
Taming Dynamic and Selfish Peers∗

Fabian Kuhn‡, Thomas Moscibroda§, Stefan Schmid§, Roger Wattenhofer§

kuhn@microsoft.com, moscitho@tik.ee.ethz.ch, schmiste@tik.ee.ethz.ch, wattenhofer@tik.ee.ethz.ch
‡Microsoft Research Silicon Valley, 1065 La Avenida, Mountain View, CA 94043, USA

§Computer Engineering and Networks Laboratory (TIK), ETH Zurich, 8092 Zurich, Switzerland

Abstract

This paper addresses two important challenges for
current P2P systems, namely churn and selfishness.
First, we report on a system [19] whose desirable
properties (small peer degree, small network diam-
eter, etc.) are maintained in spite of ongoing and
concurrent membership changes. Thereby, dynamic
peers are “tamed” by redundancy. Due to the worst-
case churn, this system may never be fully repaired,
but always fully functional. However, it relies on the
fact that peers act according to the protocol. In the
second part of the paper (based on [22]), we study
the impact of selfish peers which follow those pro-
tocols which maximize their utility. In particular,
the efficiency of topologies formed by selfish peers
is considered. We show that even in the absence of
joins and leaves, the resulting system may never sta-
bilize. How to “tame” selfish peers towards a more
cooperative behavior remains an open issue.

1 CHURN

Many existing file sharing systems are faced with fre-
quent membership changes (“churn”). While in In-
ternet telephony applications such as Skype the users
remain online for longer time periods, peers typically

∗Presented at Peer-to-Peer Systems and Applications Semi-
nar, March 2006, at the International Conference and Research
Center for Computer Science, Schloss Dagstuhl, Germany. Note
that this paper is based on our work at IPTPS 2005 [19] and
IPTPS 2006 [22]. Research is supported by the Swiss National
Science Foundation and the Hasler Stiftung.

connect to a file sharing system only shortly (e.g., to
download a small number of files).

Most P2P systems in the literature are only ana-
lyzed for static environments, or for scenarios where
the system is given sufficient time to recover again
after as set of peers has crashed. In contrast, we have
developed algorithms to maintain desirable proper-
ties of a P2P topology in spite of ongoing and con-
current worst-case changes. We think of an adver-
sary which can remove and add a bounded number
of peers. The adversary cannot be fooled by any kind
of randomness. It can choose which peers to crash
and how peers join.1 The adversary does not have to
wait until the system is recovered before it crashes
the next batch of peers. Instead, the adversary can
constantly crash peers while the system is trying to
stay alive. Indeed, our system is never fully repaired
but always fully functional. In particular, our sys-
tem is resilient against an adversary which continu-
ously attacks the “weakest part” of the system. Our
system counters such an adversary by continuously
moving the remaining or newly joining peers towards
the sparse areas.

Clearly, we cannot allow our adversary to have un-
bounded capabilities. In particular, in any constant
time interval, the adversary can at most add and/or
remove O(log n) peers, n being the total number of
peers currently in the system. This model covers an
adversary which repeatedly takes down machines by
a distributed denial of service attack, however only

1We assume that a joining peer knows a peer which already
belongs to the system. This is known as the bootstrap problem.

1Dagstuhl Seminar Proceedings 06131
Peer-to-Peer-Systems and -Applications
http://drops.dagstuhl.de/opus/volltexte/2006/647

a logarithmic number of machines at each point in
time. Our algorithm relies on messages being de-
livered timely, in at most constant time between any
pair of operational peers. In distributed computing
such a system is called synchronous. Note that if
nodes are synchronized locally, our algorithm also
runs in an asynchronous environment. In this case,
the propagation delay of the slowest message defines
the notion of time which is needed for the adversarial
model.

The basic structure of our P2P system is a hyper-
cube. Each peer is part of a distinct hypercube node;
each hypercube node consists of Θ(log n) peers.
Peers have connections to other peers of their hyper-
cube node and to peers of the neighboring hypercube
nodes. In the case of joins or leaves, some of the
peers have to change to another hypercube node such
that up to constant factors, all hypercube nodes own
the same number of peers at all times. If the total
number of peers grows or shrinks above or below a
certain threshold, the dimension of the hypercube is
increased or decreased by one, respectively.

The balancing of peers among the hypercube
nodes can be seen as a dynamic token distribution
problem [23] on the hypercube. Each node of a graph
(hypercube) has a certain number of tokens, the goal
is to distribute the tokens along the edges of the graph
such that all nodes end up with the same or almost
the same number of tokens. While tokens are moved
around, an adversary constantly inserts and deletes
tokens. Our P2P system builds on two basic compo-
nents: i) an algorithm which performs the described
dynamic token distribution and ii) an information ag-
gregation algorithm which is used to estimate the
number of peers in the system and to adapt the di-
mension accordingly.

Based on the described structure, we get a
fully scalable, efficient P2P system which tolerates
O(log n) worst-case joins and/or crashes per con-
stant time interval. As in other P2P systems, peers
have O(log n) neighbors, and the usual operations
(e.g. search) take time O(log n). In our view a main
contribution of the paper, however, is to propose and

study a model which allows for dynamic adversar-
ial churn. We believe that our basic algorithms (dy-
namic token distribution and information aggrega-
tion) can be applied to other P2P topologies, such
as butterflies, skip graphs, chordal rings, etc. It can
even be used for P2P systems that go beyond distrib-
uted hash tables (DHT).

1.1 Related Work

A plethora of different overlay networks with vari-
ous interesting technical properties have been pro-
posed over the last years (e.g. [1, 4, 10, 11, 16, 18,
21, 26, 27, 32, 37]). Due to the nature of P2P sys-
tems, fault-tolerance has been a prime issue from the
beginning. The systems usually tolerate a large num-
ber of random faults. However after crashing a few
peers the systems are given sufficient time to recover
again. From an experimental point of view, churn has
been studied in [28], where practical design tradeoffs
in the implementation of existing P2P networks are
considered.

Resilience to worst-case failures has been studied
by Fiat, Saia et al. in [15, 30]. They propose a system
where, w.h.p., (1−ε)-fractions of peers and data sur-
vive the adversarial deletion of up to half of all nodes.
In contrast to our work the failure model is static.
Moreover, if the total number of peers changes by a
constant factor, the whole structure has to be rebuilt
from scratch.

Scalability and resilience to worst-case joins and
leaves has been addressed by Abraham et al. in [3].
The focus lies on maintaining a balanced network
rather than on fault-tolerance in the presence of con-
current faults. In contrast to our paper, whenever a
join or leave happens, the network has some time to
adapt.

