
Peer-to-Peer Computing
Backstage

Stefan Schmid

DYNAMO 2008
2nd Training School on Algorithmic Aspects of Dynamic Networks

Reykjavik, Iceland; July 4-6, 2008

Stefan Schmid @ DYNAMO, 2008 2

In This Lecture...

What are the dead sea scrolls of peer-to-peer?

Why did Gnutella crash after the inrush of former Napster users?

How does BitTorrent foster cooperation among peers?

How can I use BitTorrent without going to jail?

How to remove Simpsons from Kad?

How does a BitTorrent download differ from a HTTP download?
What is an end-game?

What has my Playstation 3 to do with this summer school?

What does Skype do when I am not on the phone?

Peer-to-peer botnets?

Stefan Schmid @ DYNAMO, 2008 3

Before We Go Backstage...

• This talk = „all“ I know about today‘s peer-to-peer systems...

• ... and a bit more! ☺

• Systems evolve over time, and hardly any client applies the same algorithms

• Thus:
– focus on what I find interesting
– some simplifications to focus on main concepts
– selection of topics is biased

• Most importantly: when you know better, let us know.

Stefan Schmid @ DYNAMO, 2008 4

The Paradigm

• Key idea: Participating machines are both consumers and contributors

• Popularity: Peer-to-peer accounts for a
large fraction of Internet traffic
(source: CacheLogic.com)

• Promises of the paradigm
- Efficiency and scalability
- Robustness, no single point of failure
- Cheap: no expensive infrastructure at
content distributor

- „Democratic“ aspect: anyone can publish
its contents / speeches / etc.

Peers

Servers

Stefan Schmid @ DYNAMO, 2008 5

From Theory to Practice… (1)

DISTRIBUTED COMPUTING

• Much scientific literature on peer-to-peer computing
- Topics: scalability, dynamics / churn, heterogeneity, incentives, etc.

• Sample peer-to-peer systems (mostly DHTs in literature): who has heard of
- Chord? Pastry? Tapestry? Kademlia?
- Viceroy? Koorde?
- SplitStream?
- Pagoda?
- etc.

Stefan Schmid @ DYNAMO, 2008 6

From Theory to Practice… (2)

• If you read your average P2P paper, there are (almost) always four
papers cited that “invented” efficient P2P in 2001:

• These papers are somewhat similar, with the exception of CAN

• So what’s the „Dead Sea Scrolls of P2P”?

Chord CAN Pastry Tapestry

• The four evangelists...

slide © Roger Wattenhofer

Stefan Schmid @ DYNAMO, 2008 7

From Theory to Practice… (3)

„Accessing Nearby Copies of Replicated Objects in a Distributed
Environment“, by Greg Plaxton, Rajmohan Rajaraman, and Andrea
Richa, at SPAA 1997.

• Basically, the paper proposes an efficient search routine (similar to
the evangelist papers). In particular search, insert, delete, storage
costs are all logarithmic, the base of the logarithm is a parameter.

• However, it‘s a theory paper, so that alone would be too simple...

• So the paper takes into account latency; in particular it is assumed
that nodes are living in a metric, and that the graph is of „bounded
growth“ (meaning that peer densities do not change abruptly).

slide © Roger Wattenhofer

Stefan Schmid @ DYNAMO, 2008 8

From Theory to Practice… (4)

“Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web.” David
Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin
and Rina Panigrahy, at STOC 1997.

• Big difference: still a client/server paradigm.

slide © Roger Wattenhofer

Stefan Schmid @ DYNAMO, 2008 9

From Theory to Practice… (5)

• Popular networks in practice: who has heard of
- Skype?
- Napster? Kazaa? eMule?
- BitTorrent?
- Kad network?
- Zattoo?

• Applications
- Internet telephony
- File sharing
- TV streaming
- Distribution of sw updates
- etc.

Stefan Schmid @ DYNAMO, 2008 10

The Genealogy of Peer-to-Peer

Chord CAN Pastry Tapestry 2001

Napster

1997

2002KademliaP-GridViceroy

SkipGraph SkipNet 2003

PRR

Koorde

1998

1999

2000 Gnutella

Kazaa

Gnutella-2

eDonkey

BitTorrent

Skype Steam

WWW, POTS, etc.

PS3

slide © Roger Wattenhofer

Stefan Schmid @ DYNAMO, 2008 11

What happens behind the scenes of my
peer-to-peer client?

Stefan Schmid @ DYNAMO, 2008 12

It depends on the system.

Some (simplified) examples!

vs vs vs ...

Stefan Schmid @ DYNAMO, 2008 13

Napster:
One of the first and best-known

„peer-to-peer“ systems

Stefan Schmid @ DYNAMO, 2008 14

Napster (1)

DISTRIBUTED COMPUTING

• One of the first „peer-to-peer“ file sharing systems (mainly MP3s)
– Release year: 1999 (in the same year also first RIAA law-suit)
– Shut down in year 2001 (today: pay service)

• Napster is not a pure peer-to-peer system
- Relies on servers which store directory (but not files)
- Resource discovery problem trivial: ask index server
- Download then happens „peer-to-peer“ (not via server)

Stefan Schmid @ DYNAMO, 2008 15

Napster (2)

Stefan Schmid @ DYNAMO, 2008 16

Napster (2)

<Beach Boys: Pet Sounds @ 170.13.01.02>

Stefan Schmid @ DYNAMO, 2008 17

Napster (2)

<Beach Boys: Pet Sounds @ 170.13.01.02>

Stefan Schmid @ DYNAMO, 2008 18

Napster (2)

<Beach Boys: Pet Sounds @ 170.13.01.02>

<Aphex Twin: Ptolemy @ 212.17.11.69>

Stefan Schmid @ DYNAMO, 2008 19

Napster (2)

<Beach Boys: Pet Sounds @ 170.13.01.02>

<Aphex Twin: Ptolemy @ 212.17.11.69>

Stefan Schmid @ DYNAMO, 2008 20

Napster (2)

<Beach Boys: Pet Sounds @ 170.13.01.02>

<Aphex Twin: Ptolemy @ 212.17.11.69>

„Aphex Twin: Ptolemy“?

