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Abstract

Rapid growth of electronic communication brought cyptography from military uses

to the limelight in research community. The advent of small scale devices including

handy and smart cards has given more importance to light-weight-cryptography.

This project is a study in the latest trend in cryptography - HECC(Hyper-Elliptic

Curve Cryptography). An investigation in the existing methods of group operation

in jacobian of a curve. A few attempts made to improve the present status of the

field also are included.



Chapter 1

Introduction

Basic research is what I’m doing when

I don’t know what I’m doing.

– Wernher Von Braun

1.1 The Scenario

Fast secure privacy!! This is what the world is after. Yes, better methods of doing

cryptography. We need privacy with enough security and it should be fast. There

are already many cryptosystems available which satisfy these requirements. But,

new, emerging, small devices with very limited computing power, want to give more

attention to public key cryptosystems. Other than RSA, most of the cryptosystems

rely on the discrete logarithm problem1. The classical cryptosystems use DLP over

multiplicative group of finite fields.

1Given an element g in a finite group G and another element h ∈ G, find an integer x such that
gx = h. Abbreviated as DLP

1
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To have a cryptosystem based on a group if the group operations are fast, its

order is easily computable, DLP is hard and the representations are compact. In

1987 Koblitz [10] introduced Elliptic Curve Cryptography(ECC). It is based on the

discrete logarithm problem over the abelian group of points of the curve. The group

of points has all the characteristics we need for cryptography. The advantages of

using ECC were small-sized keys and easy generation of curves(groups). Also, there

are no sub-exponential algorithms for ECDLP (Elliptic Curve DLP).

Later in 1989, Koblitz [11] introduced discrete logarithm based hyperelliptic cryp-

tosystems which are over the Jacobian of hyperelliptic curves. Hyperelliptic curves

are generalisations of elliptic curves. Here the advantage was again a good reduction

in the keysize which eases the computation, still giving same level of security. Also,

non-existence of sub-exponential algorithms. The smaller size of base field makes

hyperelliptic curves a good choice for light weight cryptosystems.

The algorithm for group operation was given by Cantor [3]. In hyperelliptic curve

cryptosystems, group operation is addition in the jacobian of the curve. The algorithm

by Cantor [3] was the fastest algorithm for addition in the jacobian until in 2000,

Harley algorithm [6, 5] was introduced. After that, there were many improvements

and researches going on in the area of HECC. Hyperelliptic curve cryptosystems are

the latest trend in cryptography. A comparison with respect to the keysize of RSA

and HECC is given in the table 1.1. For more details about the mapping between

the two, refer [20].

Unfortunately, in HECC, the algorithms for group operation are not as fast as

in finite fields. For genus 1 hyperelliptic curves (elliptic curves) there are very fast

algorithms. For larger genus curves, the algorithms for group operation are to be

optimised to a much better level that to achieve the type of fast cryptosystems. That
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Base Field HECC-Keysize RSA Equivalent
F(283) 166 925
F(297) 194 1325
F(2113) 226 1892
F(2131) 262 2681
F(2149) 298 3643
F(2163) 326 4517

Table 1.1: Keysize comparison: HECC (g = 2) Vs RSA

makes the study of HECC and the addition important.

1.2 Objectives

The objectives of the project can be listed as follows.

1. Study and understand the group laws of jacobian of hyperelliptic curves.

2. Investigate about the algorithms for addition in the jacobian.

3. Try to design some better algorithm.

This thesis, I am writing with one more objective in mind. I am trying to make

this report a good point to start the studies about hyperelliptic curves - without much

formal mathematics.

1.3 Overview

The following is an outline of the rest of the thesis.

• Chapter 2: Mathematical Background
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In this chapter I try to explain the basic algebra and algebraic geometry needed

for the rest of the book. By no way this is self contained. The major topics

include the basics of groups - rings - fields in the algebra part. In the algebraic

geometry part affine - projective spaces are introduced and their relation be-

tween each other as well. Basic details about algebraic curves, about coordinate

rings - rational functions - Bezout’s theorem - divisors - genus etc also. The end

of the chapter just mentions about Riemann-Roch problem. I have not given

most of the proofs of theorems and lemmas. The references given provide a

better and detailed description of all the contents of the chapter.

• Chapter 3: Hyperelliptic Curves

From this chapter onwards, we move from general algebraic curves to the special

types of curves on which are of our interest. Here we see the basic properties of

hyperelliptic curves. A few examples - semi-reduced divisors - reduced divisors

- jacobian - the group operation in the jacobian etc. Finally we see different

types of representations of reduced divisors which are of more importance from

the view point of computing world. The chapter makes the background needed

for understanding the methods in addition in jacobian.

• Chapter 4: Addition

This chapter very briefly explains a few of the existing algorithms. Analysis

and discussion are avoided. First of all, the chapter gives geometric concept of

divisor addition in the jacobian. Then Cantor’s algorithm - Harley’s method -

Lange’s formulae etc are mentioned.
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• Chapter 5: Point Addition

This is where I discuss and explain the details of the algorithm devised by

my team. The reduction algorithm in the chapter makes use of a probabilistic

algorithm to find out the roots of polynomials.

• Chapter 6: Addition using Chow Forms

This chapter discusses over another algorithm which is not complete. The basic

idea is built for the addition algorithm. The details remain open still now. The

method presented used a different type of divisor represetation which is very

old in the literature. As all the researches were going on in a single type of

representation, this was an attempt to see the problem from another viewpoint.

Rest of the thesis concludes the discussion and says about furthur work to be

done.

1.4 Notation

We follow the notation of Fulton [4]. In the thesis, a reader can find many definitions,

lemmas, theorems, facts and examples. Definitions, lemmas and theorems mean the

same as in the common terminology. Facts are some truths which are not to be proved

or just proofs are not given. They can be said to be similar to axioms. Some of them

are theorems of which proofs are out of the scope of the thesis.



Chapter 2

Mathematical Background

”Young man, in mathematics you don’t understand things,

you just get used to them.”

– John von Neumann.

2.1 Abstract Algebra

Giving a background in abstract algebra is not an easy thing. It is always better to

read atleast one book which gives you the basics of algebra. Atleast till the point

where you can start to study more about field theory and Galois theory. A very

good reference for the study of basic algebra is Herstein [7] and for field theory is

Roman [18]. However, I give the definitions and results in abstract algebra which will

be useful for our study of hyperelliptic curves. I believe that anybody who is reading

this thesis is having enough background in set theory. So, here I start with groups.

6
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2.1.1 Groups

Definition 1 (Group). A nonempty set G is said to be a group if in G there is

defined an operation ⊕ such that it satisfies the following.

1. Closure: a, b ∈ G implies a⊕ b ∈ G

2. Associativity: Given a, b, c ∈ G then a⊕ (b⊕ c) = (a⊕ b)⊕ c

3. Existence of Identity: There exists a special element ε ∈ G such that a ⊕ ε =

ε⊕ a = a for all a ∈ G. ε is called the identity element of G.

4. Inverse Element: For every a ∈ G there exists an element b ∈ G such that

a⊕ b = b⊕ a = ε. (We write b as a−1 and call it the inverse of a in G)

These four conditions are called group axioms.

We usually represent a group by (G, ∗); where G is the group and ∗ is the group

operation.

Example 2. (Z,+) is a group where Z is the integers and + is the ordinary addition.

Definition 3 (Order). The number of element of a group is called the order of he

group. if the order is finite, the group is said to be a finite group. Order of a group

G is denoted as G.

But, for an element a ∈ G, the least positive number m such that am = ε is called

the order of a in G.

Definition 4 (Abelian/Commutative Group). A group is an abelian1 group if

a⊕ b = b⊕ a for all a, b ∈ G.

1The name comes from the great Norwegian mathematician Niels Henrik Abel



2.1. ABSTRACT ALGEBRA 8

Definition 5 (Subgroup). A nonempty subset H of a group G is called a subgroup

of G, if relative to the operation in G, H itself satisfies all the group axioms.

Example 6. H = {Even numbers} ⊂ Z (H,+) is a group under ordinary addition.

Definition 7. A relation ∼ of a set G is called an equivalence relation if for all

a, b, c ∈ G:

1. a ∼ a.(Reflexive)

2. a ∼ b implies b ∼ a.(Symmetric)

3. a ∼ b and b ∼ c implies a ∼ c.(Transitive)

Definition 8 (Equivalence Class). If ∼ is an equivalence relation on G, then [a],

the equivalence class of a is defined by [a] = {b ∈ G | b ∼ a}.

Lemma 9. If ∼ is an equivalence relation on G, then

1. G =
⋃

a∈G[a]

2. [a] ∩ [b] 6= φ equivalent to [a] = [b]

Proof:

Since a ∈ [a], it is clear that
⋃

a∈G[a] = G.

Suppose that [a] ∩ [b] 6= φ. Let c ∈ [a] ∩ [b] So, c ∼ a since c ∈ [a] and c ∼ b

since c ∈ [b]. Again, c ∼ a implies a ∼ c because of symmetry. And c ∼ a and c ∼ b

together imply a ∼ b (transitivity).

Hence a ∈ [b]. So, for all x ∈ [a], x ∼ a, a ∼ b gives x ∼ b. i.e, [a] ⊂ [b]. The same

way we can prove that [b] ⊂ [a].

ie, [a] = [b].

ie, if [a] ∩ [b] 6= φ, [a] = [b]. Which is equivalent to [a] 6= [b] implies [a] ∩ [b] = φ



2.1. ABSTRACT ALGEBRA 9

Definition 10 (Coset). For a group G, for which H is a subgroup, and an element of

G, then gH = {gh | h an element of H} is called the left coset of H in G, Hg = {hg | h

an element of H} is called the right coset of H in G.

Theorem 11 (Lagrange’s2 Theorem). If G is a finite group and H is a subgroup

of G, then o(H) | o(G)

Proof:

It is very easy to see that the relation a ∼ b iff ab−1 ∈ H is an equivalence relation3.

(aa−1 = ε ∈ H so a ∼ a. If ab−1 ∈ H, as H ⊂ G, (ab−1)−1 ∈ H implies ba−1 ∈ H

i.e, b ∼ a. The same way, if ab−1 ∈ H and bc−1 ∈ H implies (ab−1)(bc−1) = ac−1 ∈ H.

So, a ∼ c).

Also, we can see that [a] = Ha = {ha | h ∈ H}.

(ab−1 ∈ H. Let ab−1 = h, so, a = hb. If a = kb; k ∈ H, ab−1 = (kb)b−1 = k ∈ H.

So, a ∼ b iff a ∈ Hb = {hb | h ∈ H}. i.e, [b] = Hb.