The only paper which explicitly treats arbitrarily
concurrent worst-case joins and leaves is by Li et
al. [20]. In contrast to our work, Li et al. consider
a completely asynchronous model where messages
can be arbitrarily delayed. The stronger commu-
nication model is compensated by a weaker failure
model. It is assumed that peers do not crash. Leav-

2

ing peers execute an appropriate “exit” protocol and
do not leave before the system allows this; crashes
are not allowed.

1.2 Model

We consider the synchronous message passing
model. In each round, each peer can send a message
to all its neighbors. Additionally, we have an adver-
saryA(J, L, λ) which may perform J arbitrary joins
and and L arbitrary leaves (crashes) in each interval
of λ rounds.

We assume that a joining peer π1 contacts an ar-
bitrary peer π2 which already belongs to the system;
π2 then triggers the necessary actions for π1’s inte-
gration. A peer may be contacted by several joining
peers simultaneously. In contrast to other systems
where peers have to do some finalizing operations
before leaving, we consider the more general case
where peers depart or crash without notice.

1.3 Algorithm

In this section, we describe the maintenance algo-
rithm which maintains the simulated hypercube in
the presence of an adversary which constantly adds
and removes peers. The goal of the maintenance
algorithm is twofold. It guarantees that each node
always contains at least one peer which stores the
node’s data. Further, it adapts the hypercube dimen-
sion to the total number of peers in the system.

This is achieved by two basic components. First,
we present a dynamic token distribution algorithm
for the hypercube. Second, we describe an informa-
tion aggregation scheme which allows the nodes to
simultaneously change the dimension of the hyper-
cube.

1.3.1 Dynamic Token Distribution

The problem of distributing peers uniformly
throughout a hypercube is a special instance of
a token distribution problem, first introduced by
Peleg and Upfal [23]. The problem has its origins

in the area of load balancing, where the workload
is modeled by a number of tokens or jobs of unit
size; the main objective is to distribute the total
load equally among the processors. Such load
balancing problems arise in a number of parallel and
distributed applications including job scheduling
in operating systems, packet routing, large-scale
differential equations and parallel finite element
methods. More applications can be found in [31].

Formally, the goal of a token distribution algo-
rithm is to minimize the maximum difference of to-
kens at any two nodes, denoted by the discrepancy
φ. This problem has been studied intensively; how-
ever, most of the research is about the static variant
of the problem, where given an arbitrary initial to-
ken distribution, the goal is to redistribute these to-
kens uniformly. In the dynamic variant on the other
hand, the load is dynamic, that is, tokens may arrive
and depart during the execution of the token distri-
bution algorithm. In our case, peers may join and
leave the simulated hypercube at arbitrary times, so
the emphasis lies on the dynamic token distribution
problem on a d-dimensional hypercube topology.

We use two variants of the token distribution prob-
lem: In the fractional token distribution, tokens are
arbitrarily divisible, whereas in the integer token dis-
tribution tokens can only move as a whole. In our
case, tokens represent peers and are inherently inte-
ger. However, it turns out that the study of the frac-
tional model is useful for the analysis of the integer
model.

We use a token distribution algorithm which is
based on the dimension exchange method [13, 25].
Basically, the algorithm cycles continuously over the
d dimensions of the hypercube. In step s, where
i = s mod d, every node u := β0...βi...βd−1 hav-
ing a tokens balances its tokens with its adjacent
node in dimension i, v := β0...βi...βd−1, having b
tokens, such that both nodes end up with a+b

2 to-
kens in the fractional token distribution. On the other
hand, if the tokens are integer, one node is assigned
da+b

2 e tokens and the other one gets ba+b
2 c tokens.

It has been pointed out in [13] that the described

3

algorithm yields a perfect discrepancy φ = 0 after
d steps for the static fractional token distribution. In
[25], it has been shown that in the worst case, φ = d
after d steps in the static integer token distribution.
We can show that if the decision to which node to as-
sign da+b

2 e and to which node to assign ba+b
2 c tokens

is made randomly, the final discrepancy is constant
in expectation. However, we do not make use of this
because it has no influence on our asymptotic results.

In the following, the dynamic integer token dis-
tribution problem is studied, where a “token adver-
sary”A(J, L, 1) adds at most J and removes at most
L tokens at the beginning of each step. In particular,
we will show that if the initial distribution is perfect,
i.e., φ = 0, our algorithm maintains the invariant
φ ≤ 2J + 2L + d at every moment of time.

For the dynamic fractional token distribution, the
tokens inserted and deleted at different times can be
treated independently and be superposed. Therefore,
the following lemma holds.

Lemma 1.1. For the dynamic fractional token dis-
tribution, the number of tokens at a node depends
only on the token insertions and deletions of the last
d steps and on the total number of tokens in the sys-
tem.

We can now bound the discrepancy of the integer
token distribution algorithm by comparing it with the
fractional problem.

Lemma 1.2. Let v be a node of the hypercube. Let
τv(t) and τv,f (t) denote the number of tokens at
v for the integer and fractional token distribution
algorithms at time t, respectively. We have ∀t :
|τv(t)− τv,f (t)| ≤ d

2 .

Lemma 1.3. In the presence of an adversary
A(J, L, 1), it always holds that the integer discrep-
ancy φ ≤ 2J + 2L + d.

1.3.2 Information Aggregation

When the total number of peers in the d-dimensional
hypercube system exceeds a certain threshold, all
nodes β0 . . . βd−1 have to split into two new nodes

β0 . . . βd−10 and β0 . . . βd−11, yielding a (d + 1)-
dimensional hypercube. Analogously, if the num-
ber of peers falls beyond a certain threshold, nodes
β0 . . . βd−20 and β0 . . . βd−21 have to merge their
peers into a single node β0 . . . βd−2, yielding a (d −
1)-dimensional hypercube. Based on ideas also used
in [7, 34, 33], we present an algorithm which pro-
vides the same estimated number of peers in the sys-
tem to all nodes in every step allowing all nodes to
split or merge synchronously, that is, in the same
step. The description is again made in terms of to-
kens rather than peers.

