
Load Balancing For Network Based
Multi-threaded Applications

Oliver Krone‡, Martin Raab¶?, Béat Hirsbrunner‡
‡Institut d’Informatique, Université de Fribourg, Switzerland

¶Institut für Informatik, Technische Universität München, Germany

Abstract. In this paper we present Lbs, a load-management-system for
network based concurrent computing. The system is built on Pt-Pvm, a
library based on the PVM system. Pt-Pvm provides message passing and
process management facilities at thread and process level for a cluster of
workstations running the UNIX operating system.
The presented system is realized as an open library which can be eas-
ily used to implement new load-balancing algorithms. In addition to
that, the unit of load which has to be distributed (either data or light-
weight processes) can be transparently adapted to application needs.
Therefore the system serves as an ideal test-bed for comparing different
load-balancing methods.

1 Introduction

With the increasing computing power of dedicated workstations and the ob-
servation that an enormous potential of CPU cycles is merely unused because
workstations tend to be idle most of the time, network-based concurrent comput-
ing (also commonly referred to as NOWs, networks of workstations) has recently
become a major research topic. Other motivating aspects include heterogeneity,
excellent price/performance characteristics and powerful development tools [11]
for these machines.

The “usual” unit of parallelism for network based concurrent computing is
a heavy-weight UNIX process, however in the past years a new type of pro-
cess, called light-weight process or “thread” has emerged which has a couple of
advantages compared to heavy-weight UNIX processes. Applications using this
process type are commonly referred to as multi-threaded applications.

The notion of “thread” has been introduced as early as 1965 by Dijkstra
[3] as a sequential flow of control, and is defined as a sequence of instructions
executed within the context of a process [9]. It has its own program counter, reg-
ister set and stack, but shares a common address space and operating system
resources with other threads in a process. Multi-threaded applications provide
many advantages for example) such as: small context switching time, fast thread
to thread communication, increased application responsiveness due to overlap-
ping of computation and communication [12].

The rest of this paper is organized as follows: in Section 2 we summarize
some characteristics of load-management schemes in general and for NOWs in
? partly supported by the German Science Foundation (DFG), grant Ma 870/5-1

particular, Section 3 is devoted to a detailed description of our system, Section 4
shows some preliminary performance results, and Section 5 concludes this paper
and gives an outlook on future work.

2 Classification of Load Management Systems
A distributed application can be modeled by an application graph H = (U,F)
The nodes represent the application processes and their computational requests
and the edges represent the communications and their intensity.

A distributed computer can also be modeled by a hardware graph G = (V,E)
where V is the set of processors and the edges represent the communication
links between the processors. In this model, the load-management-problem can
be stated as graph-embedding problem: we are looking for a function π : U → V
which minimizes a given cost function.

Depending on the application graph used, one can distinguish the following
two cases: (1) The application graph does not change over time. In this case π can
be determined at application set up time and the load balancing functionality
is reduced to an embedding problem or mapping problem depending whether a
cost function is taken under consideration or not. (2) The application graph
changes, which means that the mapping of load onto the available resources is
done at runtime, and is adapted according to dynamic properties of the actual
configuration, such as the load of a CPU, available network bandwidth and the
like. In the sequel we will concentrate on this case, also known as the dynamic
load-balancing problem.

A Model for Load Management Systems on NOWs A heterogeneous
network of workstations is modeled by a vertex-weighted graph G = (V,E;α)
where α : V → [0, 1] is the normalized performance of a processor: Let tv0 be
the time needed by processor v0 to execute a sequential process, and tv the
time needed on processor v, then αv := tv0/tv is the performance of v with
respect to v0. The average load wV of a set V of processors, with wv as the

load of a processor v ∈ V , is defined by wV :=
∑

v∈V
wv∑

v∈V
αv

, and the optimal load

of a processor v is given by w∗v = αvwV . The speedup is defined as usual as:
S(V) := tv0/tV where tV is the time needed by the processors in V , but now
depends on the chosen reference machine v0. In order to get a meaningful notion
of efficiency one slightly changes the normal definition of efficiency: instead of
dividing the speedup by the number of processors, one divides it by the total
performance αV of the network, where αV :=

∑
v∈V αV . Note that the efficiency

is independent of the machine of reference.
A similar model applies for non-dedicated environments where the available

processor-performance may change due to other applications running on the
same processor. The load induced by the processing of other applications can only
be controlled by load-management systems working at operating-system level.
Application-integrated load-management systems cannot influence the workload
distribution of other applications. This load is thus referred to as external load,
see for example [7] for an relationship of load average to program execution

time on networks of workstations. Internal load is the load generated by the
application and thus the load which can be manipulated by the load-management
system.

A load-management scheme must now determine the load itself (both exter-
nal and internal), specify how it can be measured, and when and where it is
created. There are several approaches for this in the literature, for example the
gradient model [5] uses a threshold method to describe the load (low, middle,
high), in [13] a quantitative approach is used, and in [2] a qualitative method is
proposed.