Let k be the number of distinct classes. We name them to be Ha1, Ha2,

. . . , Hak. By Lemma 9
⋃k

i=1Hai = G and we know that Hai ∩Haj = φ; i 6= j. Our

claim is that o(Hai) = o(H). If hai = h′ai by cancellation, h = h′. So the mapping is

1− 1. G =
⋃k

i=1Hai, i 6= j ⇒ Hai ∩Haj = φ. This implies o(G) = k× o(H). Hence

o(H) | o(G).

Fact 12. If G is finite and a ∈ G, then o(a) | G We can see this directly from

definition 3 and Theorem 11.

Definition 13 (Homomorphism). Let G and G′ be two groups then a mapping

φ : G→ G′ is called a homomorphism if φ(ab) = φ(a)φ(b) for all a, b ∈ G.

2The name of the theorem comes from famous mathematician J L Lagrange
3For the ease of representation, we represent a⊕ b as ab
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If the homomorphism is a bijection, then it is called an isomorphism.

Definition 14 (Kernel). If φ is a homomorphism from G to G′, then the kernel of

φ is defined by kφ = {a ∈ G | φ(a) = ε′}, and ε′ is the identity element of G′.

Definition 15. Image of a subgroup H of G under φ is defined as Im(H) = {b ∈ G′ |

∃a ∈ G such that φ(a) = b}.

Definition 16 (Normal Subgroup). A subgroup N of G is said to be normal

subgroup iff a−1Na ⊂ N for every a ∈ G.

We denote this by N / G.

Definition 17 (Factor group). If N / G and we define a ∼ b iff ab−1 ∈ N , we get

a new set of equivalence classes. This set of equivalence classes is called the factor

group or quotient group of G by N .

We have a symbol for this factor group is G/N .

Theorem 18. If N / G, and

G
N

= {[a] | a ∈ G} = {Na | a ∈ G}

Then G/N is a group relative to [a][b] = [ab].

Proof:

Define ψ : G → G/N by ψ(a) = [a]. It’s easy to see that it is a homomorphism.

From the definition itself it is evident that the mapping is onto.

What is the kernel of the mapping? Kψ = {a ∈ G | ψ(a) = E} where E us the

unit of G/N . E = [ε] = Nε = N , a ∈ Kψ iff E = N = ψ(a) = Na. But Na = N

says that a = ea ∈ Na = N so, Kψ ⊂ N similarly we can prove that N ⊂ Kψ.

Hence Kψ = N .
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Theorem 19 (Homomorphism). Let f : G → G′ be a homomorphism and N

be a sub group of G with N ⊆ ker(f). We then have a unique homomorphism

h : G/N → G′ such that h ◦ φ = f .

ie,

G
f
−→ G′

φ ↓ h↗

G/N

Now we have come to a point where we can discuss the other three homomorphism

theorems. I will state them one by one. I shall not give the proofs. For the proofs

reader can refer to any of these books by Herstein [7, 8].

Theorem 20 (First Homomorphism Theorem). Let φ be a homomorphism of G

onto to G′ with kernel K. Then G′ ' G/K, the isomorphism between these effected

by the map.

ψ : G/K → G′

defined by ψ(Ka) = φ(a).

Theorem 21 (Second Homomorphism Theorem). Let the map φ : G→ G′ be

a homomorphism of G onto G′ with kernel K. If H ′ is a subgroup of G′ and if

H = {a ∈ G | φ(a) ∈ H ′}
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Then H is a subgroup of G, H ⊃ K and H/K ' H ′. Finally, if H ′ / G′ then H / G.

Theorem 22 (Third Homomorphism Theorem). If the map φ : G → G′ is a

homomorphism of G onto G′ with kernel K, then if N ′ /G′ and N = {a ∈ G | φ(a) ∈

N ′}, we conclude that G/N ' G′/N ′ ⇔ G/N ' (G/K)/(N/K)

2.1.2 Rings and Fields

Definition 23 (Ring). Let R be a set on which two binary operations are defined,

called addition and multiplication, and denoted by + and ·. Then R is called a ring

with respect to these operations if the following properties hold:

1. Closure: If a, b ∈ R, then the sum a + b and the product a · b are uniquely

defined and belong to R.

2. Associative law: For all a, b, c ∈ R, a+(b+c) = (a+b)+c and a·(b·c) = (a·b)·c.

3. Commutative law: For all a, b ∈ R, a+ b = b + a.

4. Distributive law: For all a, b, c ∈ R, a·(b+c) = a·b+a·c and (a+b)·c = a·c+b·c.

5. Additive identity: The set R contains an additive identity element, denoted by

0, such that for all a ∈ R, a + 0 = a and 0 + a = a.

6. Additive inverse: For each a ∈ R, there exists an element b ∈ R such that

a+ b = 0 and b+ a = 0. The element b is called the additive inverse of a in R,

and denoted by −a.

If · is also commutative, the ring is called a commutative ring. Otherwise an

associative ring.
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Definition 24 (Integral Domain). A commutative ring R is called an Integral

Domain if a · b = 0 implies a = 0 or b = 0. In other words, an integral domain is a

commutative ring with NO zero divisors.

An element 0 6= a ∈ R is called a zero divisors of there exists an element b 6= 0 ∈ R

such that a · b = 0.

If there is an element 1 ∈ R such that for all a ∈ R, 1 · a = a · 1 = a. We call R

to be a ring with unit. It is necessary that 1 6= 0.

Definition 25 (Ideal). For a group we have subgroup. The same way, for a ring we

have an Ideal. It is defined as below.

Let R be a ring, a non-empty subset I of R is called an ideal (two sided) if

1. I is an additive subgroup of R.

2. Given r ∈ R, a ∈ I, then ra ∈ I and ar ∈ I.

Definition 26 (Homomorphism). Similar to group homomorphisms, we have ho-

momorphisms in rings also.

A mapping φ : R→ R′ of the ring R into the ring R′ is a homomorphism if

1. φ (a+ b) = φ(a) + φ(b)

2. φ(ab) = φ(a)φ(b)

Definition 27 (Field). A ring R is called a field iff the following conditions are

satisfied.

1. R is a ring with unit.

2. For all a 6= 0 ∈ R there exists a b ∈ R such that a · b = b · a = 1. This b is

denoted as b−1
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3. R is commutative.

Or, we can say the same in other words.

1. (R,+) is a commutative ring.

2. (R∗, ·) is a commutative ring.(R∗ = R\{0}).

3. · is distributive over +.

2.1.3 Extension Field

Definition 28 (sub-field, extension field). If a field F is a subset of another field

K with respect to the same operations in K, then F is called to a sub-field of K.

And, K is an extension field of F .

Definition 29 (algebraic, minimal polynomial). Let K be an extension field of

F . An element a ∈ K is said to be algebraic over F if there exists a polynomial

f ∈ F [x] with f(a) = 0. The monic polynomial with minimal degree so that f(a) = 0

is called the minimal polynomial of a over F and denoted by f a
min.

Definition 30 (Algebraic closure). A field K is said to be algebraically closed if

every polynomial f(x) ∈ K[x] has a zero in K. Such a polynomial splits into linear

factors.

Sometimes, for a field F , all the polynomials in F [x] have their zeros in K, an

extension field of F . Then K is called the algebraic closure of F .

From the cryptographic perspective, all the details of algebra are not needed.

In [12] Koblitz give an excellent tutorial of what is needed for our purpose.
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2.2 Algebraic Geometry

In this section we will see the basics of algebraic geometry which are very essential

for the rest of the thesis. For a better understanding of the details, the reader may

refer to Fulton [4]. Also a very good explanation about projective space is given in

the appendix of [19]. We directly start with the definitions and theorems.

Note: From here onwards, k is a field and K is its algebraic closure.

2.2.1 Affine Geometry

Definition 31 (Affine Space). An(k) means the Cartesian product of k with itself

n times. An(k) is the set of n-tuples of elements of k. An(k) is called n-dimensional

affine space over k. Its elements are called points. Simply An means An(K) where k

is understood and K is its closure.

A1(k) is the affine line and A2 is the affine plane.

The points in An(k) are called the rational points of An.

Definition 32 (Zero of a polynomial). If F ∈ k[x1, x2, . . . , xn], a point P =

(a1, . . . , an) ∈ An is a zero of F if F (P ) = F (a1, . . . , an) = 0. The set of zeros of F is

called the hyper-surface generated by F and is denoted by V (F ).

Definition 33 (Affine algebraic set). If S is any set of polynomials in k[x1, x2, . . . , xn],

then

V (S) = {P ∈ An | F (P ) = 0 for all F ∈ S}

V (S) =
⋂

F∈S

V (F )

A subset X ∈ An is an affine algebraic set if X = V (S) for some S.
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Definition 34 (Affine variety). An affine algebraic set is called an affine variety if

it cannot be written as a union of two smaller affine algebraic sets.

Or

It is an irreducible affine algebraic set. i.e, if X = V (S) and the ideal generated

by S is a prime ideal in k[x1, x2, . . . , xn], then X is an affine variety.

2.2.2 Projective Geometry

Now we should see the definition of projective space. But, before the formal definition,

we will see what it means.

We know that two different lines intersect at exactly one point. Is it always true?

What happens if they are parallel?

In our case, we need any two lines to intersect - whether they are parallel or

not. So we are trying to enlarge the plane so that they will intersect at infinity.

For the same, we identify each point4 (x, y) ∈ A2 with points (x, y, 1) ∈ A3. Every

point (x, y, 1) determines a unique line which passes through the origin and the point

(x, y, 1). Every line through (0, 0, 0) which are in the place z = 0 are the points at

infinity.

Definition 35 (Projective Space). Projective Space over k, written as P n(k) or

simply P n is defined to be the set of all lines through (0, 0, . . . , 0) in An+1(k). Any

point x = (x1, . . . , xn+1) 6= (0, . . . , 0) determines a unique line namely {(λx1, . . . , λxn+1) |

λ ∈ k}.

4For ease of understanding we take A2 and A3. In general, we can take An and An+1 with
(n + 1)th co-ordinate to be one.
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Two points (x) and (y) are defined to be equivalent iff there is a nonzero λ ∈ k

such that

yi = λxi for i = 1, . . . , n + 1

One other way to identify P n is as the set of equivalence classes of points in

An+1 − {0, . . . , 0}.

Definition 36 (Homogeneous coordinates). Elements of P n5 will be called points.

The equivalence classes of points are given by

(x1, . . . , xn+1) ∼ (λx1, . . . , λxn+1); λ, xi ∈ k.

If a point P ∈ P n is determined by some (x1, . . . , xn+1) ∈ An+1, we say that

(x1, . . . , xn+1) is a set of homogeneous coordinates for P . In fact, (x1, . . . , xn+1)

stands for an equivalence

Definition 37 (Homogeneous Polynomial). A homogeneous polynomial is a poly-

nomial with all its terms are having the same degree.