Assume that in order to compute the total number
of tokens in a d-dimensional hypercube, each node
v = β0...βd−1 maintains an array Γv[0...d], where
Γv[i] for i ∈ [0, d] stores the estimated number of
tokens in the sub-cube consisting of the nodes shar-
ing v’s prefix β0...βd−1−i. Further, assume that at
the beginning of each step, an adversary inserts and
removes an arbitrary number of tokens at arbitrary
nodes. Each node v = β0...βd−1−i...βd−1 then cal-
culates the new array Γ′v[0...d]. For this, v sends
Γv[i] to its adjacent node u = β0...βd−1−i...βd−1,
for i ∈ [0, d− 1]. Then, Γ′v[0] is set to the new num-
ber of tokens at v which is the only node with prefix
β0...βd−1. For i ∈ [1, d], the new estimated num-
ber of tokens in the prefix domain β0...βd−1−(i+1)

is given by the total number of tokens in the do-
main β0...βd−1−i plus the total number of tokens
in domain β0...βd−1−i provided by node u, that is,
Γ′v[i + 1] := Γv[i] + Γu[i].

Lemma 1.4. Consider two arbitrary nodes v1 and
v2 of the d-dimensional hypercube. Our algorithm
guarantees that Γv1 [d] = Γv2 [d] at all times t. More-
over, it holds that this value is the correct total num-
ber of tokens in the system at time t− d.

1.4 Simulated Hypercube

Based on the components presented in the previous
sections, both the topology and the maintenance al-
gorithm are now described in detail. In particular,
we show that, given an adversary A(d + 1, d + 1, 6)

4

Figure 1: A simulated 2-dimensional hypercube with
four nodes, each consisting of a core and a periphery. All
peers within the same node are completely connected to
each other, and additionally, all peers of a node are con-
nected to all core peers of the neighboring nodes. Only
the core peers store data items, while the peripheral peers
may move between the nodes to balance biased adversar-
ial changes.

which inserts and removes at most d+1 peers in any
time interval of 6 rounds, 1) the out-degree of every
peer is bounded by Θ(log2 n) where n is the total
number of peers in the system, 2) the network diam-
eter is bounded by Θ(log n), and 3) every node of
the simulated hypercube has always at least one peer
which stores its data items, so no data item will ever
be lost.

1.4.1 Topology

We start with a description of the overlay topology.
As already mentioned, the peers are organized to
simulate a d-dimensional hypercube, where the hy-
percube’s nodes are represented by a group of peers.
A data item with identifier id is stored at the node
whose identifier matches the first d bits of the hash-
value of id .

The peers of each node v are divided into a core Cv

of at most 2d + 3 peers and a periphery Pv consist-
ing of the remaining peers; all peers within the same
node are completely connected (intra-connections).
Moreover, every peer is connected to all core peers
of the neighboring nodes (inter-connections). Figure
1 shows an example for d = 2.

The data items belonging to node v are replicated

on all core peers, while the peripheral peers are used
for the balancing between the nodes according to the
peer distribution algorithm and do not store any data
items. The partition into core and periphery has the
advantage that the peers which move between nodes
do not have to replace the data of the old node by the
data of the new nodes in most cases.

1.4.2 6-Round (Maintenance) Algorithm

The 6-round (maintenance) algorithm maintains the
simulated hypercube topology described in the pre-
vious section given an adversary A(d + 1, d + 1, 6).
In particular, it ensures that 1) every node has at
least one core peer all the times and hence no data
is lost; 2) each node always has between 3d+10 and
45d + 86 peers; 3) only peripheral peers are moved
between nodes, thus the unnecessary copying of data
is avoided.

In the following, we refer to a complete execu-
tion of all six rounds (round 1 – round 6) of the
maintenance algorithm as a phase. Basically, the
6-round algorithm balances the peers across one di-
mension in every phase according to the token dis-
tribution algorithm as described in Section 1.3.1; ad-
ditionally, the total number of peers in the system
is computed with respect to an earlier state of the
system by the information aggregation algorithm of
Section 1.3.2 to expand or shrink the hypercube if
the total number of peers exceeds or falls below a
certain threshold. In our system, we use the lower
threshold LT := 8d + 16 and the upper threshold
UT := 40d + 80 for the total number of peers per
node on average.2

While peers may join and leave the system at arbi-
trary times, the 6-round algorithm considers the (ac-
cumulated) changes only once per phase. That is, a
snapshot of the system is made in round 1; rounds 2 –
6 then ignore the changes that might have happened
in the meantime and depend solely on the snapshot

2Note that since we consider the threshold on average, and
since these values are provided with a delay of d phases in a d-
dimensional hypercube (see Lemma 1.4), the number of peers at
an individual node may lie outside [LT ,UT].

5

at the beginning of the phase.
Round 1: Each node v makes the snapshot of the
currently active peers. For this, each peer in v sends
a packet with its own ID and the (potentially empty)
ID set of its joiners to all adjacent peers within v.
Round 2: Based on the snapshot, the core peers of a
node v know the total number of peers in the node
and send this information to the neighboring core
with which they have to balance in this phase (cf.
Section 1.3.1). The cores also exchange the new es-
timated total number of peers in their domains with
the corresponding adjacent cores (cf. Section 1.3.2).
Finally, each peer informs its joiners about the snap-
shot.
Round 3: Given the snapshot, every peer within a
node v can compute the new periphery (snapshot mi-
nus old core). This round also prepares the transfer
for the peer distribution algorithm across dimension
i: The smaller of the two nodes determines the pe-
ripheral peers that have to move and sends these IDs
to the neighboring core.
Round 4: In this round, the peer distribution algo-
rithm is continued: The core which received the IDs
of the new peers sends this information to the periph-
ery. Additionally, it informs the new peers about the
neighboring cores, etc.

The dimension reduction is prepared if necessary:
If the estimated total number of peers in the system is
beyond the threshold, the core peers of a node which
will be reduced send their data items plus the identi-
fiers of all their peripheral peers (with respect to the
situation after the transfer) to the core of their adja-
cent node in the largest dimension.
Round 5: This round finishes the peer distribution,
establishes the new peripheries, and prepares the
building of a new core. If the hypercube has to grow
in this phase, the nodes start to split, and vice versa
if the hypercube is going to shrink.

Given the number of transferred peers, all peers
can now compute the new peripheries. Moreover,
they can compute the new core: It consists of the
peers of the old core which have still been alive in
Round 1, plus the 2d + 3 − |C| smallest IDs in the

new periphery, where C is the set of the old core peers
which have still been alive in Round 1. The old core
then informs all its neighboring nodes (i.e., their old
cores) about the new core.

If the hypercube has to grow in this phase, the
smallest 2d + 3 peers in the new periphery of the
node that has to be split become the new core of the
expanded node, and half of the remaining peripheral
peers build its periphery. Moreover, the necessary
data items are sent to the core of the expanded node,
and the neighboring (old) cores are informed about
the IDs of the expanded core.

