Dynamics and Cooperation

Algorithmic Challenges in Peer-to-Peer Computing

PhD Defense

Stefan Schmid

Distributed Computing Group ETH Zurich

Peer-to-Peer Technology

- Well-known p2p systems
 - Internet telephony: Skype
 - File sharing: BitTorrent, eMule, ...
 - Streaming: Zattoo, Joost, ...

- Other (well-known?) systems
 - Pulsar streaming system (e.g., *tilllate* clips?)
 - Wuala online storage system
- Impact: Accounts for much Internet traffic! (source: cachelogic.com)

Stefan Schmid @ ETH Zurich, 2008

- Key concepts
 - Machines (peers) in the network: consumer and producer of resources ("all machines have equal role")
 - Use of decentralized resources on the edge of the Internet (e.g., desktops)
- Benefits
 - Scalability: More resources in larger networks ("cake grows")
 - Robustness: No single point of failure
 - Can outperform server-based solutions
 - Cheap: start-up vs Google

Servers

- Therefore:
 - No need for expensive infrastructure at content distributors
 - Democratic aspect: Anyone can publish media contents / speeches

Implications and Challenges

- Implies that participating machines are often
 - under the control of (anonymous) individuals
 - dynamic (join only to download a file)
 - heterogeneous ("more equal", Internet connection, CPU power)
 - unreliable (desktop computers)
 - geographically distributed (latencies)
 - may be non-cooperative (no voluntary resource contributions)
- Some challenges
 - Discovery of dynamic resources which do not have fixed addresses?
 - Include weak and strong participants
 - Ensuring user anonymity
 - etc.

PhD Thesis (1)

 \cap

• Focus on two challenges: dynamics and cooperation

↔	Distributed Asymmetric Verification in Computational Grids Michael Kuhn, Stefan Schmid, and Roger Wattenhofer. 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS), Miami, Florida, USA, April 2008. Documents: paper pdf meta bibtex
	Structuring Unstructured Peer-to-Peer Networks Stefan Schmid and Roger Wattenhofer. 14th Annual IEEE International Conference on High Performance Computing (HIPC), Goa, India, Springer LNCS 4873, December 2007. Documents: paper pdf slides ppt meta bibtex
↔	Manipulation in Games Raphael Eidenbenz, Yvonne Anne Oswald, Stefan Schmid, and Roger Wattenhofer. 18th International Symposium on Algorithms and Computation (ISAAC), Sendai, Japan, Springer LNCS 4835, December 2007. Documents: paper pdf slides ppt techreport pdf meta bibtex
↔	Push-to-Pull Peer-to-Peer Live Streaming Thomas Locher, Remo Meier, Stefan Schmid, and Roger Wattenhofer. 21st International Symposium on Distributed Computing (DISC), Lemesos, Cyprus, Springer LNCS 4731, September 2007. Documents: paper pdf meta bibtex
↔	Rescuing Tit-for-Tat with Source Coding Thomas Locher, Stefan Schmid, and Roger Wattenhofer. 7th IEEE International Conference on Peer-to-Peer Computing (P2P), Galway, Ireland, September 2007. Documents: paper pdf ps slides pdf meta bibtex
↔	Mechanism Design by Creditability Raphael Eidenbenz, Yvonne Anne Oswald, Stefan Schmid, and Roger Wattenhofer. 1st International Conference on Combinatorial Optimization and Applications (COCOA), XI'an, Shaanxi, China, Springer LNCS 4616, August 2007. Documents: paper pdf slides pdf techreport pdf meta bibtex
↔	Dynamic Internet Congestion with Bursts Stefan Schmid and Roger Wattenhofer. 13th Annual IEEE International Conference on High Performance Computing (HiPC), Bangalore, India, Springer LNCS 4297, December 2006. Documents: paper pdf slides ppt meta bibtex
♦→	Free Riding in BitTorrent is Cheap Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Wattenhofer. 5th Workshop on Hot Topics in Networks (HotNets), Irvine, California, USA, November 2006. Documents: paper pdf ps slides pdf meta bibtex
↔	Cryptree: A Folder Tree Structure for Cryptographic File Systems Dominik Grolimund, Luzius Meisser, Stefan Schmid, and Roger Wattenhofer. 25th IEEE Symposium on Reliable Distributed Systems (SRDS), Leeds, United Kingdom, October 2006. Documents: paper pdf slides ppt meta bibtex
♦→	eQuus: A Provably Robust and Locality-Aware Peer-to-Peer System Thomas Locher, Stefan Schmid, and Roger Wattenhofer. 6th IEEE International Conference on Peer-to-Peer Computing (P2P), Cambridge, United Kingdom, September 2006. Documents: paper pdf ps slides pdf meta bibtex
↔	A TCP with Guaranteed Performance in Networks with Dynamic Congestion and Random Wireless Losses Stefan Schmid and Roger Wattenhofer. 2nd Annual International Wireless Internet Conference (WICON), Boston, Massachusetts, USA, August 2006. Documents: paper pdf slides ppt meta bibtex