Or formally,

F (λx1, . . . , λxn+1) = λdeg(f)F (x1, . . . , xn+1) for all λ ∈ K.

Definition 38 (Projective algebraic set, Projective variety). If S is any set of

homogeneous polynomials in k[x1, x2, . . . , xn+1],

V (S) = {P ∈ P n | F (P ) = 0 for all F ∈ S}

5P n means P n(K) when k is known and K is its closure
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V (S) =
⋂

F∈S

V (F )

A subset X ⊆ P n is an projective algebraic set if X = V (S) for some S.

A projective algebraic set is called an projective variety if it cannot be written as

a union of two smaller projective algebraic sets.

Or

It is an irreducible projective algebraic set. i.e, if X = V (S) and the ideal gener-

ated by S is a prime ideal in k[x1, x2, . . . , xn+1], then X is an projective variety.

When V (I) is a projective or affine variety then the polynomials in I(V ) are irre-

ducible. Otherwise, the union of the factors of these polynomials form the same ideal,

as the roots of the polynomials are the same. Now, the ideal formed is prime ideal.

Suppose, for example that the ideal is generated by only one irreducible polynomial:

I(V ) = F . Then GH ∈ (F )⇒ G ∈ (F ) or H ∈ (F ). In other words: F divides G or

H.

2.2.3 Affine and Projective spaces - Relation

We came up with the projective plane to enable any two lines to intersect at exactly

one point. Now we should see how it happens. We know that a point (x, y, z) ∈ P 2 ⇔

(x/z, y/z, 1) ∈ P 2 ⇔ (x, y) ∈ A2. Now, we should try to get the points at infinity by

putting z = 0 in (x, y, z) ∈ P 2. We get a point at infinity of A2. Using homogeneous

coordinates and polynomials we can find the intersection of the lines (x, y, z) in the

projective plane z = 0. The intersection represents the point at infinity of A2 which

will be the point of intersection of the lines under consideration. This sounds really

absurd. But we define that all lines in the plane z = 0 and passing through origin
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corresponds to directions in the affine space. So we can define the projective space

as follows.

P 2 = A2 ∪ {set of directions in A2}

So, all lines in the same direction will intersect at one of these points.

Now, how do we define it formally? We can define the set of direction in A2 by

P 1. So, P 2 = A2 ∪ P 1. Following represents the mapping between the two spaces.

{[a, b, c] : a, b, c not all zero}

∼
↔ A2 ∪ P 1

[a, b, c] →





(a, b) ∈ A2 if c 6= 0

[a, b] ∈ P 1 if c = 0
(2.1)

[x, y, 1] ← (x, y) ∈ A2 (2.2)

[A,B, 0] ← [A,B] ∈ P 2 (2.3)

Definition 39 (Homogenisation and Dehomogenisation). F ∈ k[x1, . . . , xn+1]

is called a form if it is a homogeneous polynomial and we define F∗ = F (x1, . . . , xn, 1).

This is called de-homogenisation.

If we have a polynomial in n variables, we can put xi = xi/xn+1. This transfor-

mation gives F ∗ from F . This is called homogenisation.

Definition 40 (Algebraic Curve). An algebraic curve is always an algebraic variety

of dimension equal to one. In two dimensional plane (P 2), a projective variety C is

called an algebraic curve when I(C), the ideal of k[x1, . . . , xn+1] which generates C,
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consists of a single polynomial ∈ k[x1, . . . , xn+1] which is irreducible by definition.

We denote V (I), [curve generated by ideal I] by C

C : F (x1, . . . , xn+1) = 0 ∈ k[x1, . . . , xn+1]

and I(C) = F .

From here onwards, C is an algebraic curve. Let it be C : F (x1, . . . , xn).

Definition 41 (Coordinate ring). Coordinate ring of C over k is the quotient ring

given by

k[C] = k[x1, . . . , xn]/I(C)

Similarly, the coordinate ring of C over K is defined as

K[C] = K[x1, . . . , xn]/I(C)

An element of K[C] is called polynomial function on C. they are polynomials

modulo C.

Definition 42 (Function field and rational functions). The function field k(C)

of C over k is the field of fractions of k[C]. Similarly, K(C) the function field of C

over k is the field of fractions of K[C].

K(C) =

{
G

H
| G,H ∈ K[C], deg(G) = deg(H)

}

An element of K[C] is called a rational function.

Definition 43 (Zeros and Poles). Let R ∈ K(C)∗ and P ∈ C. If R(P ) = 0, then
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R is said to have a zero at P . If R is not defined at P , then R has a pole at P . (We

write R(P ) =∞)

Definition 44 (Uniformising parameter). Let P ∈ C. For all G ∈ KC)∗, there

exist T, S ∈ K(C)∗, mP ∈ Z such that,

G = TmPS and T (P ) = 0 and S(P ) 6= 0,∞.

The function T is called a uniformising parameter for P .

Definition 45 (Intersection multiplicity). Let G, S ∈ K(C) and P ∈ C. Let

T ∈ K(C) be the uniformising parameter for P :

G = TmPS and T (P ) = 0 and S(P ) 6= 0,∞. Then mP is the intersection multiplicity

of G at P .

Theorem 46 (Bezout’s Theorem). Let F and G be projective plane curves with

degrees m an n respectively. Assume F and G have no common components. Then :

∑

P∈F∩G

I(P ) = mn

Where I(P ) is the intersection multiplicity at point P and P ∈ F ∩ G are the

common points of F and G. i.e, the points of intersections.

Definition 47 (Order of Polynomial functions). The order of a polynomial

function G ∈ K[C] at a point P ∈ C is the intersection multiplicity at that point and

denoted by ordP (G).

Definition 48 (Order of rational functions). The order of a rational function

R = G/H ∈ K(C) at a point P ∈ C is defined as: ordP (R) = ordP (G)− ordP (H).
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2.3 Divisors

The ideals generated by the polynomial in function field is C are sub-varieties of

C. i.e, the intersection of roots of I(C) and a rational function. We name them as

Divisor.

Definition 49 (Divisor). A divisor D is a formal sum of points P ∈ C:

D =
∑

P∈C

mPP

with mP ∈ Z and for all but finitely many mP = 0.

The degree of D is the integer deg(D) =
∑

P∈C mp.

The order of D at P is the integer ordP (D) = mP .

Definition 50 (support of a divisor). Let D =
∑

P∈C mPP be a divisor. The

support of D is the set:

supp(D) = P in C : mp 6= 0

Definition 51 (Addition of divisors). The divisors form a group under addition.

The group of divisors of C are denoted by Div(C). We can add two divisors as

follows.

∑

P∈C

mPP +
∑

P∈C

nPP =
∑

P∈C

(mP + nP )P

The subgroup of Div(C) with divisors of degree 0 is Div0(C).

Definition 52 (GCD of divisors.). Let D1 =
∑

P∈C mPP and D2 =
∑

P∈C nPP
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Then the gcd(D1, D2) is defined by

gcd

(
∑

P∈C

mPP,
∑

P∈C

nPP

)
=
∑

P∈C

min(mP , nP )P

Definition 53 (Principal Divisor). Let R = G/H ∈ K(C) and G,H ∈ K[C]. The

divisor of a rational function R is called a principal divisor and defined as:

div(R) =
∑

P∈C

ordP (R)PP

By definition 48 we know that div(R) = div(G) − div(H). We can see that

div(R) ∈ D0.

Definition 54 (Principal Divisor Group). The principal divisor group is defined

by:

P = {Div(R) | R ∈ K(C)}

We have,

P ⊂ Div0(C) ⊂ Div(C).

Definition 55 (Jacobian). The Jacobian of the curve C is defined by the quotient

group:

J = J(C) = Div0(C)/P

Let D1, D2 ∈ Div(C). We have the following equivalence relation on Div(C):

D1 ∼ D2 ⇔ D1 −D2 ∈ P
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Or equivalently:

D1 ∼ D2⇒ ∃R ∈ K(C) : D1 = D2 + div(R)

2.4 Genus of a Curve

Before going directly to the genus of a curve, we should see a well celebrated problem.

In fact, the solution to this problem gives the definition of genus.

For any divisor D, the set

L[D] = {f ∈ K(C) | (f) +D ≥ 0} ∪ 0

Where (f) is the principal divisor formed by f . L(D) is the space of all rational

functions with poles no worse than D+ (points having positive order) and zeros of

multiplicity atleast as specified by D−.

L(D) is a vector space over K The dimension of L(D) is defined to be `(D). The

problem of finding the dimension of the vector space is the Riemann-Roch problem.

Theorem 56 (Riemann’s Theorem.). There is a constant g such that `(D) ≥

deg(D) + 1− g for all divisors D. The smallest such g is called the genus of C. g is

always a non-negative integer.

The theorem stands as a definition for genus of a curve.



Chapter 3

Hyperelliptic Curves

Do not worry about your difficulties in Mathematics.

I can assure you mine are still greater.

– Albert Einstein (1879 - 1955)

3.1 Basics of Hyperelliptic Curves

Hyperelliptic curves are a class of algebraic curves. They can be seen as generalisations

of elliptic curves. We classify them depending on the genus of the curve. For all genus,

g ≥ one we have hyperelliptic curves. A detailed, simple and beautiful tutorial on

Hyperelliptic Curves is available in [16].

Definition 57 (Hyperelliptic Curves). Let k be a field and K be the algebraic

closure of k. A hyperelliptic curve C of genus g over k is defined by an equation of

the form.

25
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C : y2 + h(x)y = f(x) in k[x, y] (3.1)

Where h(x) ∈ k[x] is a polynomial of degree atmost g and f(x) is a monic polyno-

mial of degree 2g+1 and there are no solutions (x, y) ∈ K2 which simultaneously sat-

isfy y2+h(x)y = f(x) and the partial derivatives 2y+h(x) = 0 and h′(x)ya−f ′(x) = 0.

A singular point on C is a solution (x, y) ∈ K2 which simultaneously satisfies all these

conditions.

So, in other words, a hyperelliptic curve does not have any singular points.

Definition 58 (Rational points, Points at infinity, finite points). Let L be an

extension field of k. The set of L− rational points on C are denoted C(L) is the set

of points P = (x, y) ∈ L× L which satisfy the equation 3.1 of curve C together with

a special point at infinity 1 denoted by ∞. The set of point C(K) is simply denoted

by C. The points in C other than ∞ are finite points.

Definition 59 (Opposite, special and ordinary points). Let P = (x, y) be a

finite point on C. The opposite point of P is the point P̃ = (x,−y−h(x)) (Note that

P̃ is indeed on C.). We also define the opposite of ∞ by ∞̃ = ∞ itself. If a finite

point P satisfies P̃ = P , then it is called a special point. Otherwise P is an ordinary

point.