If the hypercube is about to shrink, all old cores in
the lower half of the hypercube (the surviving sub-
cube) inform their periphery about the peers arriv-
ing from the expanded node and the peers in the ex-
panded node about the new core and its periphery.
The data items are copied to the peers as necessary.
Round 6: In this round, the new cores are finally
built: The old core forwards the information about
the new neighboring cores to the peers joining the
core.

Moreover, if the hypercube has been reduced,
every peer can now compute the new periphery. If
the hypercube has grown, the old core forwards the
expanded cores of its neighbors to all peers in its ex-
panded node.

Theorem 1.5. Given an adversaryA(d+1, d+1, 6)
which inserts and removes at most d + 1 peers per
phase, the described 6-round algorithm ensures that
1) every node always has at least one core peer and
hence no data is lost; 2) each node has between
3d + 10 and 45d + 86 peers, yielding a logarith-
mic network diameter; 3) only peripheral peers are
moved between nodes, thus the unnecessary copying
of data is avoided.

In order to enhance clarity, we described a scheme
which is as simple as possible. Instead of a complete
bipartite graph between adjacent hypercube nodes
one could e.g. use a bipartite matching. This reduces
the node degree from O(log2 n) to O(log n). Apart
from better node degrees, all our results still hold up
to constant factors.

6

1.5 Conclusions

We have reported on our approach to cope with churn
in a P2P system. To the best of our knowledge, this
is the first proposal which is able to cope with ongo-
ing worst-case churn. Our techniques are generic and
can be applied to many other topologies: We simply
need a token distribution and an information aggre-
gation algorithm on the corresponding graph.

However, of course, our system is only a first step.
We believe that the dynamics of P2P systems still
poses many exciting challenges for the future.

2 SELFISHNESS

In the first part of this paper, we presented main-
tenance algorithms which render a system provably
robust to worst-case churn. Thereby, however, we
made the implicit assumption that all peers act ac-
cording to our protocols. This however might not be
the case in reality: Peers are often selfish and only
follow those protocols which maximize their benefit.

Selfishness is an important problem for P2P sys-
tems, since the power of P2P computing arises from
the collaboration of its numerous constituent parts,
the peers. In the second part of this paper, we study
the effect of selfish peer behavior on P2P topologies.
Concretely, we ask: How far from optimal is the per-
formance of a system if peers act selfishly?

Concretely, we look at unstructured P2P
systems—the predominant P2P architectures in
today’s Internet—, where a peer can select to which
and to how many other peers in the network it wants
to connect. With a clever choice of neighbors, a
peer can attempt to optimize its lookup performance
by minimizing the latencies—or more precisely,
the stretch—to the other peers in the network.
Achieving good stretches by itself is of course
simple: A peer can establish links to a large number
of other peers in the system. Because the memory
and maintenance overhead of such a neighbor set is
large, however, egoistic peers try to exploit locality
as much as possible, while avoiding to store too
many neighbors. It is this fundamental trade-off

between the need to have small latencies and the
desire to reduce maintenance overhead that governs
the decisions of selfish peers.

An appropriate tool to study such selfish behav-
ior is game theory. In particular, this paper studies
the Price of Anarchy of P2P overlay creation, which
is the ratio between an optimal solution obtained
by perfectly collaborating participants compared to
a solution generated by peers that act in an egoistic
manner, optimizing their individual benefit. The im-
portance of studying the Price of Anarchy in peer-to-
peer systems stems from the fact that it quantifies the
possible degradation caused by selfishness. Specifi-
cally, a low Price of Anarchy indicates that a system
does not require an incentive-mechanism (such as
tit-for-tat), because selfishness does not overly bog
down the overall system performance. If the Price
of Anarchy is high, however, specific cooperation in-
centives (whose goal is to reduce the Price of Anar-
chy) need to be enforced in order to ensure that the
system can perform efficiently. In peer-to-peer sys-
tems therefore, the Price of Anarchy is a measure that
helps explaining the necessity (or non-necessity) of
cooperation mechanisms in various aspects of these
systems.

The contribution of this paper is twofold. First,
we show that the topologies of selfish, unstructured
P2P systems can be much worse than in a sce-
nario in which peers collaborate. More precisely,
we show that the Price of Anarchy is Θ(min(α, n)),
where α is a parameter that captures the tradeoff be-
tween lookup performance (low stretches) and the
cost of neighbor maintenance, and n is the number of
peers in the system, respectively. Thereby, the upper
bound O(min(α, n)) holds for peers located in ar-
bitrary metric spaces, including the popular growth-
bounded and doubling metrics. On the other hand,
intriguingly, this bound is tight even in such a simple
metric space as the 1-dimensional Euclidean space.
As a second contribution, we prove that the topology
of a static peer-to-peer system consisting of selfish
peers may never converge to a stable state. That is,
links may continuously change even in environments

7

without churn (causing the network to be inherently
instable).

2.1 Model

We model the peers of a P2P network as points in
a metric space M = (V, d), where d : V × V →
[0,∞) is the distance function which describes the
underlying latencies between all pairs of peers.

The effects of selfish peer behavior is studied from
a game-theoretic perspective. We consider a set of n
peers

V = {π0, π1, . . . , πn−1}.

A peer can choose to which subset of other peers it
wants to store pointers (IP addresses). Formally, the
strategy space of a peer πi is given by Si = 2V \{πi},
and we will refer to the actually chosen links as πi’s
strategy si ∈ Si. We say that πi maintains or es-
tablishes a link to πj if πj ∈ si. The combination
of all peers’ strategies, i.e., s = (s0, ..., sn−1) ∈
S0 × · · · × Sn−1, yields a (directed) graph G[s] =
(V,∪n−1

i=0 ({πi} × si)), which describes the resulting
P2P topology.

Selfish peers exploit locality in order to maximize
their lookup performance. Concretely, a peer aims
at minimizing the stretch to all other peers. The
stretch between two peers π and π′ is defined as the
shortest distance between π and π′ using the links of
the resulting P2P topology G divided by the direct
distance, i.e., for a topology G, stretchG(π, π′) =
dG(π, π′)/d(π, π′). Clearly, it is desirable for a peer
to have low stretch to other peers in order to keep its
latency small. By establishing a link to all peers in
the system, a peer reaches every peer with minimal
stretch 1, and the potential lookup performance is op-
timal. However, storing and especially maintaining a
large number of links is expensive.3 Hence, the in-
dividual cost ci(s) incurred at a peer π is composed
not only of the stretches to all other peers, but also of

3For instance, the maintenance of a link may involve periodic
pings to verify whether the neighbor is still alive.

its degree, i.e., the number of its neighbors:

ci(s) = α · |si|+
∑

i 6=j

stretchG[s](πi, πj).