Stefan Schmid @ DYNAMO, 2008 21

Napster (2)

<Beach Boys: Pet Sounds @ 170.13.01.02>

<Aphex Twin: Ptolemy @ 212.17.11.69>

@ 212.17.11.69!

Stefan Schmid @ DYNAMO, 2008 22

Napster (2)

<Beach Boys: Pet Sounds @ 170.13.01.02>

<Aphex Twin: Ptolemy @ 212.17.11.69>

p2p file
transfer

Stefan Schmid @ DYNAMO, 2008 23

Napster (3)

• Evaluation
– Does the job: facilitates file sharing!
– Highly popular
– Not really peer-to-peer
– Server = Single point of failure (legal action!)
– Does not scale

Stefan Schmid @ DYNAMO, 2008 24

Gnutella:
An early, completely decentralized approach

Stefan Schmid @ DYNAMO, 2008 25

Gnutella (1)

• Completely decentralized architecture
– Beta release in March 2000
– No index server!
– Cannot be „shut down“

• Also very popular
- Estimated 2+ million users

• Clients
- LimeWire, BearShare, Acqlite, Mutella, ...

• Many Gnutella versions
– Many different clients
– Protocol evolves over time

We will only present the
main concepts of Gnutella!

Stefan Schmid @ DYNAMO, 2008 26

Gnutella (2)

Stefan Schmid @ DYNAMO, 2008 27

Gnutella (2)

Stefan Schmid @ DYNAMO, 2008 28

Gnutella (2)

Stefan Schmid @ DYNAMO, 2008 29

Gnutella (2)

• Answers come
back via multihop

• Then: direct download
• Download from one source

Stefan Schmid @ DYNAMO, 2008 30

Gnutella (3)

• Bootstrap
- e.g., pre-existing address list of peers, shipped with the software
- e.g., web caches
- e.g., IRC chat
- ...

• Topology
- join: depends on client, no specific requirements
- typically: starting with bootstrap peer, recursively explore

neighbors until degree (depends on client) is reached
- this can result in inefficient (reduandant transmissions during flooding)

or even disconnected topologies (unlike Napster)
- countermeasure high peer degree?
- some measurement studied found small-world / power law properties in modern graphs
- after join, there is no rule how and when to find alternative peers for crashed neighbors
- graph / out-degree distribution mainly a social phenomenon

Stefan Schmid @ DYNAMO, 2008 31

Gnutella (4)

• The ping/pong join protocol
- join operation similar to query operation
- joining peer sends a ping message to neighbor
- neighbor returns pong message, and forwards ping

to its neighbors
- iteratively: whenever a peer receives a ping,

it sends pong to originator (multi-hop on same path)
- up to some time-to-live
- originator randomly selects subset of these peers

as neighbors (neighborhood size: >= 5)

Stefan Schmid @ DYNAMO, 2008 32

Gnutella (5)

• Measurement study 2001 with 1771 peers
- „A Measurement Study of Peer-to-Peer File Sharing Systems“, 2002

(Saroiu, Gummadi, Gribble)
- Left: Gnutella topology Februar 16, 2001
- Middle: 30% peers removed at random (still large connected component)
- Right: 4% highest degree peers removed
- quite robust to random faults, but not worst-case faults (attacks)

Stefan Schmid @ DYNAMO, 2008 33

Gnutella (6)

• Evaluation
- Fully decentralized and „simple“
- Hardly any restrictions on topology...
- ... but hardly any guarantees (e.g., diameter or connectivity) either
- Still not very scalable: flooding yields many redundant transmissions
- In fact, when Napster was unplugged, Gnutella broke down due to the inrush

of former Napster users

• Files may not be found although they exist (unless entire network is flooded)
- Problematic for „rare files“
- But approach directly supports queries like range queries, Boolean queries, etc.

Stefan Schmid @ DYNAMO, 2008 34

Gnutella (7)

• Many extensions (e.g., Gnutella-2), e.g., hybrid two-tier architecture
– Ultrapeers: have higher bandwidth, do most of the routing
– Ultrapeers form the „core network“, are connected

to (many) other ultrapeers; store indices of their leaves
– Ideally, an ultrapeer has a high bandwidth, large session times,

and other peers can connect to it via TCP
- Ultrapeer degree: around 30 (LimeWire)
– Leaves: only connect to a small number of ultrapeers
– Renders system more efficient in heterogeneous

environment

• Search by dynamic flooding on core network
- increasing TTL, until around

100 results are found

• Peers decide themselves which
role they assume (no control)

Stefan Schmid @ DYNAMO, 2008 35

BitTorrent:
Cooperation in swarms

Stefan Schmid @ DYNAMO, 2008 36

BitTorrent

• Peer-to-peer computing relies on the contributions of the peers
– However, peers may be selfish!
– How to provide incentives for cooperation?

