already in the system when the Sybil attack takes place are unaffected
by it.

As a second case study, we show that SHELL can also be used to organize
nodes with arbitrary capacities in an efficient manner. For example, in a sce-
nario where nodes have non-uniform Internet connections, our h-SHELL system
guarantees that the paths between two nodes with fast Internet connections only
include nodes which are also fast while keeping a low congestion. This is a vital
property, e.g., for streaming.

1.1 Model and Definitions

In order to present our key ideas in a clean way, we will use a high-level model
for the design and analysis of the SHELL system. We assume that time proceeds
in rounds, and all messages generated in round ¢ are delivered in round 7 + 1
as long as no node sends and receives more than a polylogarithmic amount
of information. In other words, we assume the standard synchronous message-
passing model with the restriction that a node can only communicate with nodes
that it has currently links to. We do not consider the amount of time needed
for internal computation as that will be very small in our case. Each node v
in the system is associated with a key key(v) € N. Our heap will organize the
nodes according to these keys. We assume the existence of a symmetry breaker
(e.g., unique IP addresses) which allows us to order nodes with the same key so
that we can assume w.l.o.g. that all keys are distinct. The order n, of a node
v is defined as the number of nodes w in the system with key(w) < key(v).
Intuitively, n, represents the number of nodes that are above v in the heap.

The problem to be solved for the SHELL system is to find efficient and scalable
algorithms for the following operations:

1. v.join(): Node v joins the system.
2. wv.leave(): Node v leaves the system.
3. v.rekey(x): Node v’s key changes to .

By “scalability” we mean that these operations can also be executed efficiently
when performed concurrently.

Scalability is an important feature of SHELL. Messages can be routed fast
while the traffic is distributed evenly among nodes. We measure the congestion
as follows.
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Definition 1 (Congestion). The congestion at a node v is the number of
packets forwarded by v in a scenario where each of the n nodes in the system
wants to send a message to a random node.

One application of SHELL is a distributed information system resilient to Sybil
attacks. Formally, we will study the following type of attack.

Definition 2 (Sybil Attack). Starting with time to, an attacker joins the net-
work with an arbitrary number of nodes.

Our goal is to ensure that all nodes that joined the network before ty are safe
against that Sybil attack.

1.2 Owur Contributions

The main contribution of this paper is the presentation of a scalable and robust
overlay network called SHELL. SHELL is a distributed heap with join and leave
operations with asymptotically optimal runtime. In contrast to other distributed
(as well as many standard sequential) heaps (e.g., PAGODA [3]), SHELL is
oblivious, which allows it to react much more rapidly to dynamic changes: nodes
can join in time O(logn) and leave in time O(1). Another highlight of SHELL
is its robustness. For example, we are not aware of any other structure which
allows us to build a distributed information system resilient to Sybil attacks of
arbitrary scale. We also show that SHELL has interesting applications, e.g., it
can deal very efficiently with arbitrary variations in the capacities of the nodes.
In summary, our distributed heap has the following properties.

1. Scalability: Nodes have degree O(log? n) and the network diameter is O(log n),
where n is the network size. Congestion is bounded by O(logn) on expec-
tation and O(log2 n) W.h.pE, which is on par with well-known peer-to-peer
networks like Chord [19)].

2. Dynamics: Nodes can be integrated in O(logn) time and removed in O(1)
time.

3. Robustness: SHELL can be used to build robust distributed information
systems, e.g., a system which is resilient to arbitrarily large Sybil attacks.

4. Heterogeneity: SHELL can organize arbitrarily heterogeneous nodes in an
efficient way (e.g., for streaming).

1.3 Related Work

A heap is a standard data structure that has been extensively studied in com-
puter science (e.g., [4]). There are several types of concurrent heap implementa-
tions such as skip queues [I6] or funnel trees [17]. Moreover, distributed heaps
have been used in the context of garbage collection in distributed programs.
However, none of these constructions can be used to design scalable distributed
systems like those considered in this paper.