Note that this cost function captures the classic P2P
trade-off between the need to minimize latencies and
the desire to store and maintain only few links, as it
has been addressed by many existing systems, for ex-
ample Pastry [29]. Thereby, the relative importance
of degree costs versus stretch costs is expressed by
the parameter α.

The objective of a selfish peer is to minimize its
individual cost. In order to evaluate the topolo-
gies constructed by such selfish peers—and compare
them with the topologies achieved by collaborating
peers—, we use the notion of a Nash equilibrium.
A P2P topology constitutes a Nash equilibrium if
no peer can reduce its individual cost by changing
its set of neighbors given that the connections of all
other peers remain the same. More formally, a (pure)
Nash equilibrium is a combination of strategies s
such that, for each peer πi, and for all alternative
strategies s′ which differ only in the ith component
(different neighbor sets for peer πi), ci(s) ≤ ci(s′).
This means that in a Nash equilibrium, no peer has
an incentive to change its current set of neighbors,
that is, Nash equilibria are stable.

While peers try to minimize their individual cost,
the system designer is interested in a good overall
quality of the P2P network. The social cost is the
sum of all peers’ individual costs, i.e.,

C(G) =
∑

i

ci = α|E|+
∑

i 6=j

stretchG(πi, πj).

The lower this social cost, the better is the system’s
performance.

Determining the parameter α in real unstructured
peer-to-peer networks is an interesting field for study.
As mentioned, α measures the relative importance
of low stretches compared to the peers’ degrees, and
thus depends on the system or application: For ex-
ample, in systems with many lookups where good
response times are crucial, α is smaller than in dis-
tributed archival storage systems consisting mainly

8

of large files.4 In the sequel, we denote link and
stretch costs by CE(G) = α|E| and CS(G) =∑

i6=j stretchG(πi, πj), respectively.
Typically, a given distribution of peers in a metric

space can result in different Nash equilibria, depend-
ing on the order in which peers change their links. To
gain an understanding of the impact of selfishness on
the social cost, we are particularly interested in the
social cost of the worst possible Nash equilibrium.
That is, we study topologies in which no selfish peer
has an incentive to change its neighbors, but in which
all peers together could be much better off if they col-
laborated. More precisely and using the terminology
of game theory, we are interested in the Price of An-
archy, the ratio between the social cost of the worst
Nash equilibrium and the social cost of the optimal
topology.

2.2 Related Work

The lack of cooperation in traditional P2P file-
sharing systems has been well-documented over the
last years [5, 36], and research on the causes and pos-
sible counter-measures is very active, e.g., [8] and
[17]. Most of the current literature focuses on the is-
sue of free resource consumption, freeriding. In con-
trast, the impact of other aspects of selfishness has
received much less attention. In fact, to the best of
our knowledge, this is the first paper to take a step
towards studying the consequences of selfish neigh-
bor selection on the topologies of P2P networks.

The first paper to study the creation of networks
from a game-theoretic point of view is due to Fab-
rikant et al. [14]. In this paper, the authors ana-
lyze the Internet’s architecture as built by economic
agents, e.g., by Internet providers or autonomous
systems. Recent subsequent work on network cre-
ation in various settings includes [6, 9, 12]. In con-

4If α is in the order of Θ(
√

n), for instance, P2P topolo-
gies in which the latency stretch between all pairs of peers is
bounded by a constant, and in which every peer has at most de-
gree O(

√
n) can be shown to be asymptotically optimal. This

trade-off has for example been achieved by the Tulip system pro-
posed in [2].

trast to all these works, our model takes into account
many of the intrinsic properties of P2P systems. For
instance, it captures the important locality properties
of P2P systems, i.e., the desire to reduce the laten-
cies (expressed as the stretch) experienced when per-
forming look-up operations. Furthermore, the fact
that a peer can decide to which other peers it wishes
to store pointers yields a scenario with directed links.

Building structured systems that explicitly exploit
locality properties has been a flourishing research
area in networking and P2P computing (e.g. [2, 29,
35]). In early literature on distributed hash tables
(DHT), the major measure of system quality has been
the number of hops required for look-up operations.
While this hop-distance is certainly of importance,
it has been argued that the delay of communication
(i.e., the stretch between pairs of peers) is a more
relevant quality measure. Based on results achieved
in [24], systems such as [2, 4, 29, 37] guarantee a
provably bounded stretch with a limited number of
links per peer. All of these systems are structured
and peers are supposed to participate in a carefully
predefined topology. Our paper complements this
line of research by analyzing topologies as they are
created by selfish peers, which are interested only in
optimizing their individual trade-off between local-
ity and maintenance overhead.

2.3 Price of Anarchy

The Price of Anarchy is a measure to bound the
degradation of a globally optimal solution caused by
selfish individuals. In this section, we show that
the topologies created by selfish peers deteriorate
more (compared to collaborative networks) as the
cost of maintaining links becomes more important
(larger α). Concretely, in Section 2.3.1 we prove
that for arbitrary metrics—thus, including the im-
portant and well-studied growth-bounded and dou-
bling metrics—, the Price of Anarchy never exceeds
O(min(α, n)). We then show in Section 2.3.2 that
this bound is tight even in the “simplest” metric
space, the 1-dimensional Euclidean space.

9

Figure 2: Example topology G where the Price of
Anarchy is Θ(min (α, n)) for 3.4 ≤ α.

2.3.1 Upper Bound

Assume the most general setting where n peers are
arbitrarily located in a given metric space M, and
consider a peer π which has to find a suitable neigh-
bor set. Clearly, the maximal stretch from π to any
other peer π′ in the system is at most α + 1: If
stretch(π, π′) > α + 1, π could establish a direct
link to π′, reducing the stretch from more than α + 1
to 1, while incurring a link cost of α. Therefore, in
any Nash equilibrium, no stretch exceeds α + 1. Be-
cause there are at most n(n− 1) directed links (from
each peer to all remaining peers), the social cost of
a Nash equilibrium is O(αn2). Since the optimum
social costs is clearly lower bounded by Ω(αn+n2),
we have the following result.

Theorem 2.1. For any metric spaceM, the Price of
Anarchy is O(min(α, n)).

2.3.2 Lower Bound

We now show that there are P2P networks in with
a Price of Anarchy of Ω(min(α, n)), which implies
that the upper bound of Section 2.3.1 is asymp-
totically tight. Intriguingly, the Price of Anarchy
can deteriorate to Θ(min(α, n)) even if the underly-
ing latency metric describes a simple 1-dimensional
Euclidean space.