3.1.1 Examples

1. The figure shows a hyperelliptic curve over the R.

1point at infinity is in the projective plane P 2(K).It is the only projective point lying on the line
at ∞ that satisfies the homogenised hyperelliptic curves equation. If g ≥ two then ∞ is a singular
point but allowed since ∞ /∈ K ×K



3.1. BASICS OF HYPERELLIPTIC CURVES 27

y2 = (x− 2)(x− 1)x(x + 1)(x+ 2)

In this example the genus of the curve is 2.

1 2 3 4 5 6 7 8 9 10−1−2−3−4−5−6

1

2

3

4

5

6

7

−1

−2

−3

−4

−5

−6

−7

2. The following figure shows a hyperelliptic curve of genus 1. In other words, this

is an elliptic curve.

y2 = (x− 1)x(x+ 1)
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1 2 3 4 5 6 7 8 9 10−1−2−3−4−5−6

1

2

3
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6
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−4

−5

−6

−7

3. The hyperelliptic curve given by the equation:

y2 + xy = x5 + 2x4 + x3 − 5x2 + 10

(a) When the curve is defined over the finite field Z11, the valid points are:

(1, 4), (1, 6), (4, 2), (4, 5), (5, 7), (5, 10), (8, 0)∗, (8, 3), (9, 5), (9, 8)

The point which is starred is a special point.

(b) When the curve is defined over the finite field Z7, the valid points are:

(1, 1), (1, 5), (2, 6), (3, 5), (3, 6), (4, 4), (4, 6), (5, 3), (5, 6), (6, 4)

Here we can see that there are no special points.
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Definition 60 (Coordinate ring and polynomial functions.). The definitions

are same as the earlier ones.

Coordinate ring of C over k.

k[C] = k[x, y]/(y2 + h(x)y − f(x))

Coordinate ring of C over K.

K[C] = K[x, y]/(y2 + h(x)y − f(x))

Elements of K[C] are called polynomial functions.

Definition 61 (Function field and rational functions). The function field k(C)

of C over k is the field of fractions of k[C]. Similarly, K(C) the function field of C

over k is the field of fractions of K[C].

K(C) =

{
G

H
| G,H ∈ K[C], deg(G) = deg(H)

}
2

An element of K[C] is called a rational function.

3.2 Divisors

In the last chapter we have given all the definitions and primary details of divisors of

an algebraic curve. Those are applicable for a divisor of hyperelliptic curves also.

But here I can provide you with a simple but good example.

Example 62. Let P = (x1, y1) be a point on C. Then,

2the condition for degree is necessary iff G, H are from the homogeneous coordinate ring [4]
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div(x− x1) =





P + P̃ − 2∞ P is ordinary ,

2P +−2∞ P is special .

(x− x1) is the line which is parallel to y axis and passes through the point (x, 0).

The y value of C for the value x1 is y1. The line passes through this point of the

curve C. If the point P is an ordinary point, then there are two y values for the same

x. These points correspond to P and P̃ .

Or

If P is a special point, its opposite also is the same point P and the line passes

through it. So is the divisor.

3.2.1 Semi-Reduced Divisors

A semi-reduced divisor is a divisor of the form:

D =
∑

i

miPi −

(
∑

i

mi

)
∞

Where each mi ≥ 0 and all the Pi’s are finite points such that if P ∈ supp(D),

then P̃ /∈ supp(D) unless P is special in which case mi = 1.

Fact 63. For each divisor D ∈ D0 there exists a semi-reduced divisor D1(D1 ∈ D
0)

such that D ∼ D1.

3.2.2 Reduced Divisors

Definition 64 (Reduced Divisor). Let D =
∑

imiPi − (
∑

imi)∞ be a semi-

reduced divisor. We callD to be a reduced divisor, if it satisfies the following property.
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∑
mi ≤ g

Fact 65. For every divisor D ∈ D0, there exists a unique reduced divisor D1 such

that D ∼ D1.

3.3 Jacobian of a Curve

In the last chapter we saw the definition of jacobian of a curve, here let us look into a

little more details. We have defined D0 = {set of all divisors of degree 0}. The set of

divisors of rational functions form the principal divisors, P ⊂ D0. And the jacobian,

J is the quotient group D0/P . If D1, D2 ∈ D
0, D1 ∼ D2 if D1 − D2 ∈ P . That is,

D1 = D2 + (f) for some f ∈ K(C). By definition itself J is a group.

3.3.1 Group operation in Jacobian

What is the group operation in the jacobian? Ordinary addition itself is the group

addition. The operation of divisor addition satisfies all the group axioms. But for

the sake of a formal way we can say that it is the addition of two reduced divisors.

We know, J is a group of equivalence classes from the facts 63 and 65. we know

that every divisor ∈ J has an equivalent reduced divisor. In every class of J , there

will be a unique reduced divisor. So, addition in the jacobian is the addition of two

classes. We can represent the classes by the unique reduced divisor present in each

class 3. So, adding two classes boils down to adding two reduced divisors. Once we

add two reduced divisors, we get either a reduced divisor or a semi-reduced divisor.

3this is similar to representing Zp by the smallest positive numbers which can represent the class
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If it is a reduced divisor it represents the resulting class. Or if it is a semi-reduced

divisor, we can have the reduced divisor equivalent to the semi-reduced divisor to

represent the resulting class.

Let [D1] and [D2] are the two classes to be added. And the result be [D3].

[D1] + [D2] = [D3]

This is done by:

D1r ⊕D2r = D3r

Where D1r represents [D1], D2r represents [D2] and D3r represents [D3] and all

Dir are reduced divisors. And ⊕ stands for the addition of the divisors and then the

reduction.

How do we do this in practice? For the addition in the jacobian, we have many

algorithms available. They use different types of representations of the divisors. Be-

fore looking into the details of the algorithms, let us have a look to the different

representations of divisors.

Definition 66 (k-rational Divisor). Let P (x, y) be a point on C and σ be an

automorphism of K over k. Then P σ = (xsigma, ysigma) also is a point on C.

A divisor D =
∑
mPP is a k-rational divisor if Dσ =

∑
mPP is equal to D for

all automorphisms σ of K over k.

A divisor is k-rational does not mean that all the points are k-rational.
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3.4 Representations of Divisors

3.4.1 Point Representation or Explicit Representation

This is the simplest form of representation. This is the representation which directly

follows from the definition of the divisor word by word. Here, we represent the divisors

just as the formal sum of points along with the order of points. If P = (xi, yi) are the

points in the support of the divisor and mi’s are the order of point Pi’s respectively:

D =
∑

i

miPi

For computational purposes this form of representation is not advisable. One

drawback of this form is that the values of xi’s and yi’s are in K which is the closure

of the field k on which we have defined our curve.

3.4.2 Mumford Representation

This is the representation which is mostly used for the computing purposes. Once we

state how is the representation, we will come to the advantages of this representation.

If we have a semi-reduced divisor, it can be represented by two polynomials. Let

us see how is it.

let D =
∑

imiPi − (
∑
mi)∞

The two polynomial are:

1. U(x) = Π(x− xi)
mi : This is a monic polynomial of degree

∑
mi.

In fact, this is a polynomial which has root having the same x-coordinate of the

points in the support of the divisor. The multiplicities of the roots also is the

same as the order of the corresponding point.
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2. Here we have two cases.

(a) If all the points Pi’s are distinct.

V (x) =
∑

i

yi

(
Πj 6=i (x− xi)

Πj 6=i (xi − xj)

)

V (x) is the unique polynomial of maximum degree one less than degree of

U . i.e, deg(V ) ≤ deg(U)− 1. Also, that V (xi) = yi for all xi.

(b) If all the points are not distinct.

We have to find out a V which satisfies the following condition along with

the condition V (xi) = yi.

V (x) =




The unique polynomial of degree less than

∑
imi − 1 such that if multiplicity of Pi = mi

(
d
dx

)j
[V (x)2 + V (x)h(x)− f(x)]x=xi

= 0

for 0 ≤ j ≤ mi − 1




In other words, V (x) is the unique polynomial such that:

(x− xi)
mi | (V (x)2 + V (x)h(x)− f(x))

This, what we told above is given by the following theorem [16, 17].

Theorem 67. Let D =
∑

imiPi − (
∑
mi)∞ be a semi-reduced divisor. Where

P = (xi, yi) are the points and mi are the order of the points respectively.

Let a(x) = Π(x− xi)
mi and b(x) be a unique polynomial which satisfies:
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1. deg(b(x)) ≤ deg(a(x))

2. b(xi) = yi for all i for which mi 6= 0

3. a(x) divides (b(x)2 + b(x)h(x)− f(x))

Then D = gcd(div(a(x)), div(b(x)− y)).

For proof of the theorem [16] and for more details of mumford representation

refer [17].

Now we can see whether these polynomials a(x) and b(x) are constructible. a(x)

is easy. For b(x):

1. P = (xi, yi) is ordinary.

Let b(x) =
∑

i ci(x−xi)
mi be the polynomial we need. It is easy to see that b(x)

satisfies the conditions. We have to find out the constants ci’s. From bi(xi) = yi

we get c0. Then (bi(x)
2 + bi(x)h(x)− f(x)) = 0 for x = xi and for all the mi− 1

derivatives. This gives us enough equations to find out the constants.

2. P = (xi, yi) is special. (mi = 1) Here we can directly see that bi(xi) = yi

satisfies all the conditions.

Now, using Chinese Remainder Theorem [9] for polynomials, we can find a unique

polynomial b(xi) ∈ k[x] which can represent the divisor along with a(x).

b(x) ≡ bi(x)(mod(x− xi)
mi) for all i

The polynomials a(x) and b(x) together will represent the divisor.
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The main advantage of this representation is that we can have the representation

in k[x]. We need not bother about the closure of k. All the calculations also can be

done in k[x]. This we will see later.

3.4.3 Chow Representation

Definition 68 (u-resultants). Let F,G,H ∈ k[x, y, z] be three homogeneous poly-

nomials of degrees f, g and h respectively with indeterminate coefficients. Their

multi-variate resultant is a fixed polynomial (denoted res(F,G,H)) of degree fgh in

the coefficients such that under any specialization σ of these coefficients, σres(F,G,H)

vanishes identically if and only if σF , σG and σH have common projective zeros.

Now, Let us replace H by L(ū) where L(ū) denotes the linear form uxx+uyy ∗uzz

where ux, uy, uz are new indeterminates. The u-resultant of F and G is u− res(F,G)

defined to be res(F,G, L) which is a polynomial of degree fg in the indeterminate

(ū).

U − res(F,G) vanishes identically if and only if F and G have infinitely many

common projective zeros.