2 By ”with high probability” or "w.h.p.” we mean a probability of at least 1 —
1/poly(n).
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A prominent way to build scalable distributed systems are distributed hash
tables (or DHTs). Since the seminal works by Plaxton et al. [12] on locality-
preserving data management in distributed environments and by Karger et al. [g]
on consistent hashing, many DHTs have been proposed and implemented, e.g.,
Chord [19], CAN [13], Pastry [14], Tapestry [21], or D2B [7]. While these systems
are highly scalable, they often assume nodes to be homogeneous, and they are
vulnerable to various attacks, especially Sybil attacks that, if large enough, can
cause network partitions in these DHTs.

Sybil attacks [0] are an important challenge for open distributed systems. A
prominent example is our email system in which tons of spam emails are created
by Sybils to evade filtering. A solution to the Sybil attack problem in practice is
to have new subscribers solve difficult cryptographic puzzles which limits the rate
at which participants can join, or to perform Turing tests to prevent automated
subscriptions and to ensure that a new user is indeed a human being. Most of
these solutions are based on centralized entities. In fact, a well-known result by
Douceur [6] claims that in purely decentralized environments, it is inherently
difficult to handle Sybil attacks. Douceur finds that the only means to limit the
generation of multiple identities is to have a trusted authority be responsible
for generating them. Bazzi et al. propose a Sybil defense based on network
coordinates [II2] in order to differentiate between nodes. Other approaches are
based on social networks [520] and game theory [9]. All of these approaches
are aiming at detecting and/or limiting Sybil attacks. In our paper, we do not
aim at preventing Sybil attacks. We assume that an attacker can indeed connect
an unbounded number of nodes to the network (by controlling, e.g., a botnet).
Nevertheless, SHELL remains efficient at any time for those nodes that have
already been in the system before the attack.

As a second application, we demonstrate how SHELL can organize heteroge-
neous nodes such that stronger nodes can operate independently of weaker nodes.
While many peer-to-peer systems assume that nodes have uniform capabilities,
there have also been several proposals to construct heterogeneous systems (e.g.,
[11UT8]). These are usually based on multi-tier architectures but can only handle
a certain subset of the capacity distributions well. The system closest to ours
is PAGODA [3] which also constructs a distributed heap. However, this archi-
tecture is not oblivious. The more rigid structure implies that the system is less
dynamic and cannot adapt to bandwidth changes nearly as quickly as SHELL. In
fact, a join and leave operation take O(log® n) time, and it appears that without
major modifications it is not possible to lower the runtime of the operations to
something comparable with SHELL.

2 The SHELL Heap

In this section, we present the SHELL heap. Due to space constraints, the proofs
were left out and can be found in [I5].
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2.1 The SHELL Topology

The SHELL topology is based on a dynamic de Bruijn graph and builds upon
the continuous-discrete approach introduced by Naor and Wieder [I0]. In the
classical d-dimensional de Bruijn graph, {0, 1}¢ represents the set of nodes and
two nodes z,y € {0,1}¢ are connected by an edge if and only if there is a bit
b€ {0,1} so that x = (1 ...24) and y = (bx1...24-1) (i-e., y is the result of
a right shift of the bits in 2 with the highest bit position taken by b) or y =
(73 ...24b). When viewing every node z € {0, 1} as a point ijl z;/2 € [0,1)
and letting d — oo, then the node set of the de Bruijn graph is equal to [0,1)
and two points z,y € [0,1) are connected by an edge if and only if z = y/2,
x=(1+y)/2 or x =2y (mod 1). This motivates the dynamic variant of the de
Bruijn graph described in the following.

For any i € Ny, a level i interval (or simply i-interval) is an interval of size
1/2% starting at an integer multiple of 1/2¢ in [0, 1). The buddy of an i-interval
I is the other half of the (¢ — 1)-interval that contains I. We assume that every
node in the system is assigned to some fixed (pseudo-)random point in [0, 1) (the
node set of the continuous de Bruijn graph above) when it joins the system. We
also call this point its identity or id. For now, suppose that every node v knows
its order n,. Later in this section we present a local control strategy that allows
the nodes to obtain a good estimate on n,. We want to maintain the following
condition at any point in time for some fixed and sufficiently large constant
c> 1.