►0

 \cap

• Focus on two challenges: dynamics and cooperation

↔	When Selfish Meets Evil: Byzantine Players in a Virus Inoculation Game Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. 25th Annual Symposium on Principles of Distributed Computing (PODC), Denver, Colorado, USA, July 2006. Documents: paper pdf ps meta bibtex
↔	On the Topologies Formed by Selfish Peers Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. 25th Annual Symposium on Principles of Distributed Computing (PODC), Denver, Colorado, USA, July 2006. Documents: paper pdf ps meta bibtex
↔	A Blueprint for Constructing Peer-to-Peer Systems Robust to Dynamic Worst-Case Joins and Leaves Fabian Kuhn, Stefan Schmid, Joest Smit, and Roger Wattenhofer. 14th IEEE International Workshop on Quality of Service (IWQoS), Yale University, New Haven, Connectitut, USA, June 2006. Documents: paper pdf slides ppt meta bibtex
↔	Havelaar: A Robust and Efficient Reputation System for Active Peer-to-Peer Systems Dominik Grolimund, Luzius Meisser, Stefan Schmid, and Roger Wattenhofer. 1st Workshop on the Economics of Networked Systems (NetEcon), University of Michigan, Ann Arbor, Michigan, USA, June 2006. Documents: paper pdf slides ppt meta bibtex
↔	Algorithmic Models for Sensor Networks Stefan Schmid and Roger Wattenhofer. (Invited paper) 14th International Workshop on Parallel and Distributed Real-Time Systems (WPDRTS), Island of Rhodes, Greece, April 2006. Documents: paper pdf ps slides ppt meta bibtex
↔	On the Topologies Formed by Selfish Peers Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. 5th International Workshop on Peer-to-Peer Systems (IPTPS), Santa Barbara, California, USA, February 2006. Documents: paper pdf ps slides ppt meta bibtex
↔	A Robust Interference Model for Wireless Ad-Hoc Networks Pascal von Rickenbach, Stefan Schmid, Roger Wattenhofer, and Aaron Zollinger. 5th International Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN), Denver, Colorado, USA, April 2005. Documents: paper pdf ps slides pdf meta bibtex
⇔	A Self-Repairing Peer-to-Peer System Resilient to Dynamic Adversarial Churn Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. 4th International Workshop on Peer-To-Peer Systems (IPTPS), Cornell University, Ithaca, New York, USA, Springer LNCS 3640, February 2005. Documents: paper pdf slides ppt meta bibtex
↔	Parallel Compilation of CMS Software Shaun Ashby, Giulio Eulisse, Stefan Schmid, and Lassi Tuura. Computing in High Energy and Nuclear Physics Conference (CHEP), Interlaken, Switzerland, September 2004. Documents: paper pdf meta bibtex

Stefan Schmid @ ETH Zurich, 2008

►0

Some Questions

How to design a *BitTorrent* system which is provably robust to churn?

How to maximize throughput between two *eMule* peers if the available bandwidth changes in a worst-case manner?

Is it possible to free-ride in *BitTorrent*?

(Or: How to use BitTorrent without going to jail?)

How harmful is selfish behavior in Gnutella?

What is the effect on performance

if there are malicious participants in a swarm?