If F and G have only a finite number of common zeros P1, . . . , Pm, then:

u− res(F,G) = R(ux, uy, uz) = Π(xiux + yiuy + ziuz)
ni

Where P = (xi, yi, zi) and ni is the intersection multiplicity at Pi. For more details

of construction of u− res, refer [1, 2].

Now let us consider F to be C and G to be the divisor polynomial. We have all

the Pi’s and ni’s.
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Definition 69 (Chow / Associated form). Let D =
∑

imiPi be an intersection

cycle on C. Then the chow form or the associated form of D is the polynomial

R ∈ K[x, y, z] where

R((ū)) = Π(xiux + yiuy + ziuz)
mi

Chow forms have a very important property which makes them attractive. The

property is:

Fact 70. An intersection cycle D is k − rational if and only if its chow form is

k − rational. i.e, when R ∈ k[(ū)].

This is important because, for our purposes, we need only k − rational divisors.

So, we can again do all the computations in the base field itself rather than in K.



Chapter 4

Addition

”This principle is so perfectly general that no

particular application of it is possible.”

– George Polyá

We have come across all the pre-requisites for addition of divisors. In this chapter

we will see how addition is done. There are different methods for addition. We will

see them one by one.

4.1 Geometrically what is it?

We are concerned about the addition of reduced divisors of a genus g hyperelliptic

curve. Consider that we have two reduced divisors, D1 and D2.

D1 =
∑

i

miPi −

(
∑

i

mi

)
∞ and D2 =

∑

i

miQi −

(
∑

i

mi

)
∞

38
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where the Pi and Qi are points on C.

The idea is to find out a curve which passes through the points Pi and Qi with

corresponding intersection multiplicities so that the intersection cycle of the curve will

give D1 +D2. Let us draw that curve. We can see that this new curve will intersect

with a few more points of C. Now we have to draw a new curve which passes through

the opposites of the new intersections with the same multiplicities of their opposites

1. This new intersection cycle is the resulting reduced divisor which is the desired

sum D1 +D2

For ease of explanation, we will consider curve of genus 2. So we have:

D1 = P1 + P2 − 2∞ andD2 = Q1 +Q2 − 2∞

From geometry, we know that these points determine a unique cubic polynomial

b(x) which passes through them with respective multiplicities (in this case all multi-

plicities are 1). Substituting b(x) for y in the equation of the hyperelliptic curve, we

get:

b(x)2 + b(x)h(x) = f(x) (4.1)

Solving the equation gives us 6 solutions (points on the curve) of which 4 of

them are known to us. Let the new points to be R1 and R2. Then the new divisor

D3 = R̃1 + R̃2 − 2∞ is the sum of D1 and D2.

4.1.1 Example

Here is the graph of the example mentioned above.

1The reason for this is to have an identity element [19]



4.1. GEOMETRICALLY WHAT IS IT? 40

Example 71. Blue and red lines are divisors D1 and D2 respectively. The new poly-

nomial b(x) is represented by the green curve. It intersects the hyperelliptic curve at

points at six points including P1 and P2 of D1, Q1 and Q2 of D2 and the new points

R1 and R2. Then we can calculate the opposites of these new points and get R̃1 and

R̃2 respectively. The new curve (magenta) is the resultant divisor.
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Example 72. We will see a more concrete example. Let us take a hyperelliptic curve

of g = 1 which is an elliptic curve. How is the addition done in that case. As the genus

is one, the reduced divisor is nothing but a single point P and also the multiplicity

cannot exceed one. So our D1 and D2 are nothing but two points P and Q.

y2 = (x− 2)x(x+ 4)
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We have the elliptic curve with points P and Q to be added together. We find

out a line(curve) passing through them. This new line passes through the point R.

Now we take the reflection of R on x-axis. The reflection R̃ is the sum of P and Q.

4.2 Algebraic methods

In the last section we got a feel of how to add divisors. In the case of elliptic curves

it was very easy. But in the general case, drawing a curve is not an easy thing. What

we can do is that algebraically find out the equation of the curves/divisors. This is

not very difficult. In fact, we can use the representations we saw in the last section.

The one which is most popular is mumford representation. The polynomials a(x) and

b(x) contains all about the divisors. Also there is a method which uses chow forms.

4.2.1 Cantor’s Algorithm

In 1987 Cantor [3] came up with an algorithm for the addition of reduced divisors of

hyperelliptic curves. The algorithm is known as Cantor’s algorithm. As we have two
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phases for addition of divisors, the algorithm also has two phases. Cantor’s method

uses mumford representation.

1. Composition : This is the phase in which we find out the new divisor which is

the sum of the input divisors.

2. Reduction : In this phase we take prune out the parts which are not needed

and take the inverse of the resulting one to get the result.

Composition

• Input: Reduced divisors D1 = div(a1, b1) and D2 = div(a2, b2) both defined

over k.

• Output: A semi-reduced divisor D = div(a, b) defined over k such that D ∼

D1 +D2.

1. Use the extended Euclidean algorithm to find polynomials d1, e1, e2 ∈ k[u] where

d1 = gcd(a1, a2) and d1 = e1a1 + e2a2

2. Use the extended Euclidean algorithm to find polynomials d, c1, c2 ∈ K[u] where

d = gcd(d1; b1 + b2 + h) and d = c1d1 + c2(b1 + b2 + h)

3. Let s1 = c1e1, s2 = c1e2 and s3 = c2, so that

d = s1a1 + s2a2 + s3(b1 + b2 + h) (4.2)
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4. Set

a = a1a2 = d2 (4.3)

b =
s1a1b2 + s2a2b1 + s3(b1b2 + f)

d
mod a (4.4)

Again, I am not providing the proof. In fact, the proof given by Cantor contained

a few errors and later when Koblitz gave the algorithm, he did not give any proof.

But for the proof, readers can refer [12, 3, 16].

Reduction

Reduction part is comparatively simpler and easy to understand. Here also we skip

the proof - for details [12, 3, 16]. But here, the algorithm is pretty clear that no one

needs a proof to see that it is indeed correct.

Input: A semi-reduced divisor D = div(a, b) defined over k.

Output: The (unique) reduced divisor D′ = div(a′, b′) such that D′ ∼ D.

1. Set

a′ = (f − bh− b2)/a (4.5)

b′ = (−h− b) mod a′ (4.6)

2. If degx(a
′) ≥ g then set a← a′, b← b′ and go to step 1.

3. Let c be the leading coefficient of a′, and set a′ ← c−1a′
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4. Output(a′, b′).

4.2.2 Other versions

As we told in the introduction, we are looking for faster addition in the jacobian of

hyperelliptic curve. The method given above is a polynomial time algorithm. But

when it comes to the number of micro-instructions needed in a processor, this version

of the algorithm is too general to implement. So we have many different refined

version of this algorithm or slight variants of this algorithm which is tailor made for

different genus hyperelliptic curves.

Harley’s Algorithm

In the year 2000, Rob Harley [6] came up with an algorithm which is very similar to

the original Cantor’s algorithm. The algorithm was optimised and made for genus

two curves [5]. In the tailor made method for genus two curves, addition and doubling

are handled separately. Finally the number of operations comes upto two inversions,

three squarings and 24 multiplications for the genus 2 case.

Explicit formulae by Tanja Lange

In a recent paper published 2002, by Tanja Lange [14] she gives an explicit formulae

for arithmetic on genus two curves over fields of even characteristic and for arbitrary

curves. The formula is faster that all the methods which existed before that. It allows

to obtain fast arithmetic on hyperelliptic curves of genus 2. The algorithm is a case

by case analysis of different situation which can arise.

The method followed by Lange has inspired my team to investigate the things in a
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similar way. The number of operations needed for the most difficult case come to be

one inversion, three squarings and 22 multiplications for genus 2 hyperelliptic curves

in her method.



Chapter 5

Point addition

Just because something doesn’t do what you planned it to do

doesn’t mean it’s useless.

– Thomas Alva Edison

In this chapter I shall explain the method developed by my team. This uses the

explicit representation of divisors. The main advantage of the method is that the

composition part is very efficient. The drawback is that the reduction part relies on

a probabilistic algorithm rather than a deterministic one which is preferred.

5.1 Composition

As in Cantor’s algorithm, we have two phases - composition and reduction. First we

go for composition.

Input: Two reduced divisors D1 and D2 in standard form. (standard form is the

D =
∑

P∈C npP form of the divisor in explicit representation, the terms in the sum

46
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are sorted in non-decreasing order of their x coordinate) Let them be:

D1 = α1P1 + α2P2 + · · ·+ αmPm − (∗)∞

and

D2 = β1Q1 + β2Q2 + · · ·+ βnQn − (∗)∞

As they are reduced divisors,
∑

i αi and
∑

j βj are less than g.

Output: A semi-reduced divisor

D = γ1T1 + γ2T2 + · · ·+ γsTs − (∗)∞

Method: Our method is just like merging the divisors together. While merging

them, we look for the conditions to decide the value of γi.

i := j := k := 1

while k ≤ m + n

if i > m

γk := βj; Tk := Qj; j := j + 1;

fi

if j > n

γk := αi; Tk := Pi; i := i+ 1;

fi

if Pi(x) < Qj(x)
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γk := αi; Tk := Pi; i := i+ 1;

fi

if Pi(x) > Qj(x)

γk := βj; Tk := Qj; j := j + 1;

fi

if Pi(x) = Qj(x)

if (Pi(y) +Qj(y) + h(x)) = 0

if Pi(y) = Qj(y)

k := k − 1;

else

γk := ‖αi − βj‖

if αi > βj

Tk := Pi;

else

Tk := Qj;

fi

if γk = 0

k := k − 1;

fi

fi

else if Pi(y) = Qj(y)

γk := αi + βj; Tk := Pi;

fi

fi
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i := i+ 1; j := j + 1;

fi

k := k + 1;

5.1.1 Details of the composition algorithm

We will go through all the conditions.

1. while k ≤ m + n

We have to go through all the points of both the divisors.

2. if i > m

This if condition will be satisfied iff all the points from D1 is already added to

the result. So, we have to add the points Qj from D2 to the result. And, we

can do it unconditionally.

The same argument is valid for if j > n with D1 and D2 interchanged their

roles.

3. if Pi(x) < Qj(x)

This if is true when the x coordinate of Pi is smaller than that of Qj or we can

say that the x coordinates are not the same. Two points with different xs do

not have any effect on each other. So, we add the one which is having the lesser

value for x coordinate.

the same explanation stands for if Pi(x) > Qj(x)

4. Pi(x) = Qj(x)

Both the x coordinates are the same. Here arise two cases.
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(a) Pi(y) +Qj(y) + h(x) = 0

This condition is satisfied when Pi +Qj = O i.e, Pi = Q̃j This can happen

when Pi is an ordinary point or a special point.

i. Pi is a special point.