Condition 21. FEach node v has forward edges to all nodes w with key(w) <
key(v) in the following three intervals:

— the £y, g-interval containing v (v’s home interval) and its buddy,
— the £, 1-interval containing v/2 and the £, z-interval containing (1 + v)/2
(v’s de Bruijn intervals) and their buddies.

v also has backward edges to all nodes that have forward edges to it.

The level 0,0 € No of v is chosen as the largest value such that the €, -
interval containing v contains at least clogn, nodes w with key(w) < key(v) for
some fized and sufficiently large constant c. If there is no such €y (i.e., Ny s
very small), then £, o is set to 0. The same rule is used for the selection of the
levels £y 4, i € {1,2}, using the points (i + v — 1)/2 instead of v.

The conditions on ¢, ; suffice for our operations to work w.h.p. If we want guar-
antees, one would have to extend the definition of ¢, ; to lower bounds on the
number of nodes in both halves of the ¢, ;-interval as well as its buddy, but for
simplicity we will not require that here.

The forward edges are related to the upward edges in a standard (min-)heap
while the backward edges are related to the downward edges. However, instead
of a tree-like structure, we have a de Bruijn-like structure among the nodes.
Forward edges to the home interval of a node are called home edges and edges
to the de Bruijn intervals de Bruijn edges. Our construction directly yields the
following properties.
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Fact 22 (Oblivious Structure). The SHELL topology only depends on the
current set of nodes and their keys but not on the past.

Fact 23 (Forward Independence). The forward edges of a node v only de-
pend on nodes u with key(u) < key(v).

Recall that every node is given a (pseudo-)random point in [0,1). Then the
following property also holds.

Lemma 1 (Level Quasi-Monotonicity). For any pair of nodes v and w with
key(v) > key(w) it holds that €, ; > £y ; — 1 for any 4,5 € {0,1,2}, w.h.p.

In this lemma and the rest of the paper, ”w.h.p.” means with probability at least
1 — 1/poly(n,). Next we bound the degree of the nodes. From the topological
conditions we can immediately derive the following property.

Lemma 2. Every node v has ©(clogn,) many forward edges to every one of
its intervals, w.h.p.

For the backward edges, we have the following bound, where n is the total
number of nodes in the system.

Lemma 3. The mazimal number of backward edges of a mnode is limited by
O(clog®n) w.h.p.

2.2 Routing

We now present a routing algorithm on top of the described topology. For any
pair (u,v) of nodes, the operation route(u,v) routes a message from node u
to node v. The routing operation consists of two phases: first, a forward(v)
operation is invoked which routes a message from node u to some node w with
key(w) < key(u) whose home interval contains v. Subsequently, if necessary
(i.e., if w # v), a refine(v) operation performs a descent or ascent along the
levels until (the level of) node v is reached. In the following, we will show how to
implement the route(u, v) operation in such a way that a message is only routed
along nodes w for which it holds that key(w) < max{key(u), key(v)}.