• Simple solution: tit-for-tat
- Barter system: peer p offers resources to peer p‘ while p‘ offers resources to p
- But: What if p‘ is not interested in the resources (e.g. files) of p? (cf real economy)
- BitTorrent heralded paradigm shift: it showed that cooperation can be achieved

on a single file

• Main ideas
- Peers interested in a certain file form a swarm
- Swarms can be found via trackers
- Instead of sharing the entire file, file is divided into smaller pieces
- Pieces of a file are exchanged in a tit-for-tat like manner (details later)
- Pipelining: peer downloads different parts of the file

from different sources concurrently

Stefan Schmid @ DYNAMO, 2008 37

BitTorrent Architecture

website with .torrent file

tracker address,
verification data,
file and piece size, ...visit website

Bootstrap: .torrent meta files are offered by various
websites and can be found, e.g., via web
search engines

Stefan Schmid @ DYNAMO, 2008 38

BitTorrent Architecture

website with .torrent file

download .torrent file

Stefan Schmid @ DYNAMO, 2008 39

BitTorrent Architecture

website with .torrent file

contact tracker

Tracker

Stefan Schmid @ DYNAMO, 2008 40

BitTorrent Architecture

website with .torrent file

retrieve information on swarm

Tracker

Stefan Schmid @ DYNAMO, 2008 41

BitTorrent Architecture

website with .torrent file

join swarm

Tracker

Cache / FIFO: connect to most recent set,
not structured / hypercubic etc.

Stefan Schmid @ DYNAMO, 2008 42

BitTorrent Architecture

• Tracker maintains information on peers in swarm
- „problematic“: tracker knows many IP addresses
- easy to check whether these peers are really downloading...

• Peers send periodical updates to the tracker about their status
- e.g., all 30 minutes
- peers also contact the server when they join and leave

• When joining, peers establish roughly 40 connections to other peers in swarm

• If number of responsive neighbors falls below 20 connections, tracker is
contacted again
- peer retrieves additional contacts

Stefan Schmid @ DYNAMO, 2008 43

BitTorrent Swarm

• Swarm consists of peers interested in same file (or collection of files)

• File is divided into several pieces (usually a couple of thousand pieces)

• Peers trade these pieces („swarming“)
- In a tit-for-tat like manner

„tit-for-tat“

Stefan Schmid @ DYNAMO, 2008 44

BitTorrent: Peer Types

• Peers in the swarm which have all pieces are called seeders

• Peers which only have a subset of all pieces are called leechers

Stefan Schmid @ DYNAMO, 2008 45

BitTorrent: Bootstrap Problem

• But what about newly joined peers?
– Do not have anything (any pieces) to offer...
– Will not be able to trade!
– That‘s known as the bootstrap problem

• That‘s (probably) the reason that BitTorrent does not employ a pure
tit-for-tat policy: concept of optimistic unchoking

Stefan Schmid @ DYNAMO, 2008 46

BitTorrent: Incentive Mechanism

• BitTorrent uses the following mechanism

• Seeders upload their pieces to leechers in a round robin fashion
- round robin = „one after another“

• Leechers perform a modified version of tit-for-tat, and solve the bootstrap
problem by using optimistic unchoking slots

• Concretely, leechers do the following:
- Peers upload concurrently to the „best neighbors“ (active set)
- Active set typically consists of 5 peers only
- We say that active set is „unchoked“
- Peer uploads (as much as possible) to peers in active set (not purely tit-for-tat)
- Download rate received from neighbors is evaluated every 10 secs
- In addition, a peer optimistically unchokes a random neighbor: in uploads pieces for free
to this neighbor for roughly 30 secs, independently of the download received; gives that
peer a chance to bootstrap or to become an active set peer!

Stefan Schmid @ DYNAMO, 2008 47

Swarm Overview

seeding
opt

unchoking

unchoking
(„tit-for-tat“)

Stefan Schmid @ DYNAMO, 2008 48

Concurrent Downloads

Stefan Schmid @ DYNAMO, 2008 49

Local Rarest First Policy

• A peer is informed about the new pieces available at its neighbors
- „have-message“

• Which piece should a peer download?

• Typical policy: LRF
- Local rarest first
- Try to download piece which is least replicated among neighbors
- Minimizes chance that rare piece gets lost when seeder leaves

• Thus, since pieces are retrieved in random order (non-contiguous download),
BitTorrent is not directly made for, e.g., on-demand streaming where pieces at
the beginning of the file should be downloaded earlier

• Exception: Pieces are selected at random until first piece is completely
downloaded, enables a fast start (rare pieces can typically only be obtained from
one, potentially slow, peer)

Stefan Schmid @ DYNAMO, 2008 50

BitTorrent Download Characteristics

• BitTorrent downloads differ from, e.g., HTTP downloads
- HTTP more or less constant speed from the beginning
- BitTorrent uses many TCP sockets

• Download performance slow in the beginning (takes time to
collect neighbors and sufficient data to become effective uploader)

• Full speed during „midgame“

• Endgame slower again: only a small number of pieces left to download, restricted
choice of neighbors offering this content
- BitTorrent uses special endgame mode where the same subpieces are
requested in parallel and redundantly from several neighbors in order to remain
efficient towards the end (if a subpiece is obtained from one peer, cancel is sent
to others)