From the condition, it is clear that Pi = Q̃j and being a special point

P̃i is Pi itself. i.e, Pi = Qj = P̃i = Q̃j. And from the definition we

know that, the coefficients αi and βj are 1. If we have special points

in a semi-reduced divisor, its coefficient will be either 0 or 1. Here, it

cannot be 1. So, the algorithm skips the points.

ii. Pi is an ordinary point.

So is Qj also. Here, both the points are opposites of each other. We

have to take the the point which dominates. i.e, points will cancel out

each other (since they are opposites of each other) and the one with

larger coefficient will remain with a multiplicity of abs(αi − βj).

If αi is larger than βj, Pi will be there in the result. If αi is smaller

than βj, Qj will be there in the result. Otherwise, both of them will

not be there in the result.

(b) Pi(y) +Qj(y) + h(x) 6= 0 and Pi(y) = Qj(y)

This means that Pi 6= Q̃j. Both have same x and y. So, Pi = Qj and

is ordinary point. We have just to add their multiplicities together. i.e,

γk = αi + βj.

5. Increments and decrements.

We ought to adjust the indices i, j, k according to our decision to include or

exclude the points.
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5.1.2 Proof and equivalence to Cantor’s composition

The proof that the algorithm is correct is there in the detailed construction of the

algorithm. And it is clear that the result is a semi-reduced divisor.

For seeing the equivalence to Cantor’s algorithm, we have to see different cases.

1. P is an ordinary point.

(a) P ∈ D1 and P ∈ D2

And with multiplicities αi and βj each. From Cantor’s method we can see

that in the result, the multiplicity of P is αi + βj.

In our method also the result is the same.

(b) P ∈ D1 and P̃ ∈ D2

And with multiplicities αi and βj each. From Cantor’s method we can

see that in the result, the point with larger multiplicity remains with the

resultant order being the difference of αi and βj.

The geometric version also gives the same result.

(c) P ∈ D1 and P /∈ D2 and P̃ /∈ D2.

In this case the d calculated in Cantor’s method cannot remove the point

from the result and the result will contain P with the same multiplicity it

has in D1.

Geometric version also gives the same result.

2. P is a special point.

In this case, the coefficient of P will be always 1.
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(a) P ∈ D1 and P ∈ D2

In Cantor’s method, both have common point P with same multiplicity.

Hence in the division step, the points will be removed from the result.

Hence P will not be a part of the result.

The same happens with the geometric version.

(b) P ∈ D1 and P /∈ D2 (W.L.G)

This is the same as case b when P is an ordinary point. The result is same

as that of Cantor’s algorithm.

Hence the divisor given by the merging method is equivalent to the divisor

which is represented by the polynomials (a, b) of Cantor’s algorithm which uses

mumford representation.

5.2 Towards Mumford Representation

From the composition part it is clear that not in all cases we have to go through the

reduction part. The composition part is the same for any special cases and general

cases. But, here in the reduction part, we have taken the special case of g to be two.

So, hyperelliptic curves of genus two are the only consideration in our reduction part.

5.2.1 Basic Idea about Conversion

Definition 73 (Weight of a divisor). Weight of a divisor is defined to be the

degree of the divisor. Denoted by W (D).

Here in our case, the maximum degree is two. So is the weight. There can happen

different combinations of input divisors for composition part.
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1. W (D1) is one, W (D2) is one. We are sure that the result of composition part

is a reduced divisor. We can avoid the reduction part.

2. W (D1) is one, W (D2) is two. (without loss of generality, this includes W (D1)

is two and W (D2) is one)

The result can be of weight varying from one to three. If W (D) is one or two

reduction not needed. But if W (D) is three, we have sub-cases.

(a) D = P1 + P2 + P3 all P ’s distinct

(b) D = 2P1 + P2 two points with one having order two.

(c) D = 3P1 only a single point with order three.

3. W (D1) is two, W (D2) is two.

In this case, the result can be of weight varying from one to four. If W (D) is

one or two reduction not needed. But if W (D) ≥ 2 is, we have sub-cases to be

reduced. If the weight of result is three, the sub-cases are listed above. If the

weight is four, we have the following sub-cases:

(a) D = P1 + P2 + P3 + P4 all P ’s distinct

(b) D = 2P1 + P2 + P3 three points with one point of order two.

(c) D = 2P1 + 2P2 two points with order two each.

(d) D = 3P1 + P2 three points with one point of order three.

(e) D = 4P1 a single point with order four.

In all the cases we have to use reduction, we have to find out new points which

will be the reduced divisor. The approach we take is to convert the divisors into
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mumford representation and then reduce them using Cantor’s reduction phase and

then find the new points. As a first step, we should find the mumford representation

of the divisors.

5.2.2 Different cases in detail

All the cases which can arise are listed above. Now let’s see how to handle them. In

all of them, x-coordinates are known, hence finding the polynomial a is not difficult.

In fact, a(x) = (x− xi)
mi . For finding the polynomial b(x) there arise different cases.

1. D = P1 + P2 + P3

To find b(x), we know the conditions. We have the y-coordinates also. We use

the method given by Mumford [17] himself.

b(x) =

3∑

i=1

yi

(
Πj 6=i (x− xi)

Πj 6=i (xi − xj)

)

b(x) = y1
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)

+ y2
(x− x1)(x− x3)

(x2− x1)(x2 − x3)

+ y3
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)

2. D = 2P1 + P2

Here in this case P1 has an order of 2. We cannot use the method of Lagrange
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to find out b(x). The polynomial b(x) is to be found using Chinese remainder

theorem [9] from the polynomials which satisfy the condition at P1 and P2 each.

b1(x) = c2(x− x1) + c1

We can see that by applying the condition to the b1(x), all are satisfied. So,

this is the polynomial for the point P1. For P2, the order is 1. Therefore,

b2(x) = y2

The values of c1 and c2 are unknown. The method to find out the values are

explained in detail at the end of all the cases. The method is used by all the

cases in general.

3. D = 3P1

In this case, there is only one point P1 with order 3. From the previous case, it

is easy to see that the polynomial is of the form:

b(x) = c3(x− x1)
2 + c2(x− x1) + c1

Again here also, the values of constants have to be computed. The general

method is explained after all the cases.

4. D = P1 + P2 + P3 + P4

All points are distinct. Lagrange’s method can be employed.
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b(x) =

4∑

i=1

yi

(
Πj 6=i (x− xi)

Πj 6=i (xi − xj)

)

b(x) = y1
(x− x2)(x− x3)(x− x4)

(x1 − x2)(x1 − x3)(x1 − x4)

+ y2
(x− x1)(x− x3)(x− x4)

(x2− x1)(x2 − x3)(x2 − x4

+ y3
(x− x1)(x− x2)(x− x4)

(x3 − x1)(x3 − x2)(x3 − x4)

+ y4
(x− x1)(x− x2)(x− x3)

(x4 − x1)(x4 − x2)(x4 − x3)

5. D = 2P1 + P2 + P3

It is evident from the previous cases that:

b1(x) = c2(x− x1) + c1

b2(x) = y2

b3(x) = y3

6. D = 2P1 + 2P2

Using the same method as above:
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b1(x) = c2(x− x1) + c1

b2(x) = c4(x− x2) + c3

7. D = 3P1 + P2

Now it has very easy to see the polynomials we need without thinking much.

Already computed ones are available.

b1(x) = c3(x− x1)
2 + c2(x− x1) + c1

and

b2(x) = y2

8. D = 4P1

This case is the one which will take much of our computation. Here, b(x) will

be of the form:

b(x) = c4(x− x1)
3 + c3(x− x1)

2 + c2(x− x1) + c1

The values of c1, c2, c3, c4 are to be determined.

Now we can take the general case. For a point P (xk, yk) having order n, the

polynomial b(x) will be of the form



5.2. TOWARDS MUMFORD REPRESENTATION 58

b(x) =

n−1∑

i=1

ci(x− xk)
i

This should satisfy the conditions given by mumford representation. By default,

it satisfies all the conditions except ((x−xk)
n | (b2 +bh−f)). By giving proper values

for ci’s this condition must be satisfied. In the case of genus 2 curves, maximum value

of n is 4. ie,

b(x) = c4(x− x1)
3 + c3(x− x1)

2 + c2(x− x1) + c1

F : b2 + bh− f

Replace (x− x1) by X1.

F : c24X
6
1 + c23X

4
1 + c22X

2
1 + c21

+ 2c4c3X
5
1 + 2c4c2X

4
1 + 2c4c1X

3
1

+ 2c3c2X
3
1 + 2c3c1X

2
1 + 2c2c1X1 − f (5.1)

F : c24X
6
1 + 2c4c3X

5
1 + (c23 + 2c4c2)X

4
1

+ 2(c4c1 + c3c2)X
3
1 + (c2 + 2c3c1)X

2
1

+ 2c2c1X1 + c21 − f (5.2)
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dF

dx
= F ′ : 6c24X

5
1 + 10c4c3X

4
1

+ 4(c23 + 2c4c2)X
3
1 + 6(c4c1 + c3c2)X

2
1

+ 2(c2 + 2c3c1)X1 + 2c2c1 − f
′ (5.3)

d2F

dx2
= F ′′ : 30c24X

4
1 + 40c4c3X

3
1

+ 12(c23 + 2c4c2)X
2
1 + 12(c4c1

+ c3c2)X1 + 2c2 + 4c3c1 − f
′′ (5.4)

d3F

dx3
= F ′′′ : 120c24X

3
1 + 120c4c3X

2
1

+ 24(c23 + 2c4c2)X1 + 12(c4c1

+ c3c2)− f
′′′ (5.5)

By equating F, F ′, F ′′, F ′′′ to zero and substituting X1 = 0 (ie, put x = x1), we

get the values of constants as follows.

c1 = y1

c2 =
f ′

2c1
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c3 =
f ′′ − 2c2

4c1

c4 =
f ′′′ − 12c3c4

12c1

From the equation of C we know that f is a function of x of degree 2g + 1. In

case genus g = 2, f is of degree 5. Let f be

f = f5x
5 + f4x

4 + f3x
3 + f2x

2 + f1x
1 + f0

The polynomial b(x) has to be calculated using Chinese remainder theorem. For

that we can use the same method used by in [6] or [14]. The reduction algorithm is

as follows:

5.3 Reduction

• Input : A semi-reduced divisor D in its explicit form. (output of composition

phase)

• Output : A reduced divisor which is equivalent to the input.

1. Convert to mumford representation.

(a) Depending on the weight of the divisor and the number of supports and

their orders, find out which one of the above cases it falls to.