Forward(v). We first consider the forward(v) algorithm, where node u sends a
message along forward edges to a node whose home interval includes node v. Let
(21,29, 23, ...) be the binary representation of u and (y1,y2, y3, - . .) be the binary
representation of v (i.e., u = Y, 2;/2%). Focus on the first k& = logn,, bits of
these representations. Ideally, we would like to send the message along the points
zZo — (1'1,1'2,1'3, . .), zZ1 = (yk,$1,$2,$3, .. .), Zo = (yk_l,yk,$1,$2,$3, .. .),
cos 2k = (Y1, -y Yy 1, T2, X3, ...). We emulate that in SHELL by first send-
ing the message from node u along a forward edge to a node u; with largest
key whose home interval contains z;. u can indeed identify such a node since
z1 = 20/2 or z1 = (1 + 29)/2, i.e., z1 is contained in one of u’s de Bruijn in-
tervals, say, I. Furthermore, u has ©(clogn,,) forward edges to each of the two
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halves of its intervals, w.h.p., and from Lemma [l it follows that every node w
that v has a forward edge to, £, 0 < £,,; + 1, i.e., w’s home interval has at least
half the size of I. Hence, u has a forward connection to a node uw; whose home
interval contains z; w.h.p. From u;, we forward the message along a forward
edge to a node uy with largest key whose home interval contains zo. Again, u
can identify such a node since 2o = 21/2 or 22 = (1 + 21)/2 and 2; belongs to
the home interval of u;, which implies that z belongs to one of the de Bruijn
intervals of u;. We continue that way until a node uy is reached whose home
interval contains zk, as desired. Observe that according to Lemma [I uy con-
tains v in its home interval as the first £ bits of u; and v match and ¢, o0 < k,
w.h.p., so the forward operation can terminate at ug. We summarize the central
properties of the forward phase in three lemmas. The first lemma bounds the
dilation.

Lemma 4. For any starting node u and any destination v, forward(v) has a
dilation of logn,, w.h.p.

The next lemma is crucial for the routing to be scalable.

Lemma 5. In the forward phase, a packet issued by a node u of order n, will
terminate at a node of order at least n, /2 w.h.p.

As a consequence, we can bound the congestion.

Lemma 6. For a random routing problem, the congestion at any node v is
O(logn,) on expectation and O(log® n,) w.h.p.

Refine(v). Recall that once the forward(v) operation terminates, the packet
has been sent to a node w that contains the location of v in its home interval.
In a second refining phase refine(v), the packet is forwarded to the level of v in
order to deliver it to v. First, suppose that the packet reaches a node w with
key(w) > key(v). According to Condition 2T}, w has forward connections to all
nodes x in its home interval with key(z) < key(w). Hence, w has a forward edge
to v and can therefore directly send the packet to v.

So suppose that the packet reached a node w with key(w) < key(v). In this
case, w may not be directly connected to v since there will only be a forward
edge from v to w (and therefore a backward edge from w to v) if w is in v’s home
interval, which might be much smaller than w’s home interval. Therefore, the
packet has to be sent downwards level by level until node v is reached. Suppose
that w is at level £ in its home interval. We distinguish between two cases.

Case 1: ny < (3/2)ny. Then v and w can be at most one level apart w.h.p.:
Since the interval size of w can be at most 2(1+ J)clogny, /n,, for some constant
d > 0 (that can be made arbitrarily small depending on ¢) w.h.p., two levels
downwards there can be at most (14 6)?clogn,,/2 nodes left in a home interval
of that level that w has forward edges to, w.h.p. Moreover, there can be at most
an additional (1+68)(n/2)(1+6)clogng,/(2ny,) = (1+6)%clogn,, /4 nodes that
v has forward edges to, which implies that the level of v must be larger than
¢+ 2 w.h.p. Thus, w is either in v’s home interval or its buddy, which implies
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that v has a forward edge to w (resp. w has a backward edge to v), so w can
deliver the packet directly to v.

Case 2: ny > (3/2)ny,. Then there must be at least one node x with key(w) <
key(z) < key(v) that is in the £+ 1-interval containing v (which might be w itself)
w.h.p. Take the node with largest such key. This node must satisfy n, < (3/2)n,,
w.h.p., which implies that it is at level £ or /+ 1 by Case 1, so w has a backward
edge to that node and therefore can send the packet to it. The forwarding of the
packet from x is continued in the same way as for w so that it reaches node v in
at most logn, hops.

For the refine operation, the following lemma holds.

Lemma 7. For any starting node w and any node v, the refine(v) operation has
a dilation of O(logn,). Furthermore, the congestion at any node u is at most
O(clogny,) w.h.p.

2.3 Join and Leave

Open distributed systems need to incorporate mechanisms for nodes to join and
leave. Through these membership changes, the size of the network can vary
significantly over time. A highlight of SHELL is its flexibility which facilitates
very fast joins and leaves.