Stefan Schmid @ DYNAMO, 2008 51

Data Verification and Subpieces

• In practice, pieces (size ~100 KB) are further divided into subpieces
- Pipelining: More pending requests, improves TCP throughput
- Schedule new request whenever subpiece arrives
- Parallelism (subpieces from different peers)
- Subpieces of a piece can be obtained from different peers
(some clients restrict to one peer after some time)

• The .torrent metafile contains checksum for each piece (but not subpiece)
- SHA1 hashing algorithm
- Most BitTorrent clients ban IP address if verification fails

Stefan Schmid @ DYNAMO, 2008 52

Evaluation of Fairness Mechanism (1)

• Cooperation is important in p2p computing
- incentives needed if people are selfish
- measurement studies: large fraction of peers are free-riders

• BitTorrent is one of the first systems to tackle this problem algorithmically

• Other approaches
- e.g., Kazaa client: monitors its contributions
- can be bypassed by implementing different client (Kazaa Lite) which hardwires
contribution level to maximum
- many other solutions (e.g., virtual money systems)
- some proposals are real economies almost, have to deal with inflation, deflation
etc. => complex!
- BitTorrent one of the practically most relevant strategies...

Stefan Schmid @ DYNAMO, 2008 53

Evaluation of Fairness Mechanism (2)

• BitTorrent works very well in practice and is a huge success

• Cheating is still possible though
- e.g., clients such as BitThief or BitTyrant
- poses interesting algorithmic problems (cf also game theory)

Stefan Schmid @ DYNAMO, 2008 54

Evaluation of Fairness Mechanism (3)

• How to cheat?

• Peers can re-contact tracker more frequently (=> more neighbors)

• More neighbors => benefit more frequently from optimistic
unchoking slots (free-ride!)

• Sharing communities: BitTorrent networks which require
user registration, monitor contribution of users; peers can
announce wrong upload rates to tracker and benefit from
more seeders

• Active set: peers can behave strategically and upload just
enough to become member of active set, not more

• etc.

Stefan Schmid @ DYNAMO, 2008 55

Example: BitThief Client (1)

• BitThief is a Java client (implemented from scratch) which achieves fast
downloads without uploading at all

Stefan Schmid @ DYNAMO, 2008 56

Example: BitThief Client (2)

BitThief‘s three tricks:
- Open as many TCP connections as possible (no performance
problem!)
- Contacting tracker again and again, asking for more peers (never
banned during our tests!)
- Pretend being a great uploader in sharing communities (tracker
believed all our tracker announcements)

=> Exploit optimistic unchoking
=> Exploit seeders
=> Exploit sharing communities

Stefan Schmid @ DYNAMO, 2008 57

Example: BitThief Client (3)

Stefan Schmid @ DYNAMO, 2008 58

Example: BitThief Client (4)

compared to
official client
(with unlimited
number of
allowed
connections)

number of peers
announced
by tracker

BitThief with public
IP and open
TCP port

max
peers found
by BitThief

1

2

3

4

• With seeders...
• All downloads finished
• Fast for small files (fast startup),

many peers and many seeders!

Stefan Schmid @ DYNAMO, 2008 59

Example: BitThief Client (5)

• Without seeders...
• Seeders detected with bitmask /

have-message
• Even without seeder it‘s fast
• Unfair test: Mainline client was

allowed to use seeders

Stefan Schmid @ DYNAMO, 2008 60

Example: BitThief Client (6)

• Sharing communities ban peers with low sharing ratios

• Uploading is encouraged; user registration required

• Client can report uploaded data itself (tracker announcements)
- as tracker does not verify, it‘s easy to cheat

4 x faster!
(BitThief had a faked
sharing ratio of 1.4; in both
networks, BitThief connected
to roughly 300 peers)

Stefan Schmid @ DYNAMO, 2008 61

Example: BitThief Client (7)

• In communities, contribution is more balanced

• Reason?
- Peers want to boost ratio? Users more tech-savvy? (less
firewalled peers? faster network connections?)

Stefan Schmid @ DYNAMO, 2008 62

Example: BitThief Client (8)

Some tricks did not work for BitThief:
- Announce many available pieces (0%-99% all the same, 100%
very bad, considered a seeder)
- Upload garbage (easier with mainline client than with Azureus;
Azureus remembers from which it has got most subpieces/blocks
and tries to get all from him; otherwise you are banned)
- Sybil attacks with same IP address (goal: more often in „round
robin unchoke slots“ of seeder)
- …

Stefan Schmid @ DYNAMO, 2008 63

Example: BitThief Client (9)

• Particularly fast if
- Many seeders
- Sharing communities
(many and fast seeders!)

- Small files: Aggressive startup
behavior of BitThief

- Few and slow seeders: Other
leechers are starving, plenty of
redundant „optimistic unchoking
slots“, BitThief relatively good

• Relatively slow if
- Few fast seeders
- Seeders are occupied, other leechers also busy with tit-for-tat

Stefan Schmid @ DYNAMO, 2008 64

Example: BitThief Client (10)

• Are people selfish?
- no advertisement of client
- poor GUI (will change now...)
- collects data...