(b) Find the polynomial a(x) and b(x) according to the calculations listed

above.
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2. Reduce

(a) a′ = (b2 + bh− f)/a

(b) b′ = (−b− h) mod a′

3. Convert back to explicit form.

(a) Factorize a′ : Uses probabilistic methods for root finding in finite fields.

(b) Evaluate the value of b′ at the values of x calculated in the last step.

4. Reproduce the new divisor in standard form.

5.4 Analysis

5.4.1 Composition

As we can see the while loop executes m+n times, which is less than 2g. We dont have

any multiplications also except for the computation of h(x). That we can calculate

in g multiplications and g additions.

The operations in total are

Additions:

g + g + 2g (for incrementing i, j, k)

g (in calculating h(x))

2 (Piy +Qjy + h(x))

2 (like ai - bj and decrementing k)

ie, 5g + 4 additions.
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Multiplications:

g2 (for calculating h(x))

Generally, additions are not considered to be expensive operations. Hence, the

algorithm takes only g2 multiplications. When the polynomial h(x) is a constant

polynomial, there will be no multiplications needed.

5.4.2 Reduction

Reduction is the subtle part of the whole algorithm. There are 3 different parts for

the reduction phase.

1. Conversion to mumford representation.

In this part we have explicit formulae for the polynomial b(x). But the constants

are to be calculated. In their calculation the derivatives of f(x) has to be

computed. This part of the algorithm is O(g).

2. Reduction.

Here, the explicit methods of Lange [14] can be employed. Hence we have the

exact number of operations needed for different cases. They depend on the

degree of b(x). For details see section 4 of [14].

3. Root finding.

This part employs a probabilistic algorithm to factorise the polynomial a(x).

The probabilistic algorithm is too expensive that it is of O(n4) where n is the

size of the base field. Next step is to evaluate b(x) at the new points. This

computation will take maximum of four multiplications.
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Details of finding roots in finite fields will be given in any Number Theory

books. You can see the algorithm in section 2 of [13].

5.4.3 Pros and Cons

One of the advantage is that the composition algorithm is one of the simplest and

needs very less computation. Unfortunately, the algorithm as a whole has more

drawbacks than advantages. I shall give them as follows

1. Reduction is very expensive.

The reduction step which is of O(n4) where n is the size of the base field, is

very expensive. Also that it is probabilistic which takes more time to compute.

2. Operations are not in k.

The operations cannot be done in k. As the values of coordinates are in a

quadratic extension of k. The size of operands are of double the size of the base

field. This reduces the speed of the algorithm by a great extent.



Chapter 6

Addition using Chow Forms

”The art of doing mathematics consists in finding that special case

which contains all the germs of generality.”

– David Hilbert

How to represent a divisor in chow form is given in section 3.4.3. This chapter

gives the algorithm for divisor addition which adds two divisors given in their chow

form. In the chapter, the curve under consideration is of genus two. First part of the

chapter gives a sketch of composition algorithm. Later, the chapter takes the reader

to more specific details of the algorithm for genus two hyperelliptic curves and gives

a sketch of how the reduction to be done.

6.1 Composition

As the inputs for the algorithm are reduced divisors, they are of maximum weight

two. And from section 3.4.3, the chow representation of a divisor D =
∑

imiPi is:

64
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R = Π(xiux + yiuy + ziuz)
mi

There for R will be a multi-variate polynomial of maximum degree two (genus 2).

A divisor can be of degree one or of degree two. A divisor of degree one is as follows:

R = (xiux + yiuy + uz)

and a divisor of degree two is as follows.

R1 = x1x2u
2
x + y1y2u

2 + u2
z + (x1y2 + x2y1)uxuy + (x1 + x2)uxuz + (y1 + y2)uyuz

Definition 74 (Opposite/Inverse of a divisor). If R is a divisor given in its chow

form, we can define the opposite of R to be R̃ as follows:

R̃ =





R with coefficient of uy term negated if degree(R) = 1

R with coefficient of uyuz term negated if degree(R) = 2

In all the practical cases, the value of z is 1.

The basic idea of the composition is given in the next subsection. Subsection after

that gives the complete algorithm.

6.1.1 Basic Idea

As in the case of reduction in point addition, here many different cases arise. These

different cases which may arise are listed below.

1. No common points. gcd(R1, R2) = 1.
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The divisors R1 and R2 have no common points. This can be checked by

calculating the gcd. Three sub-cases arise:

(a) R1 and R2 have one pair of opposite points.

This can be found out by calculating gcd(R1, R̃2). If gcd(R1, R̃2) = R3 of

degree one, then result, R is:

R =
R1R2

R3R̃3

(b) Both the pairs are opposites.

Here gcd(R1, R̃2) will be of degree two. Then the result must be zero

divisor. i.e, 1

(c) No opposite pairs.

By seeing gcd(R1, R̃2) is 1, we can understand that we are in this sub-case.

The result is R = R1R2.

2. One common point. gcd(R1, R2) = R3 of degree one.

Here also sub-cases arise:

(a) Common point is special. R3 = R̃3.

i. The other points are separate.

If gcd(R1, R̃2) = R4 is same as R3 then one common special point and

other points are separate. Result R will be:

R =
R1R2

R3R̃3
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ii. The other points are opposites of each other.

If gcd(R1, R̃2) = R̃2 = R1 then, one common special point and other

points are opposite. Result R will be 1:

(b) Common point is not special. R3 6= R̃3.

i. The other points are separate. gcd(R1, R2) = R3 of degree 0.

The result R is:

R = R1R2

ii. The other points are opposites of each other. gcd(R1, R2) = R4 6= R3

of degree one.

R =
R1R2

R4R̃4

3. Two common points. gcd(R1, R2) = R3 = R1 = R2 of degree two.

(a) One pair special. gcd(R1, R̃2) = R4 of degree one.

The special points will cancel out. The result will be:

R =
R1R2

R4R̃4

(b) Both pairs special. gcd(R1, R̃2) = R4 of degree two.

Both the pairs will cancel out each other. And the result will be zero

divisor. R = 1.

(c) None of the common points are special. gcd(R1, R̃2) = R4 is of degree 0.
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Nothing to be cancelled out. All the points add up to the result R.

R = R1R2

The details listed above are the main structure of the algorithm. The problems

we face are the calculation of multi-variate gcd and that too very frequently. This

problem can be avoided by careful handling of the cases and careful comparisons of

the coefficients. The detailed algorithm is given in next section.

6.1.2 The Algorithm

The algorithm itself is divided into three major parts depending on the three combi-

nation of weights of the divisors.

• Input: The inputs for the algorithm are the chow forms of reduced divisors.

Let us call them a and b. Both of them are multi-variate polynomials.

• Output: The output of the algorithm also is chow form of a divisor. But the

divisor is either reduced or semi-reduced. The result is named as R.

Case I : degree(a) = 1 and degree(b) = 1.

comment: a = x1ux + y1uy + uz

comment: b = x3ux + y3uy + uz

if x1 = x3

if y1 = y3

comment: This means they are opposites of each other



6.1. COMPOSITION 69

R = 1

comment: Result is zero divisor

else

comment: Not opposites nor special point. Must be same non-zero points

R = a.b

fi

else

comment: No common x

R = a.b

fi

The result R is reduced divisor.

Case II: degree(a) = 1 and degree(b) = 2.

comment: Here the polynomials will be of the following form.

a = x1ux + y1uy + uz

b = b1u
2
x + b2u

2
y + b3u

2
z + b4uxuy + b5uxuz + b6uyuz

b1 = x3x4 b4 = x3y4 + x4y3

b2 = y3y4 b5 = x3 + x4

b3 = 1 b6 = y3 + y4

if x1(b5 − x1) = b1
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comment: x1 is a common x

if y1(b6 − y1) = b2

comment: y coordinate also is common.

comment: But which y? - y3 or y4? Let x1 = x3.

comment: Then y3 can be either y1 or −y1.

if y1 = 0

comment: The common point is special

R = b/a

comment: We can do it without division

R = (b5 − x1)ux + (b6 − y1)uy + uz

else

comment: Common point is not special

R = ab

comment: No short cuts

fi

else

comment: y3 = −y1

comment: Cancel them out

R = (ab)/(aã) = b/ã

comment: this also without real division we can do

R = (b5 − x1)ux + (b6 + y1)uy + uz

fi

else

comment: No common x coordinate
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R = ab

fi

Case III: degree(a) = 2 and degree(b) = 2.

Comment: Here the polynomials will be of the following form.

a = a1u
2
x + a2u

2
y + a3u

2
z + a4uxuy + a5uxuz + a6uyuz

a1 = x1x2 a4 = x1y2 + x2y1

a2 = y1y2 a5 = x1 + x2

a3 = 1 a6 = y1 + y2

b = b1u
2
x + b2u

2
y + b3u

2
z + b4uxuy + b5uxuz + b6uyuz

b1 = x3x4 b4 = x3y4 + x4y3

b2 = y3y4 b5 = x3 + x4

b3 = 1 b6 = y3 + y4

We just calculate a few more constants:

a7 = a5 × a6 = x1y1 + x2y2 + x1y2 + x2y1

a8 = a7 − a4 = x1y1 + x2y2

Similarly b7 and b8.
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if a1 = b1

comment: x1x2 = x3x4

if a5 = b5

comment: x1 + x2 = x3 + x4

comment: Two common x coordinates

if a2 = b2

comment: y1y2 = y3y4 They can be opposites

if a6 = b6

comment: y’s are common in both pairs

if a2 = 0

comment: Atleast one y is zero

if a6 = 0

comment: Both y’s are zeros

comment: Cancel each other

R = 1

else

comment: Other pair is same but nonzero

comment: Cancel out the special point

R = ab

gcd(a,eb)gcd(ea,b)

comment: We can have manage without calculating gcd

comment: a8 = x2y2

comment: 2a8 = 2x2y2 = x2y4 + x4y2 = R4

comment: a6 = y2
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comment: 2a6 = R6, a
2
6 = R2

comment: a9 = (a8/a6) = x2

comment: 2a9 = R5, a
2
9 = R1

comment: In 1M, 2S, 1I - we have reduced divisor R

fi

comment: End of a6 = 0

else

comment: None of the y’s are zeros

R = ab

fi

comment: End of a2 = b6

else

comment: y’s are not same

comment: Only option is they are opposites

comment: They cancel out each other

R = 1

fi

comment: End of a6 = b6

else

comment: a2 6= b2 i.e, y1y2 6= y3y4

comment: a2 nor b2 can be 0. Because 0 comes in pairs

comment: It must be y1y2 = −y3y4

comment: One common and other pair opposite

R = ab

gcd(a,eb)gcd(ea,b)
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comment: a8 + b8 = x1y1 + x3y3 = R4

comment: a6 + b6 = 2y1 = R6

comment: (R6/2)2 = y1y3 = R2

comment: R4/y1 = 2x1 = R5

comment: (R5/2)2 = x1x3 = R1

comment: In 2M, 2S, 1I we have R

fi

comment: End of a2 = b2

else

comment: x1x2 = x3x4, x1 + x2 6= x3x4

comment: If x1x2 6= 0 all of them are different

if a1 6= 0

comment: x1x2 = x3x4 6= 0

comment: x1, x2, x3, x4 all separate

R = ab

else

comment: One x is common and is zero

comment: To be dealt in the next case

Consider next case.