Load-Balancing on Heterogeneous, Non-dedicated NOWs. After having
studied several factors which influence the efficiency of load balancing systems
(for a general overview see [6]), we identified the following important properties
for load balancing schemes on heterogeneous, non-dedicated NOWs:

– Due to the heterogeneity at different levels (hard-and software), a load bal-
ancing scheme for NOWs should be application integrated. It seems impos-
sible to adapt all the different machines used in NOWs for load balancing
purposes at operating system level;

– Heterogeneity at hardware level implies that the performance with respect
to a reference machine must be taken into consideration. Because these ma-
chines are typically used by other users (non-dedicated), their external load
should influence the load balancing system;

– Communication on a LAN is a relatively expensive operation, compared to
the high performance networks of “real” parallel computers, therefore the
migration space of the load to be transferred is limited, that is, locality
aspects like the neighborhood of a CPU should be considered;

– Node information (actual load and the like) may already be obsolete or
outdated when the information arrives at another node, a load balancing
system for NOWs should consider this;

– NOWs are typically connected via a bus and do not use a special topology,
such as a grid for example. Since many load balancing methods in the lit-
erature assume that the CPUs are connected in a regular topology, a load
balancing system for NOWs must provide means to arrange the workstations
in a (virtual) topology;

– Load balancing schemes for NOWs are asynchronous, a synchronous variant
would introduce too much administrative overhead.

3 Lbs: Load Balancing System

This Section introduces Lbs (Load Balancing System) [8]. The main goal was to
combine the advantages of operating-system integrated load-balancing tools (i.e.
application independence, ease of use, etc.) with those of application-integrated
load-balancing libraries (i.e. performance) and to provide an easily extensible
load-management tool which may serve as a testbed for different load-balancing
algorithms. In order to achieve this, Lbs was built in a modular way, such that
new load-balancing algorithms may be easily integrated into an existing system
without changing the application program.

Application

Object Manager

Load Management T
o

p
o

lo
g

y

PT-PVM Layer

Operating System

Fig. 1: Basic Structure of Lbs.

Load Management

Object-Manager

O

B

LI

balance

get load

get
internal
 load

choose & migrate

get load

Object-Manager-Thread
Balance-Thread
Invocation-Thread
Load-Monitor-Thread

O
B
I
L

to the o ther
CPUs

Message

Reponse

Virtual Topology

Fig. 2: Internal Structure of Lbs.

Basic Structure of Lbs. From the operating-system’s point of view, Lbs

is a part of the application program because the load-balancing is done at
application-level, whereas from the application programmer’s point of view, Lbs

is simply a library which is linked to the application.
Lbs is built on Pt-Pvm [4] which provides a Pvm [10] like programming

model at thread-level. All the communication between the application threads
on the different machines is done using Pt-Pvm. Fig. 1 illustrates the interplay
between the different software components of Lbs.

Lbs does not know the type of the load objects. Therefore the interface
between Lbs and the application program must be implemented by a component
called Object Manager. The rest of the Lbs system communicates with the
Object Manager via well-defined functions which allow to evaluate the current
load and to move load-objects between neighborhood machines.

The Load Management comprehends the functionality of a control feedback
control system and is described in detail in the following Section.

Most of the load-balancing algorithms try to achieve system-wide load-balance
by local load movements. Thus we need a notion of ”locality”, i.e. a library which
implements a topology. This is done by the (virtual) Topology component in
Lbs.

Internal Structure of Lbs. The internal structure is illustrated in Fig. 2. The
structure is influenced by the following approach: In order to emphasize the load
balancing process in time, one models the load-balancing problem as a feedback
control system and splits it up into three phases:

– During the load capture phase, the load-balancing system collects load-
information of the neighbor machines and activates, if necessary, the decision-
phase, otherwise the load capture component falls asleep for a time deter-
mined by the load-balancing algorithm and then starts over again.

– In the decision-phase the load-balancing system decides whether load-balancing
has to be done at all and if so, determines how much load has to be moved
and determines the sender and receiver. Depending on the type of the load,
the system also has to determine which load-objects have to be moved.

void farmer(FARMER PARAM prm) { typedef struct { . . . } TASK;
TASK task; RESULT res, size t size; typedef struct { . . . } RESULT;
forall tasks void worker(WK PARAM prm,

distribute task(prm, &task, sizeof(task)); void *task, size t size) {
forall results RESULT res;

get result(prm, &res, &size); res = compute result();
compute final result(); return result(prm, &res, sizeof(res));
} }

Fig. 3: TfLbs application skeleton.

– During the load-migration phase the actual migration takes place.

These three phases have a strong influence on the design of most load-balancing
systems and lead to a modular structure of the system. In the case of Lbs, the
different phases are implemented by Pt-Pvm threads:

– The load monitor thread implements the load capture component. This
thread is responsible for getting the internal and external load and for getting
the load of the neighbors. Because the type of the load-objects is not known
to Lbs, this is done by communicating with the object manager thread.
The external load is evaluated by calling operating system services.

– The invocation thread implements the invocation policy. Depending on
the chosen policy, the load monitor thread is queried for the current load,
and if necessary load-balancing is activated by sending a request to the
balance thread.