Join. We first describe the join operation. Recall that each node v is assigned
to a (pseudo-)random point in [0, 1) when it joins the system. For the bootstrap
problem, we assume that node v knows an arbitrary existing node u in the
system which can be contacted initially. Then the following operations have to
be performed for x € {v,v/2, (1 +v)/2}:

1. forward(x): Route v’s join request along forward edges to a node w with
key(w) < key(u) whose home interval contains x.

2. refine(xz): Route v’s join request along forward or backward edges to a node
w’ with mazimum key < key(v) that contains x in its home interval.

3. integrate(x): Copy the forward edges that w’ has in its home interval and
buddy to v (and check Condition [21] for the involved nodes).

Here, we use a slight extension of the refine operation proposed for routing.
If key(v) > key(w), there is no change compared to the old refine operation.
However, if key(v) < key(w), then we have to send v’s join request upwards
along the levels till it reaches a node w’ with maximum key < key(v) that
contains v in its home interval. This is necessary because w may not have a
forward edge to w'.

Observe that a membership change can trigger other nodes to upgrade or
downgrade. To capture these effects formally, we define the update cost as follows.

Definition 3 (Update Cost). The total number of links which need to be
changed after a given operation (e.g., a single membership change) is referred to
as the update cost induced by the operation.

Theorem 24. A join operation terminates in time O(logn) w.h.p. The update
cost of a join operation is bounded by O(clog2 n) w.h.p.
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Leave. If a node v leaves in SHELL, it suffices for its neighbors to drop v from
their neighbor list, which can be done in constant time. Some of the nodes may
then have to upgrade to a higher level, which also takes constant time w.h.p. as
it suffices for a node to learn about its 3-hop neighborhood w.h.p. (due to the
use of buddy intervals). Thus, we have the following result.

Theorem 25. The leave operation takes a constant number of communication
rounds w.h.p. Moreover, the update cost induced at other nodes (cf Definition[3)
is bounded by O(clog®n) w.h.p.

2.4 Rekey

There are applications where node keys are not static and change over time.
For instance, in the heterogeneous peer-to-peer system described in Section [3]
the available bandwidth at a node can decrease or increase dynamically. Our
distributed heap takes this into account and allows for frequent rekey operations.
Observe that we can regard a rekey operation as a leave operation which is
immediately followed by a join operation at the same location in the ID space
but maybe on a different partition level. While a node can downgrade in constant
time, decrease key operations require collecting additional contact information,
which takes logarithmic time. From our analysis of join and leave operations,
the following corollary results.

Corollary 26. In SHELL, a node can perform a rekey operation in time
O(logn), where n is the total number of nodes currently in the system. The
update cost induced at other nodes (cf Definition[3) is at most O(clog®n).

2.5 Estimation of the Order

So far, we have assumed that nodes know their order in order to determine their
level. Of course, an exact computation takes time and may even be impossible
in dynamic environments. In the following, we will show that sufficiently good
approximations of the correct partition level i can be obtained by sampling.

In order to find the best home interval, adjacent intervals, and de Bruijn
interval sizes, a node v counts the number B(j) of nodes in a given j-level
interval it observes. Ideally, the smallest j with the property that the home
interval contains at least clogn, nodes of lower keys defines the forward edges.
We now prove that if decisions are made with respect to these B(j), errors are
small in the sense that the estimated level is not far from the ideal level .

Concretely, at join time, nodes do binary search to determine the level 4
according to the following rule: if j > B(j)/c—1log B(j) then level j is increased,
and otherwise, if j < B(j)/c —log B(j), j is decreased, until (in the ideal case)
a level ¢ with ¢ = B(i)/c — log B(i) is found (or the level i closest to that).

The following lemma shows that this process converges and that the search
algorithm efficiently determines a level which is at most one level off the ideal
level with high probability.