Stefan Schmid @ DYNAMO, 2008 65

Example: BitTyrant

• BitTyrant (Piatek et al., NSDI‘07)
- Another strategic BitTorrent client
- Goal: more efficient downloads, uploading allowed

• Means: smart neighbor selection
- e.g., client seeks to be among top 5 neighbors (active set) at minimal cost
- BitTyrant has larger active set
- find peers with good reciprocation ratio ...
- ... i.e., peers which upload much but need little
- etc.

Stefan Schmid @ DYNAMO, 2008 66

Future Fairness Mechanisms?

• How to improve BitTorrents robustness to selfish attacks?

• Problem: Strict tit-for-tat impossible due to bootstrap problem

• Recent proposal: fast extension
- newly joined peers also obtain „venture capital“ for free
- i.e., pieces which can be downloaded from other peers without reciprocating
- however, peer p only obtains random subset of pieces
- this subset depends on p‘s IP address (from all peers the same)
- in absence of seeders, free-riding is no longer possible!

Stefan Schmid @ DYNAMO, 2008 67

Final Remarks

• BitTorrent is still a centralized peer-to-peer system
- introduces vulnerability
- e.g., websites hosting trackers can be shut down (e.g., suprnova.org etc.)

• In 2005, a distributed tracker protocol has been released
- e.g., for torrents which do not have a working BitTorrent tracker
- Azureus is Kademlia DHT (see later), not compatible with official DHT
- unfortunately, not much information available...
- e.g., find new peers even without tracker
- e.g., efficiently find rare missing pieces during end game?

Stefan Schmid @ DYNAMO, 2008 68

The eMule Client and Kad:
Towards distributed hash tables

Stefan Schmid @ DYNAMO, 2008 69

Towards Distributed Hash Tables

• Seen so far:
- Napster = server-based p2p architecture
- Gnutella = unstructured p2p architecture
- BitTorrent = swarms of peers interested in same file, tracker-based

• Recently, distributed hash tables and structured p2p systems also
emerge in practice

• A case study of eMule...

Stefan Schmid @ DYNAMO, 2008 70

eMule & eDonkey

• The eMule client allows to connect to two different networks
- the server-based eDonkey2000 (eD2K) network
- the decentralized Kad network
- open-source, and many mods exist...

• eDonkey2000 network
- popularity: several million users
- not very interesting from algorithmic point of view (server-based)...
- eMule is connected to a eD2K server
- at login time, client informs about available files
- client maintains a file with a list of servers (in order of acquaintance)
- most servers are based on lugdunum software (not open-source)
- client iterates from one server in the list to the next until roughly 300 results have been
collected
- concentration on „popular“ servers, problematic when taken down (e.g. Razorback 2.0)?

• Kad network based on DHT
- in more detail now...

Stefan Schmid @ DYNAMO, 2008 71

DHT Refresher (1)

• „Distributed hash table“
- Peers and data have overlay IDs (or keys)
- E.g., peer ID is hash of peer‘s IP address
- E.g., file ID is hash of file name or file content

• Typically, both IDs are chosen from same space
- e.g., 1-dimensional [0,1) space, data is stored on „closest peer“
(consistent hashing approach)

- Peers are connected to each other with respect to their IDs
(structured peer-to-peer topology)

Stefan Schmid @ DYNAMO, 2008 72

DHT Refresher (2)

• Data can be found efficiently (also rare data)
- Routing algorithms beyond „flooding“ and random walks

• Overlay topology gives guarantees
- simple rules ensure connectivity and low diameter
- networks often hypercubic
- e.g.: peers have unique numbers as identifiers
- rule „connect to a peer of lower ID“ already ensures connectivity

1

5 4

6 11

7

9 8

Stefan Schmid @ DYNAMO, 2008 73

DHT Refresher (3)

• Some common mechanisms and principles...

• Mechanism 1: Do not store entire files at the corresponding position,
but only the pointer
- Can be copied much more quickly
- Beneficial under dynamics
- Nobody has to store other people‘s files

• Directed search and routing:
- for a DHT lookup, you need to know the file hash / file key

Stefan Schmid @ DYNAMO, 2008 74

DHT Refresher (4)

• In order to find a file, a peer needs the file hash

• Mechanism 2: introduce another indirection

• First lookup step: enter keywords and find peers responsible for
these keywords => obtain file hash

• Second lookup step: contact peer responsible for the file hash =>
obtain addresses of peers storing a copy of the file

• Generally, DHTs are well-suited to find specific (and rare) data
efficiently
- However, more inexact and approximate lookups are challenging

Stefan Schmid @ DYNAMO, 2008 75

DHT Refresher (5)

• Mechanism 3: Direct downloads
- Although data is found in a multi-hop manner, download
then takes place directly between two peers

• In systems with emphasis on anonymity (e.g., Freenet), this may be
implemented differently: return path is also multi-hop (inefficient)
- Peer does not know whether its neighbor requested the file
or whether it is simply a forwarder

Stefan Schmid @ DYNAMO, 2008 76

Kad Network (1)

• The Kad network is the most popular DHT today
- in fact, while DHTs have been a successful concept in literature, the
predominant systems in practice are still server-based
- Kad network consists of around 4 million peers
- about half of these peers can be contacted directly (no firewall or NAT)
- it is based on the Kademlia paper by Maymounkov and Mazières

• Kademlia is also used in the Overnet p2p system
- properietary protocol, „shut down“ 2006

Much data from measurement studies of the Kad network as well
as implementation details can be found in the recent papers by

Steiner and Biersack.