Consider the topology G in Figure 2 in which
peers are located on a 1-dimensional Euclidean line,
and the distance (latency) between two consecutive
peers increases exponentially towards the right. Con-
cretely, peer i is located at position αi−1/2 if i is
odd, and at position αi−1 if i is even. The peers of
G maintain links as follows: All peers have a link

to their nearest neighbor on the left. Odd peers ad-
ditionally have a link to the second nearest peer on
their right. In the following, we prove that G consti-
tutes a Nash equilibrium. Afterwards, we derive the
lower bound on the Price of Anarchy by computing
the social cost of this topology.

Lemma 2.2. The topology G shown in Figure 2
forms a Nash equilibrium for α ≥ 3.4.

Proof. In the following, a proof sketch is given only.
We distinguish between even and odd peers. For

both cases, we show that no peer has an incentive to
deviate from its strategy.

Case even peers: Every even peer i needs to link
to at least one peer on its left, otherwise i cannot
reach the peers j < i. A connection to peer i − 1 is
optimal, as the stretch to all peers j < i becomes 1.
Observe that every alternative link to the left would
imply a larger stretch to at least one peer on the left
without reducing the stretch to peers on the right.
Furthermore, i cannot reduce the distance to any—
neither left nor right—peer by adding further links to
the left. Hence, it only remains to show that i cannot
benefit from adding more links to the right.

By adding a link to the right, peer i shortens the
distance to all peers on the right. However, the cost
reduction per peer decreases as a geometric series,
and any such link to the right would strictly increase
i’s costs. To show this, we consider two cases in turn:
i linking to an odd peer on the right, and i linking to
an even peer on the right.

Link to an odd peer: Consider the benefit of i
adding a link to its odd neighbor i + 1. For an
odd peer j > i, we define the benefit Bi,j as the
stretch cost reduction caused by the addition of the
link (i, i + 1). We have, for i ≥ 2,

Bi,j = stretchold(i, j)− stretchnew(i, j)

=
d(i, i− 1) + d(i− 1, j)

d(i, j)
− d(i, j)

d(i, j)

=
2− 1/α

1/2αj−i − 1
.

Similarly, the savings Bi,j for an even peer j > i
and i ≥ 2 amount to Bi,j = (2 − 1/α)/(αj−i − 1).

10

Hence, for all α ≥ 3.4, the total savings Bi for peer
i are less than

Bi =
∑

odd j > i

Bi,j +
∑

even j > i

Bi,j

<
∞∑

δ=1

2− 1
α

1
2α2δ−1 − 1

+
∞∑

δ=1

2− 1
α

α2δ − 1

<
4α2 − 1
α2 − 1

<
(α≥3.4)

α + 1.

Therefore, the construction of link (i, i+1) would
be of no avail (benefit smaller than cost). Clearly,
the benefit of alternative or additional links to odd
neighbors on the right is even smaller.

Link to an even peer: A link to an even peer
j > i entails a stretch 1 to the corresponding peer
instead of stretchold(i, j) = (αj − αj−1 + αi−1 −
αi−2)/(αj−1 − αi−1) < α + 1 for α > 2. How-
ever, the stretch from i to all other peers remains un-
changed, since the path i Ã (i − 1) Ã (i + 1) is
shorter than i Ã (i+2) Ã (i+1): αi−1−αi−2/2+
αi/2 − αi−2/2 < αi+1 − αi−1 + αi+1 − αi/2 for
α > 1. Therefore, an even peer i has no incentive to
build links to any even peer on its right.

Case odd peers: The proof that an odd peer i has
no incentive to change its neighbor set is similar to
the proof for even peers, and it is omitted here.

Having verified that the topology of Figure 2 is a
Nash equilibrium, its social cost can be computed.

Lemma 2.3. The social cost C(G) of the topology
G shown in Figure 2 is C(G) ∈ Θ(αn2).

Proof. Clearly, the link costs of topology G are
CE(G) ∈ Θ(αn). But since the stretch from an odd
peer i to an even peer j > i and the stretch between
two even peers i and j > i are stretch(i, j) > α/2
(for α > 2), the stretch costs are CS ∈ Θ(αn2).

Theorem 2.4. The Price of Anarchy of the peer
topology G shown in Figure 2 is Θ(min(α, n)).

Proof. The theorem follows from Theorem 2.1 and
Lemmas 2.2 and 2.3, and by the observation that

Π a

Π b Π c

Π 2Π 1
δ1a

2 2 2+δ

1

1a

 = 0.04
abδ = 0.14

ε > 0
δ > ε

2−δ

ab

ε/n

ε/n ε/n

ε /n ε/n
1−2δ

1+δ

Figure 3: Instance Ik has no pure Nash equilibrium
when α = 0.6k, where k = n/5. The number of
peers in each cluster is k.

the optimal social cost of a topology connecting the
peers in Figure 2 is upper bounded by O(αn + n2).
For the latter, assume that there are no links in Fig-
ure 2. If every peer connects to the nearest peer on
its left and to the nearest peer on its right, there are
2(n − 1) links, and all stretches are 1. Thus, the
social cost of this resulting topology G̃ is C(G̃) =
α · 2(n− 1)+n(n− 1) ∈ O(αn+n2). The optimal
social cost is at most the social cost of G̃.

2.4 Existence of Nash Equilibria

In this section, we show that a system of selfish peers
may never converge to a stable state, even in the
absence of churn, mobility, or other sources of dy-
namism. Interestingly, this result even holds if we
assume latencies to form simple metric spaces, such
as a 2-dimensional Euclidean space.

Theorem 2.5. Regardless of the magnitude of α,
there are metric spaces M, for which there exists
no pure Nash equilibrium, i.e. certain P2P networks
cannot converge to a stable state. This is the case
even if M is a 2-dimensional Euclidean space.

Instead of presenting the formal proof, we attempt
to highlight the main ideas only. Assume that the pa-
rameter α is a multiple of 0.6, i.e., αk = 0.6k for
an arbitrary integer k > 0. Given a specific k, we
show that the 2-dimensional Euclidean instance Ik

11

of Figure 3 has no pure Nash equilibrium. Specif-
ically, Ik constitutes a situation in which there are
peers π1 ∈ Π1 and π2 ∈ Π2 that continue to devi-
ate to a better strategy ad infinitum, i.e., the system
cannot converge.