Theorem 27. Let i be the level chosen by the sampling method and let i be the
ideal level. It holds that |i —i| < 1 w.h.p.
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3 Applications

A distributed and oblivious heap structure turns out to be very useful in various
application domains. In the following, we sketch two applications. For more
information, we refer the reader to the technical report [I5]. We first describe
a fault-tolerant information system called i-SHELL which is resilient to Sybil
attacks of arbitrary scale. Second, we show how our heap can be used to build
a heterogeneous peer-to-peer network called h-SHELL.

3.1 i-SHELL

In order to obtain a robust distributed information system, we order the nodes
with respect to their join times (i-order). Concretely, key(v) is equal to the
time step when v joined the system. For the bootstrap problem, we assume
the existence of a network entry point assigning time-stamps to the nodes in a
verifiable way. Recall that for this choice of the keys the forward connections of
a node only depend on older nodes. Moreover, whenever two nodes v and v want
to exchange messages, our routing protocol makes sure that these messages are
only forwarded along nodes w that are at least as old as u or v. This has the
following nice properties:

Churn. Suppose that there are some nodes frequently joining and leaving the
system. Then the more reliable nodes can decide to reject re-establishing forward
edges to such a node each time the node is back up, forcing it to obtain a new
join time stamp from the entry point so that it can connect back to the system.
In this way, the unreliable nodes are forced to the bottom of the SHELL system
so that communication between reliable nodes (higher up in SHELL) will not be
affected by them.

Sybil Attacks.Suppose that at some time ty the adversary enters the system
with a huge number of Sybil nodes. Then any two nodes u and v that joined
the SHELL system before ¢y can still communicate without being affected by
the Sybils. The Sybils may try to create a huge number of backward edges to
the honest nodes, but an honest node can easily counter that by only keep-
ing backward edges to the T oldest nodes, for some sufficiently large thresh-
old T. Moreover, Sybils could try to overwhelm the honest nodes with traffic.
But also here the honest nodes can easily counter that by preferentially filter-
ing out packets from the youngest nodes in case of congestion, so that packets
from nodes that joined the system before ¢y can still be served in a timely
manner.

Putting it together. We can combine SHELL with consistent hashing in order
to convert it into a DHT that is robust to the Sybil attacks described above.
One can show the following result:

Theorem 31. For the nodes injected before ty, insert, delete and find operations
have a runtime of O(logn), where n is the number of nodes currently in the
system, and their congestion is bounded by O(log2 n), irrespective of a Sybil
attack taking place after tq.
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3.2 h-SHELL

As a second example, we sketch how to use our heap structure to build a peer-
to-peer overlay called h-SHELL. h-SHELL takes into account that nodes can
have heterogeneous bandwidths. The system can be used, e.g., for streaming.
In h-SHELL, key(v) is defined as the inverse of the bandwidth of v, i.e., the
higher its bandwidth, the lower its key and therefore the higher its place in h-
SHELL. Nodes may propose a certain bandwidth, or (in order to avoid churn) its
neighbors in h-SHELL are measuring its bandwidth over a certain time period
and propose an average bandwidth value for a node v that may be used for
its key. When the bandwidth at a node changes, a fast rekey operation will
reestablish the heap condition.

From the description of the SHELL topology it follows that whenever two
nodes u and v communicate with each other, only nodes w with a bandwidth
that is at least the bandwidth of u or v are used for that. Thus, in the absence of
other traffic, the rate at which v and v can exchange information is essentially
limited by the one with the smaller bandwidth. But even for arbitrary traffic
patterns h-SHELL has a good performance. Using Valiant’s random intermedi-

ate destination trick, the following property can be shown using the analytical
techniques in PAGODA [3].

Theorem 32. For any communication pattern, the congestion in h-SHELL in
order to serve it is at most by a factor of O(log2 n) higher w.h.p. compared to a
best possible network of bounded degree for that communication pattern.

4 Conclusion

The runtime bounds obtained for SHELL are optimal in the sense that scal-
able distributed heaps cannot be maintained at asymptotic lower cost. In future
research, it would be interesting to study the average case performance and
robustness of SHELL “in the wild”.
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