Stefan Schmid @ DYNAMO, 2008 77

Kad Network (2)

• In zone of 8-bit, in one day, measurement studies observed 1.4
million publications of files by 1.5 million distinct users and with
42,000 different keywords

• Main conepts
- each peer has 128-bit ID (usually created by random generator)
- ID defines position in cyclic ID space
- stored at peer and reused when peer joins the network again
- „hypercubic“ routing via XOR metric
- for each i ∈

[0,127], a peer stores some contacts with distance between 2i

and 2i+1 to its own location
- yields logarithmic network diameter
- for each contact, peer stores: <Kad ID, IP address, port>
- replication policy (typically 10 replicas in zone of peers which share first 8
bits)
- 8-bit zone called „tolerance zone“, beneficial under churn
- periodically republished

Stefan Schmid @ DYNAMO, 2008 78

Kad Network (3)

• Iterative routing
- in contrast to recursive routing
- requester runs 3 parallel lookups which return new peers
- from them, requester selects 3 peers closer to destination
- and so on!
- termination: no closer peer found
- higher delay but improved robustness to churn

source

destination

Stefan Schmid @ DYNAMO, 2008 79

Kad Network (3)

• Iterative routing
- in contrast to recursive routing
- requester runs 3 parallel lookups which return new peers
- from them, requester selects 3 peers closer to destination
- and so on!
- termination: no closer peer found
- higher delay but improved robustness to churn

source

destination

Stefan Schmid @ DYNAMO, 2008 80

Kad Network (3)

• Iterative routing
- in contrast to recursive routing
- requester runs 3 parallel lookups which return new peers
- from them, requester selects 3 peers closer to destination
- and so on!
- termination: no closer peer found
- higher delay but improved robustness to churn

source

destination

Stefan Schmid @ DYNAMO, 2008 81

Kad Keyword Request

Request: <k1,k2‘,k3>

h(k1)

requester

closest peer

Lookup only with first keyword
in list. Key is hash function on
this keyword, will be routed to
peer with Kad ID closest to this
hash value.

Stefan Schmid @ DYNAMO, 2008 82

Kad Keyword Request

files:
h(f1): <k1, k3>

h(f2): <k1, k2, k3>
h(f3): <k1, k2‘, k3>

requester

closest peer

Peer responsible for this
keyword returns different sources
together with keywords.
(remark: only those files with entries that
Include remaining keywords of request are
returned, see later)

Stefan Schmid @ DYNAMO, 2008 83

Kad Source Request

h(f3)
requester

closest peer

Peer can use this hash to find
peer responsible for the file
(possibly many with same content
/ same hash)

Stefan Schmid @ DYNAMO, 2008 84

Kad Source Request

requester

closest peer

p1

p2
p3

sources:
p1,p2,p3

Peer provides requester with a list
of peers storing a copy of the file.

Stefan Schmid @ DYNAMO, 2008 85

Kad Download

requester

p1

p2
p3

Eventually, the requester can download
the data from these peers.

Stefan Schmid @ DYNAMO, 2008 86

Some Data

• In 2007, we received roughly 8 requests per minute in Kad for the
keyword „Simpsons“ (which also includes queries for „Simpsons
Movie“, „Simpsons Sountrack“, etc.)

Quite popular in
Europe (why this
difference between
eDonkey and Kad?)

Most Kad activity during
evening / night (same for
eDonkey)

Stefan Schmid @ DYNAMO, 2008 87

Some Challenges

• Peer-to-peer principles also play a role in certain discussions about
the design of a future Internet
- e.g., to disburden hotspots

• Therefore, interesting to study today‘s state-of-the-art systems

• Some challenges that Kad currently faces...
- case study: ID assignment

Stefan Schmid @ DYNAMO, 2008 88

Kad ID Assignment (1)

• Recall: each peer in Kad chooses a random ID
- e.g., created with a local random generator

• Kad does not include any mechanisms to verify whether this ID has
been produced „properly“

• Problem: choosing IDs can be used for attacks or for spying
- indeed, many irregularities observed in

today‘s Kad network
- e.g., peers in China often change ID,
non-uniform ID space, etc.

- exploit can be used,
e.g., for censorship

Stefan Schmid @ DYNAMO, 2008 89

Kad ID Assignment (2)

• E.g., censoring contents in Kad

Request: <Simpson,Movie,>

h(Simpson)

requester

closest peer

Stefan Schmid @ DYNAMO, 2008 90

Kad ID Assignment (2)

• E.g., censoring contents in Kad

Request: <Simpson,Movie,>

h(Simpson)

requester

closest peer

If peer is inserted here, it can block
(or spy on) keyword requests for
„Simpsons“, „Simpsons Movie“, etc.

Stefan Schmid @ DYNAMO, 2008 91

Kad ID Assignment (2)

• E.g., censoring contents in Kad

Request: <Simpson,Movie,>

h(Simpson)

requester

closest peer

Sybil attack works even better...
(Steiner and Biersack introduced up
to 216 Sybils!)

Stefan Schmid @ DYNAMO, 2008 92

Kad ID Assignment (3)

• Some data

Stefan Schmid @ DYNAMO, 2008 93

Additional Censorship: Publish Attack (1)

• Besides this „peer insertion attack“, additional censorship attacks
exist

• For instance, a „publish attack“
- We can also attack the originally publishing peers...
- ... by creating fake entries
- For each entry: unique hash
(but from same IP ok)

Request: <Simpson,Movie,>

h(Simpson)

requester

closest peer

<keywords, filename>
<keywords, filename>

...