How vulnerable is the *Skype* network to viruses which spread along the contact lists?

How to remove Simpsons from Kad?

Dynamics

Distributed resources

- Under control of individual users (not one administrative domain)
- Peers may only be online during their own "consumption time"
- Peer-to-peer paradigm relies an dynamic resources!
 - Unlike traditional multiprocessor architectures
 - Needs to cope with (or even exploit) the dynamics! (e.g., higher degree)
- A new topic...
 - Not many results known
 - Some basic principles such as the use of redundancy, local algorithms, etc.

- Our goal: Worst-case resilience to ongoing membership changes
 i.e., resilience to adversarial topology changes
- Our reason:
 - Approach is pessimistic
 - However, it gives stronger guarantees
 - Includes a real adversary (worm along links, or crawler learnt topology)
- Our approach: Graph simulation
- Our results:
 - Despite ADV(log n, log n, 1), topology can be maintained
 - Peer degree and network diameter: O(log n)
 - Asymptotically optimal
 - Similarly for pancake graphs: replace log n by log n / loglog n

- **1.** Take a graph with desirable properties
- 2. Simulate the graph by representing each vertex by a set of peers
- 3. Find a token distribution algorithm on this graph
- 4. Find an algorithm to estimate the total number of peers in the system
- 5. Find an algorithm to adapt the graph's dimension

Stefan Schmid @ ETH Zurich, 2008

Cooperation

A good model for peer-to-peer networks?

Stefan Schmid @ ETH Zurich, 2008

Participants may not be angels!

- May not volunarily contribute resources!
- Some participants may seek to harm the system!

Stefan Schmid @ ETH Zurich, 2008

Free Riding Is Still Possible Today

- Case study BitTorrent
 - Our result: Free riding today is still possible
 - Even in the absence of seeders (optimistic unchoking mechanism!),
 - and despite the incentive mechanisms such as tit-for-tat policies!
 - Our client BitThief compartively fast if: many seeders (round robin), small files (large view exploit), or slow seeders.
 - Sharing communities can also be exploited

Impact of Selfish Behavior?

- Tools of game theory...
- Study of a network creation game
- Results
 - The price of anarchy can be high in large networks: Θ(α,n) (tight in 1d Euclidean space)
 - Selfishness can destabilize
 a system even in absence of churn (no pure Nash equilibria)
 - Determining whether a given network can stabilize is NP-hard (reduction from special SAT)

Impact of Malicious Behavior?

- Other forms of non-cooperative behavior
- Our framework allows to quantify impact
 How resilient is system to malicious attacks?
- Results
 - Example: Virus inoculation game
 - Malicious participants are often harmful
 - If the other players are risk-averse, malicious players may actually improve the system performance!

Impact of Social Behavior?

- Framework also applicable to social networks
- E.g., analysis of inoculation strategies if players care about their direct contacts
- Results
 - Example: Virus inoculation game
 - Equilibria are always at least as good as in purely selfish environments
 - Windfall increases non-monotonically in F (= extent to which players care about each other)
 - Wide spectrum already in simple graphs

Case Study Kad (1)

- Real malicious attacks in Kad networks?
 - Large structured p2p application
 - Kad: > 1 mio simultaneous users
- Experiments with real users and real contents
- Example: Censoring contents in the Kad network
- Means:
 - Find data ID, insert node close to this ID (node insertion attack)
 - Fill up index tables of existing hosts (publish attack)
 - Plus: eclipse a peer, denial of service

- Results
 - Kad vulnerable to various attacks
 - Entire files can be removed without many resources

• Publish attack

- Also harms queries like "Simpsons Movie" or "Simpsons Soundtrack"

Stefan Schmid @ ETH Zurich, 2008

- Many important questions remain open!
- Dynamics
 - Efficiency?
 - Simplifications / models?
 - Self-stabilization / graceful degradation
- Cooperation
 - How to solve the bootstrap problem?
 - Incentive mechanisms for multiple utility functions?
 - Are peers really selfish? BitThief stats per month... (BitThief: GUI, collects data, not much publicity, etc.)

Thank you for your attention!