The n peers of instance Ik are grouped into five
clusters Π1, Π2, Πa, Πb, and Πc, each containing
k = n/5 peers. Within a cluster, peers are located
equidistantly on a line, and each cluster’s diameter
is ε/n, where ε > 0 is an arbitrarily small constant.
The inter-cluster distance d(Πi, Πj) between Πi and
Πj is the minimal distance between any two peers in
the two clusters. Distances not explicitly defined in
Figure 3 follow implicitly from the constraints im-
posed by the Euclidean plane. A link from a peer
πi ∈ Πi to a peer πj ∈ Πj is denoted by `ij . Clusters
Πa, Πb, and Πc are called top-clusters and finally,
δ denotes an arbitrarily small positive number such
that δ > 10ε.

The proof unfolds in a series of lemmas that char-
acterize the structure of the resulting graph G[s] if
the strategies s form a Nash equilibrium in Ik. First,
it can be shown that in G[s], two peers in the same
cluster are always connected by a path that does not
leave the cluster. The reason is that in the absence
of such a link, there is a stretch of at least 2−2δ

ε/n be-
tween each pair of peers in the same cluster. By con-
structing an intra-cluster link at cost α, a peer can
significantly reduce these stretches, rendering such a
link worthwhile. Furthermore, it can be shown that
there exists exactly one link in both directions be-
tween clusters Πa and Πb, Πb and Πc, as well as
between clusters Π1 and Π2. In all cases, the argu-
ment is based on the fact that without such a link,
the sum of the stretch between a peer in one cluster
to the peers in the neighboring cluster would exceed
k(2 − 2δ). Because a single link to a peer in this
neighboring cluster can reduce each stretch to 1 + ε,
the cost of connecting directly to a peer in the neigh-
boring cluster is less than α + k(1 + ε), rendering
the construction of such a link worthwhile. A third
structural characteristic that can be derived for any
Nash equilibrium is that there is at most one directed

link from a cluster Πi to peers in a cluster Πj . Since
ε is small and all peers are linked within their clus-
ters, peer πi ∈ Pii reduces its cost by dropping its
link to cluster Πj , if another peer in πi’s cluster has
a link to a peer in Πj .

To preserve connectivity, some peers in Π1 and Π2

must have links to top-peers. Based on the above ob-
servation that there is at most one link between two
clusters in each direction, Lemma 2.6 further nar-
rows down the set of possible strategies for connect-
ing to top-peers.

Lemma 2.6. In any Nash equilibrium of instance Ik,
it holds that

i) Neither peers in Π1 nor Π2 select three links to
top-peers.

ii) There exists peer π1 ∈ Π1 that establishes a link
to Πa.

iii) There is exactly one link from cluster Π2 to ei-
ther cluster Πb or Πc, but no link to Πa.

Correctness of all three properties is proven by
verifying that there exists some node π1 ∈ Π1 or
π2 ∈ Π2 has an incentive to change its strategy in
case the property is not satisfied. If, for instance,
there are two peers π2, π

′
2 ∈ Π2 that simultane-

ously maintain links to both Πb and Πc, (e.g. π2

to Πb and π′2 to Πc, thus violating case iii)), π′2
can lower its costs if it drops its links to Πc. Intu-
itively, this holds because the sum of the stretches∑

πc∈Πc
stretch(π′2, πc) entailed by the indirection

π′2 Ã π2 Ã Πb Ã Πc does not justify the additional
cost α when maintaining `2c.

It can be shown that only the six structures de-
picted in Figure 4 remain valid candidates for Nash
topologies. In each scenario, however, at least one
peer benefits from deviating from its current strat-
egy.
Case 1: In this case, a peer π1 ∈ Π1 can reduce its
cost by adding a link `1b to a peer in Πb.
Case 2: If the only outgoing link from Π1 to a top-
cluster is to cluster Πa, the peer π2 ∈ Π2 maintaining
the look to Πc can be shown to profit from switching

12

1

4 5 6

aΠ
cΠbΠ

aΠ
cΠbΠ

aΠ
cΠbΠ

1Π 2Π

1Π 2Π1Π 2Π

1Π 2Π

1Π 2Π

1Π 2Π

aΠ
cΠbΠ

aΠ
cΠbΠ

aΠ
cΠbΠ

2 3

Figure 4: Candidates for a Nash equilibrium.

its link from Πc to Πb.
Case 3: The availability of `1b changes the optimal
choice of π2 ∈ Π2. Unlike in the previous case, π2

prefers linking to Πc instead of Πb.
Case 4: Due to the existence of a link from a peer
π2 ∈ Π2 to Πc, the peer π1 ∈ Π1 with the link to Πb

has an incentive to drop this link `1b.
Case 5: In this case, the peer π1 ∈ Π1 reduces its
cost by replacing its link to cluster Πc with a link to
Πb and.
Case 6: Finally, this case is similar to Case 4 in the
sense that π1 ∈ Π1 with the link to Πb has an incen-
tive to remove `1c.

This proof highlights how the system is ultimately
trapped in an infinite loop of strategy changes, with-
out ever converging to a stable situation. There is
always at least one peer which can reduce its cost by
changing its strategy. For instance, the following se-
quence of topology changes could repeat forever (cf.
Figure 4): 1 Ã 3 Ã 4 Ã 2 Ã 1 Ã 3 . . . In other
words, selfish peers will not achieve a stable network
topology.

2.5 Conclusion

In the second part of this paper, we have seen that
selfishness can have a large impact on P2P systems.
For instance, selfishness can cause the network to be
inherently instable even if there are no membership
changes. This emphasizes the fact that a successful
system in practice must be able to cope with both

churn and selfishness.
Of course, many additional aspects of selfishness

have to be taken into account (e.g., not contributing
any upload bandwidth). While we were able to come
up with a mechanism to tame dynamic peers, han-
dling selfishness seems to be hard: How can one en-
sure that peers select their neighbors in a more col-
laborative (or equivalently: globally better) manner?
How can a peer’s behavior be efficiently verified?
We leave this issue for future research.

References
[1] Karl Aberer. P-Grid: A Self-Organizing Access Structure

for P2P Information Systems. In Proc. 9th Int. Conference
on Cooperative Information Systems (CoopIS), pages 179–
194, 2001.

[2] I. Abraham, A. Badola, D. Bickson, Dahlia Malkhi, Sharad
Maloo, and Saar Ron. Practical Locality-Awareness for
Large Scale Information Sharing. In IPTPS, 2005.

[3] Ittai Abraham, Baruch Awerbuch, Yossi Azar, Yair Bartal,
Dahlia Malkhi, and Elan Pavlov. A Generic Scheme for
Building Overlay Networks in Adversarial Scenarios. In
Proc. 17th Int. Symp. on Parallel and Distributed Process-
ing (IPDPS), page 40.2, 2003.