Stefan Schmid @ DYNAMO, 2008 94

Publish Attack (2)

• Publishing peers return at most 300 result tuples per request

• Give priority to latest additions to index table

• Every entry expires after a couple of hours

• More difficult: attacked entry must include superset of keywords
from the request
- not known in advance: include interpreter name, label, etc.

Stefan Schmid @ DYNAMO, 2008 95

Publish Attack (3)

• Less successful: some peers
are immune

• Problem: Publishing peers accept
many tuples from same
peer / IP address!

Stefan Schmid @ DYNAMO, 2008 96

Other Attacks

• DDoS attack: publish attack can also be used to overwhelm peers
outside the network with reuqests

• It‘s possible to fill neighbor tables of peers
- „eclipses“ this peer (eclipse attack)

Stefan Schmid @ DYNAMO, 2008 97

Countermeasures? (1)

• It seems that these attacks can easily be prevented
- important insight: do not accept too much information from same peer!
- do not allow peers to choose their ID!

• A solution? Choose overlay ID depending on IP address
- e.g., a hash function on the IP address can be verified! (e.g., Azureus)
- but what if IP address changes over time (dynamic IP addresses / DHCP)?
- e.g., peers should not lose their credits when their IP changes
- many peers have same IP address if behind a NAT!
- other idea: compute a hash of user-generated data (e.g., a password) rather than of the
IP address; thus, many different strings need to be tried to produce a specific ID
- however, as there are much less than 2128 peers in a network, an approximate ID will
do the job for a peer insertion attack, and this can be computed efficiently
- finally, an attacker may indeed have access to many IP addresses etc.

Stefan Schmid @ DYNAMO, 2008 98

Countermeasures? (2)

• What about Sybil attacks?
- Same peer joins many times (with same or different IP address)
- Difficult in decentralized environment?
- Centralized solutions? Send SMS to obtain unique ID (hash
from mobile phone number)? Solve CAPTCHA?

- etc.

Many of these problems are not trivial
in purely decentralized environments,

and further research is needed!

Stefan Schmid @ DYNAMO, 2008 99

A Glimpse at Two Other „Popular“ Applications:
Peer-to-Peer Telephony with Skype

and Botnets

Stefan Schmid @ DYNAMO, 2008 100

Skype (1)

• Some facts...
- VoIP network with more than 200 million users
- efforts to offer Skype on mobile phones, PSP, etc.
- proprietary protocol, reverse-engineering difficult (many papers report on it... => ask

me for details)
- not interoperable with other VoIP networks
- bought by eBay (for approx. 3.3 billion USD, October 2005)
- according to Wikipedia: first quarter 2008 total of 14.2 billion minutes skype-to-
skype, 1.7 billion minutes skype-out, net revenue 126 million USD

• Predecessor file sharing system: KaZaa (FastTrack protocol)
- two types of peers: ordinary peers and super peers (algorithms unpublished)
- communication via port 80 (problematic? spyware?)
- super peer: public IP, sufficient CPU / bandwidth / memory / ...
- UUHash algorithm used to allow downloading from multiple sources (checksum
efficiently over parts of file)
- but uploading only possible when entire file has been downloaded
- UUHash algorithm problematic: RIAA used it to distribute fake files
- no real incentive mechanism (KaZaa lite through reverse-engineering of ordinary

peer – super peer communication...)

Stefan Schmid @ DYNAMO, 2008 101

Skype (2)

• Map of Skype supernodes (Xie&Yang, IPTPS 2007)

Stefan Schmid @ DYNAMO, 2008 102

Skype (3)

• Security
- peer-to-peer calles AES-256 encrypted
- key exchange by 1536 or 2048 Bit RSA

• Traffic
- phone call: approx. 30 MB per hour
- however, background traffic up to 1 GB per month (without any call)
- traffic pattern can be problematic for ISPs (e.g., violating no-valley routing policy
where customer relays traffic for its provider), claimed to increase costs

Stefan Schmid @ DYNAMO, 2008 103

Botnets (1)

• Botnets are one of the most significant threats in the Internet today
- bot = program that performs tasks without user interaction
- botnet = network of malicious bots that illegally control computing resources
- some attackers are able to gain control of large portions of the Internet

• Used to disperse spam, conduct DoS attacks, etc.

• Keynote by Tom Leighton (Akamai) at PODC 2007:
- 100s of servers under DDoS attack all the time
- anti-virus company under constant attack since 2 years
- some banks today pay extortion money
- 4 large zombie armies today, one tried to steal other three

Stefan Schmid @ DYNAMO, 2008 104

Botnets (2)

• Traditionally, botnets were coordinated centrally, e.g., via IRC chat
- once identified, central IRC server can be taken down

• Now, first peer-to-peer architectures are emerging
- e.g., Peacomm, aka Nuwar aka Zhelatin (= storm worm)

• E.g., paper by Grizzard et al. HotBots 2007

Stefan Schmid @ DYNAMO, 2008 105

The Peacomm Bot (1)

• Trojan.Peacomm botnet uses Overnet peer-to-peer protocol
– i.e., Kademlia DHT
– DHT provides communication primitive
– allows peers to download secondary injections and to upgrade

• Protocol
1. spread, e.g., via email
2. connection to Overnet: initial list of peers hard-coded (bootstrap)
3. download secondary injection (hard-coded keys to search and download an

encrypted URL)
4. hard-coded keys to decrypt URL
5. download secondary injection from this URL
6. execute

Stefan Schmid @ DYNAMO, 2008 106

The Peacomm Bot (2)

• Peer-to-peer protocol mainly used as a name resolution server for
upgrading the bot
- Peer-to-peer DNS with encrypted data
- Data / URLs can change over time, nodes on which information is stored
cannot be taken down (DHT...)
- But keys indicate where data is (at least in ID space)
- And bootstrap is also a weakness

• Secondary injections
- e.g., to download additional components
- e.g., SMTP emailing / spamming component
- e.g., email propagation component
- e.g., DDoS tool
- etc.