fi

comment: End of a1 = 0

fi

comment: End of a5 = b5

else
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if res(x2 − a5x + a1, x
2 − b5x+ b1) = 0

comment: One common x coordinate

if a2 = b2

comment: y1y2 = y3y4

if a6 = b6

comment: Same factorisation - common y’s

if a2 = 0

comment: Atleast one y is zero

if a6 = 0

comment: Both y’s are zero

comment: Cancel out the common special point

R = (ab)/(gcd(a, b))2

comment: a9 = a5 + b5 = 2x1 + x2 + x4

comment: a10 = a5 − b5 = x2 − x4 6= 0

comment: a11 = a9 × a10 = 2a1 − 2b1 + x2
2 − x

2
4

comment: a12 = a11 − 2a1 + 2b1 = x2
2 − x

2
4

comment: a13 = a12/a11 = x2 + x4 = R5

comment: a14 = (a10a13)(a13a10)/4 = x2x4 = R1

comment: All other coefficients are zeros

comment: In 2M, 1I R is calculated

else

comment: One pair is 0. Cancel or add?

if a4 = b4

comment: Common x has zero y’s
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R = (ab)/(gcd(a, b))2

comment: a6 + b6 = R6

comment: a6 × b6 = R2

comment: T1 = a5 × b6 − a4 = x2y4

comment: T2 = a6 × b5 − b4 = x4y2

comment: T1 + T2 = R4

comment: (T1T2)/R2 = x2x4 = R1

comment: (T1 + T2)/a6 = x2 + x4 = R5

comment: In 3M and 2I, R is calculated

else

R = ab

fi

comment: End of a4 = b4

fi

comment: End of a6 = 0

else

comment: No zeros at all

comment: Here a2 = b2 6= 0

R = ab

fi

comment: End of a2 = b2 = 0

else

comment: a6 6= b6

if a2 = 0
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comment: b2 also is 0.

comment: Common x has y equal 0 or y1

if a4 = b4

comment: First case: y equal 0

R = (ab)/(gcd(a, b))2

comment: We can find R1 and R5 using a previous method

comment: a6 + b6 = R6

comment: a6 × b6 = R2

comment: (a5b6) + (b5 + a6)− a4 − b4 = R4

comment: Here we need 5M and 1I

else

R = ab

fi

comment: End of a4 = b4

else

comment: No y is zero

comment: Only thing remaining is to cancel common x’s

R = (ab)/(gcd(a, b))2

comment: The same method used above can be used

comment: y2 = (a8 + b8)/(x2 − x4)

comment: x2 − x4 calculated in the previous one

comment: −y2
2 = R2

comment: Other constants are zeros

comment: Here we need 5M and 1I
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fi

comment: End of a2 = 0

fi

comment: a6 = b6 End.

else

comment: a2 6= b2

if a6 = b6

comment: y1 + y2 = y3 + y4

comment: y1 = y3 ⇒ y2 = y4 ⇒ a2 = b2 ⇒ Contradiction

comment: y1 = −y3

R = (ab)/(gcd(a, b))2

comment: Same methods of calculations

else

R = ab

gcd(a,eb)gcd(ea,b)

comment: As in the cases above. We get the result in a few steps

fi

fi

else

comment: No common x coordinate

comment: Multiply them together and then reduce

R = ab

fi

Many of the cases arise can be computed with the coefficients. A few of the cases

give semi-reduced divisors. Hence we need a reduction algorithm also.
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6.2 Reduction

Before going to the idea of reduction I should define a few things which are needed

in this section. We know that all the points in our curve are non-singular points. A

non-singular point is sometimes called a simple point.

Definition 75 (Simple divisor, Very Simple divisor). Let D =
∑

imiPi be a

divisor of C which is rational over K. We will say that D is simple if each Pi is simple

point of C. D is very simple if, in addition, each mi = ±1.

Definition 76 (Good Line). A line L is goof for D if for every Q ∈ L ∩ C

1. Q is simple.

2. Q /∈ D

3. L is not tangent to C at Q.

A finite set of lines L is good for D on C if every line L ∈ L is good for D on C.

Lemma 77 (Implicit Simplification Lemma). Let D be a divisor in which all

points are affine. Let S = D =
∑

j mjQi be a divisor such that supp(D)∩ supp(S) =

φ. We can construct a k-rational polynomial G such that (1) G is a product of linear

forms, (2) (G) = D + A where A is a very simple affine divisor, and (3) every factor

L of G is good for S on C.

We can see that the new very simple divisor A is an equivalent to D. The con-

struction of G needs one invertible linear transformation :

φ : A2 → A2. For details of the method [1, 2]. There is no direct connection between

this lemma and our requirement. But this lemma gives something which is very simi-

lar to what we need. It is in a very general case where even singular points can exist.
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From this lemma and related theorems and methods, we have to refine out a method

for the special cases of our small problems.

The method has not been refined from the general method available for all types

of curves. The things to be done and to be resolved are listed below.

1. To make sure that degree(A) ≤ degree(D).

The lemma states just that we can construct a polynomial having the property

of giving an equivalent very simple divisor for D. But if the weight of the new

equivalent created is larger than that of D, our purpose cannot be served. It

has to be studied and proved. Otherwise a new construction is to be devised -

which is a tailor made method for our special cases.

2. Can we make the transformation general?

The affine transformation φ which is used for the construction of the new poly-

nomial G must be given a general form so that deciding on the transformation is

to be done one and only once. Repeating a search for an optimal transformation

can be time consuming.

3. What happens if the result must contain points with order more than one.

From the lemma, we know that A, the new equivalent divisor is a very simple

divisor. i.e, the order/multiplicity of all points is one. But in our addition in

the jacobian its very usual to get reduced divisors which consist of points with

multiplycity 2. (Eg: D = 2P1). Again here we have to change the construction

method so that the restriction on the resulting equivalent divisor is taken away.

The three problems to be resolved are remaining as open problems whose solution

may lead to better algorithms in addition in the jacobian of hyperelliptic curves.
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Results, Conclusion and Further

Work

“Not too fast

Not too slow”

– L Armstrong

In the chapters 5 and 6 we saw the new methods developed by my team. It was

very evident that the composition phase was fairly easy to both understand and also

to design. The reduction part stays as a hurdle even now. In this chapter let us have

a look towards the results.

81
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7.1 Results

7.1.1 Point Addition

Composition

The algorithm given for composition is general. But practically for cryptography we

need only those curves of genus either two or three. Also in most of the cases, h(x)

will be zero.

1. Genus 2

• h 6= 0

Here as we saw in the chapter 5, we have g2 multiplications along with

5g + 4 additions which are very cheap.

Additions 5× 2 + 4 = 14

Multiplications 22 = 4

• h = 0

Just with 14 additions the composition phase will be over.

2. Genus 3

• h 6= 0

This is similar to the genus 2 case.

Additions 5× 3 + 4 = 19

Multiplications 32 = 9

• h = 0

Again, there are no multiplications. Just 19 additions are the only opera-

tions in the composition phase.
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Case (Common x) Worst subcase Necessity of reduction.
Two 2M, 2S and 1I Most subcases dont need.
One 5M and 2I 50% needs reduction
None All must be reduced

Table 7.1: Cases of chow composition and number of operations

Reduction

As a matter of probability we can take that only 50% of the additions only will need

to go through the reduction step. In the reduction step, we cannot in precise tell the

number of operations needed for computation. But there are very fast implementa-

tions available for root finding in finite fields. Their existence makes the algorithm

worth enough to give a try.

The details of the reduction part we have already seen in the last part of chapter 5.

7.1.2 Chow Representation Addition

Using the chow representation, we have only designed the composition part. The

basic idea for reduction part is laid. More work has to be done with the reduction

part. Here I shall give an account of the number of operation needed in the major

three cases which can occur. See Table 7.1. Again, for the details refer chapter 6.

Whether reduction is to be used or not is decided in the beginning itself by just

comparing the coefficients of the chow forms. Hence we can directly do the reduction

part without wasting our resources in composition.

As of now the method is good provided that a good reduction method has to be

designed.
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7.2 Conclusion

In the project, a study of hyperelliptic curves was done. Also a detailed investigation

in the methods used to do arithmetic in the jacobian of hyperelliptic curves was done.

A study on different represetation of divisors of hyperelliptic curves was also done.

I am able to see that only one of the represetations is deeply explored by the

researchers in this area. The other two represetations are almost un-explored. From

what we have seen in the thesis, explicit representation does not seem to have much

future because, the explicit representation needs the arithmetic to be done in the

closure of the base field. The future of the addition lies in the other two represenations:

1. Mumford Representation

2. Chow Form Represenation

Why mumford representation seems to be better than any other representations?

One reason is very clear. There was not enough research done in the other represen-

tation. In a recent paper by Tanja Lange [15], she uses projective coordinates. In

fact, chow forms use projective coordinates with z = 1 always.

In my opinion enough study has not been done in chow forms. The non-availability

of the literature itself is a proof for that.

In the table 7.2 a comparison of the two representations is given in the perspective

of addition in the jacobian of hyperelliptic curves.

7.3 Further Work

1. Implementation.
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Mumford Representation Chow Representation
Uses two polynomials a and b. Both
polynomials are ∈ k[x].

Representation uses a single multi-
variate polynomial. The polynomial
is ∈ k[x, y].

For genus 2 curves, the representa-
tion needs five variables to be stored.

The represetation takes five vari-
ables to represent a divisor of a
genus 2 curve.

Generic type of representation. For divisors of different weights the
representation varies.

Very efficient algorithms exist for
computation.

Not many good methods are avail-
able.

Table 7.2: Different Representations: A Comparison

The obvious work to be done is the implementation of the algorithms. Compar-

isons between differnt methods available and the new ones also must be done.

A rough estimate says that the implementation will take about two to three

months.

2. Pipelining.

The method of point addition is in a form such that pipelining can be tried out.

While the composition phase is going on itself, the calculation of derivatives

of f can be done. The step of factorisation is the only step which we cannot

pipeline because of the probabilistic algorithm.

3. More about Chow forms.

A detailed study about chow forms must be done so as to make the reduction

part more clear. It must be seen whether the affine transformation can be

generalised for all types of hyperelliptic curves. The work must be seen from a

practical perspective rather than from the theoretical point of view.
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