[4] Ittai Abraham, Dahlia Malkhi, and Oren Dobzinski.
LAND: Stretch (1 + e) Locality Aware Networks for
DHTs. In SODA, 2004.

[5] E. Adar and B. Huberman. Free Riding on Gnutella. First
Monday, 5(10), 2000.

[6] Susanne Albers, Stefan Eilts, Eyal Even-Dar, Yishay Man-
sour, and Liam Roditty. On Nash Equilibria for a Network
Creation Game. In SODA, 2006.

[7] Keno Albrecht, Ruedi Arnold, Michael Gähwiler, and
Roger Wattenhofer. Aggregating Information in Peer-to-
Peer Systems for Improved Join and Leave. In 4th IEEE
Int. Conference on Peer-to-Peer Computing (P2P), 2004.

[8] Nazareno Andrade, Miranda Mowbray, Aliandro Lima,
Gustavo Wagner, and Matei Ripeanu. Influences on Coop-
eration in BitTorrent Communities. In SIGCOMM, 2005.

[9] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos,
T. Wexler, and T. Roughgarden. The Price of Stability
for Network Design with Fair Cost Allocation. In FOCS,
2004.

[10] James Aspnes and Gauri Shah. Skip Graphs. In Proc. 14th
Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 384–393, 2003.

13

[11] Baruch Awerbuch and Christian Scheideler. The Hyper-
ring: A Low-Congestion Deterministic Data Structure for
Distributed Environments. In Proc. 15th Ann. ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 318–327,
2004.

[12] J. Corbo and D. C. Parkes. The Price of Selfish Behavior
in Bilateral Network Formation. In PODC, 2005.

[13] G. Cybenko. Dynamic Load Balancing for Distributed
Memory Multiprocessors. Journal on Parallel Distributed
Computing, 7:279–301, 1989.

[14] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou,
and S. Shenker. On a Network Creation Game. In PODC,
2003.

[15] A. Fiat and J. Saia. Censorship Resistant Peer-to-Peer
Content Addressable Networks. In Proc. 13th Symp. on
Discrete Algorithms (SODA), 2002.

[16] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu,
Marvin Theimer, and Alec Wolman. SkipNet: A Scal-
able Overlay Network with Practical Locality Properties.
In Proc. 4th USENIX Symp. on Internet Technologies and
Systems (USITS), 2003.

[17] Seung Jun and Mustaque Ahamad. Incentives in BitTor-
rent Induce Free Riding. In SIGCOMM, 2005.

[18] John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim
Weatherspoon, Westly Weimer, Christopher Wells, and
Ben Zhao. OceanStore: An Architecture for Global-scale
Persistent Storage. In Proc. of ACM ASPLOS, November
2000.

[19] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. A
Self-Repairing Peer-to-Peer System Resilient to Dynamic
Adversarial Churn. In Proc. 4th Itl. Workshop on Peer-
to-Peer Systems (IPTPS). Springer Lecture Notes on Com-
puter Science (LNCS), Copyright 2005., 2005.

[20] Xiaozhou Li, Jayadev Misra, and C. Greg Plaxton. Active
and Concurrent Topology Maintenance. In Proc. 18th Ann.
Conference on Distributed Computing (DISC), 2004.

[21] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy:
A Scalable and Dynamic Emulation of the Butterfly. In
Proc. 21st Ann. Symp. on Principles of Distributed Com-
puting (PODC), pages 183–192, 2002.

[22] Thomas Moscibroda, Stefan Schmid, and Roger Watten-
hofer. On the Topologies Formed by Selfish Peers. In
Proc. 5th Itl. Workshop on Peer-to-Peer Systems (IPTPS),
2005.

[23] David Peleg and Edi Upfal. The Token Distribution Prob-
lem. SIAM Journal on Computing, 18(2):229–243, 1989.

[24] C. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
Nearby Copies of Replicated Objects in a Distributed En-
vironment. In SPAA, 1997.

[25] C. G. Plaxton. Load Balancing, Selection and Sorting on
the Hypercube. In Proc. 1st Ann. ACM Symp. on Parallel
Algorithms and Architectures (SPAA), pages 64–73, 1989.

[26] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W.
Richa. Accessing Nearby Copies of Replicated Objects in
a Distributed Environment. In Proc. 9th Ann. ACM Symp.
on Parallel Algorithms and Architectures (SPAA), pages
311–320, 1997.

[27] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Shenker. A Scalable Content Addressable
Network. In Proc. of ACM SIGCOMM 2001, 2001.

[28] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Ku-
biatowicz. Handling Churn in a DHT. In Proc. USENIX
Ann. Technical Conference, 2004.

[29] A. Rowstron and P. Druschel. Pastry: Scalable, Distrib-
uted Object Location and Routing for Large-scale Peer-to-
Peer Systems. In IFIP/ACM Int. Conf. Dist. Sys. Platforms
(Middleware), 2001.

[30] J. Saia, A. Fiat, S. Gribble, A. Karlin, and S. Saroiu.
Dynamically Fault-Tolerant Content Addressable Net-
works. In Proc. 1st Int. Workshop on Peer-to-Peer Systems
(IPTPS), 2002.

[31] Behrooz A. Shirazi, Krishna M. Kavi, and Ali R. Hurson.
Scheduling and Load Balancing in Parallel and Distrib-
uted Systems. IEEE Computer Science Press, 1995.

[32] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. In
Proc. ACM SIGCOMM Conference, 2001.

[33] R. van Renesse and A. Bozdog. Willow: DHT, Aggrega-
tion, and Publish/Subscribe in One Protocol. In Proc. 3rd
Int. Workshop on Peer-To-Peer Systems (IPTPS), 2004.

[34] Robbert Van Renesse, Kenneth P. Birman, and Werner
Vogels. Astrolabe: A Robust and Scalable Technol-
ogy for Distributed System Monitoring, Management, and
Data Mining. ACM Transactions on Computing Systems,
21(2):164–206, 2003.

[35] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A Light-
weight Network Location Service without Virtual Coordi-
nates. In SIGCOMM, 2005.

[36] M. Yang, Z. Zhang, X. Li, and Y. Dai. An Empirical Study
of Free-Riding Behavior in the Maze P2P File Sharing
System. In IPTPS, 2005.

[37] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Anthony D.
Joseph, and John D. Kubiatowicz. Tapestry: A Resilient
Global-scale Overlay for Service Deployment. IEEE J.
Selected Areas in Comm., 22(1), 2004.

14