Stefan Schmid @ DYNAMO, 2008 107

Conclusion

Stefan Schmid @ DYNAMO, 2008 108

Peer-to-Peer Backstage...

• Existing p2p systems are heterogeneous and dynamic
- different goals (e.g., file sharing vs live streaming, anonymity, etc.)

• Some fundamental concepts
- trend to structured p2p systems

• Interesting research challenges
- incentive-compatibility
- robustness to attacks
- churn tolerance
- in some sense, much research in distributed computing can be
considered „peer-to-peer research“

Stefan Schmid @ DYNAMO, 2008 109

Tack!

Stefan Schmid @ DYNAMO, 2008 110

Pracitcal Issue: NATs and Firewalls

• NAT = network address translation
- connection cannot be initiated from outside (no routing table entry)

• Firewalls can also be problematic for peer-to-peer systems
- E.g., what if a peer in the eDonkey network is behind a firewall?
- After client connected to server, server tried to contact client directly
- If not possible, server assigns a so-called lowID to the client
- If a peer p wants to download from a firewalled peer p‘ (having a lowID), the contact
must be mediated via the server
- Entails an additional overhead at server
- Thus, highID clients can still download from lowID clients, however, lowID-lowID
download remains impossible

• Similar techniques also work with Kad
- An arbitrary „buddy peers“ assumes role of server

• Challenging topic, many more sophisticated solutions
- e.g., clients such as NeoMule make lowID-lowID downloads possible
- see also the Skype protocol...

	Peer-to-Peer Computing �Backstage�
	In This Lecture...
	Before We Go Backstage...
	The Paradigm
	From Theory to Practice… (1)
	From Theory to Practice… (2)
	From Theory to Practice… (3)
	From Theory to Practice… (4)
	From Theory to Practice… (5)
	The Genealogy of Peer-to-Peer
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Napster (1)
	Napster (2)
	Napster (2)
	Napster (2)
	Napster (2)
	Napster (2)
	Napster (2)
	Napster (2)
	Napster (2)
	Napster (3)
	Slide Number 24
	Gnutella (1)
	Gnutella (2)
	Gnutella (2)
	Gnutella (2)
	Gnutella (2)
	Gnutella (3)
	Gnutella (4)
	Gnutella (5)
	Gnutella (6)
	Gnutella (7)
	Slide Number 35
	BitTorrent
	BitTorrent Architecture
	BitTorrent Architecture
	BitTorrent Architecture
	BitTorrent Architecture
	BitTorrent Architecture
	BitTorrent Architecture
	BitTorrent Swarm
	BitTorrent: Peer Types
	BitTorrent: Bootstrap Problem
	BitTorrent: Incentive Mechanism
	Swarm Overview
	Concurrent Downloads
	Local Rarest First Policy
	BitTorrent Download Characteristics
	Data Verification and Subpieces
	Evaluation of Fairness Mechanism (1)
	Evaluation of Fairness Mechanism (2)
	Evaluation of Fairness Mechanism (3)
	Example: BitThief Client (1)
	Example: BitThief Client (2)
	Example: BitThief Client (3)
	Example: BitThief Client (4)
	Example: BitThief Client (5)
	Example: BitThief Client (6)
	Example: BitThief Client (7)
	Example: BitThief Client (8)
	Example: BitThief Client (9)
	Example: BitThief Client (10)
	Example: BitTyrant
	Future Fairness Mechanisms?
	Final Remarks
	Slide Number 68
	Towards Distributed Hash Tables
	eMule & eDonkey
	DHT Refresher (1)
	DHT Refresher (2)
	DHT Refresher (3)
	DHT Refresher (4)
	DHT Refresher (5)
	Kad Network (1)
	Kad Network (2)
	Kad Network (3)
	Kad Network (3)
	Kad Network (3)
	Kad Keyword Request
	Kad Keyword Request
	Kad Source Request
	Kad Source Request
	Kad Download
	Some Data
	Some Challenges
	Kad ID Assignment (1)
	Kad ID Assignment (2)
	Kad ID Assignment (2)
	Kad ID Assignment (2)
	Kad ID Assignment (3)
	Additional Censorship: Publish Attack (1)
	Publish Attack (2)
	Publish Attack (3)
	Other Attacks
	Countermeasures? (1)
	Countermeasures? (2)
	Slide Number 99
	Skype (1)
	Skype (2)
	Skype (3)
	Botnets (1)
	Botnets (2)
	The Peacomm Bot (1)
	The Peacomm Bot (2)
	Slide Number 107
	Peer-to-Peer Backstage...
	Slide Number 109
	Pracitcal Issue: NATs and Firewalls