– The balance thread does the actual load-balancing. When receiving a load-
balancing request, the load-movements are computed and the object-manager
is invoked to move the load in the appropriate directions.

TfLbs— Load-balancing for Task-Farming. Many problems may be for-
mulated using the task-farming paradigm: A task-farming program consists of
a number of independent subproblems, which may be solved independently on
any processor. Data dependencies between tasks can be handled by creating the
tasks only when all the tasks from whom information is needed have already
been solved.

The TfLbs library provides a simple interface for task-farming programs
and handles the interaction with the Lbs system. It is thus an instance of an
object-manager. TfLbs application programs consist of a main-function called
farmer() which creates the tasks (by calling distribute task()) and collects
the results (get result()) at the end of the computation.

The tasks are computed by a worker()-function. worker() gets a parameter
of the type WK PARAM which is application-dependent and allows the programmer
to identify the tasks. During the execution of a task, new tasks may be created
and at the end the result is sent to the farmer by calling return result(). The
outline of a typical TfLbs application is sketched in Fig. 3.

The actual implementation of TfLbs is as follows: on each machine in the
Lbs system an object manager is installed which handles the list of tasks as-
signed to that machine. Another thread called worker thread fetches waiting
tasks from the task-queue, processes them and sends the results back to the
farmer. The load-balancing is done in the background by moving tasks from
longer queues to empty queues.

The implementation of the object manager is thus quite simple: the object-
manager thread must handle the queue of tasks assigned to a machine. The
queue management supports the following operations:

– Returning the length of the queue in order to estimate the internal load of
the machine;

– Inserting new tasks into the queue;
– Removing a task from the queue: the object manager supports two ways

of removing tasks from the queue: the synchronous remove and the asyn-
chronous remove. When the worker thread asks the object manager for a
new task, and the queue is empty, the worker thread has to block until some
new tasks arrive, whereas it is possible that Lbs might want to reallocate
more tasks from one machine to another than there are currently available
— in this case Lbs must not block, it is sufficient to inform Lbs that there
are no more tasks on the machine.

The other crucial part of TfLbs is the distribute task() function. It is the
function that assigns the first tasks to the machines. The more efficiently this is
done, the less load-balancing is needed. One possible approach is to assign the
new tasks always to the neighbor with the least load. Another possibility is to
assign the tasks to a randomly chosen machine, hoping that this leads to a more
or less balanced load situation — it has been shown that the maximal load can
be reduced exponentially by randomly choosing two processors and assigning
the new task to the least loaded [1].

4 Performance Results

We have tested Lbs with a simple program that computes the Mandelbrot set.
This program is based on the TfLbs library. The Mandelbrot program splits
the area for which the Mandelbrot-set is computed into M ×N rectangles each
containing m×n points. Each of the rectangles is computed by a different task.
The running-time distribution is thus given by the number of points contained
in each rectangle and by the “depth” of the computation, i.e. the number of
iterations considered when determining the convergence.

For this experiment we implemented the Local Pre-computation-based Load
Balancing Algorithm (LPLB), a variant of the PLB-algorithm [2], in Lbs and
used a load-sharing calling strategy, i.e. every time a PE1runs out of work, the
load will be locally re-balanced. Fig. 4 and 5 show the distribution of load on
6 Sparc stations 5 running Solaris 2.5, PVM 3.3.9 and Pt-Pvm 1.13 with and
without Lbs, respectively.
1 Process Environment, a UNIX process which may host one or more Pt-Pvm threads.

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90

Lo
ad

Time (sec)

Load Distribution on 6 Machines

’chamois’
’crunch’
’iauf11’

’iauf5’
’iauf7’
’iauf9’

Fig. 4: Distribution of Load using Lbs.

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160

Lo
ad

Time (sec)

Load Distribution on 6 Machines

’chamois’
’crunch’
’iauf11’

’iauf5’
’iauf7’
’iauf9’

Fig. 5: Distribution of Load without Lbs.

Table 1 shows the average execution time in seconds for several test sets and
different configurations of Lbs. The test sets consist all of M ×M tasks, each
containing m × m points. The “depth” of the computation was the same for
all test sets. For “lb” the LPLB load-balancing-algorithm and the load-sharing
calling strategy is used. In “lb noex” the same algorithm is used, but the external
load is not considered, “lb noex ABKU” uses the mapping-algorithm described
in [1]. In “no lb” and “nolb noex ABKU” no load-balancing is done at all. The
results show that Lbs significantly reduces the the running time for NOWs that
consist of more than 2 PEs, whereas if only two PEs are used, the overhead due
to Lbs dominates. One also sees, that the ABKU-mapping algorithm doesn’t
behave well in our case, which is due to the fact that all the load is created at
the same time.

5 Conclusion
This paper described Lbs, a system for load balancing for network based multi-
threaded applications. Starting from a classification of design issues for load-
management systems, we identified significant properties for load-management
systems to be used for NOWs. These recommendations have been realized in
our system, Lbs, which is implemented on top of Pt-Pvm, a software pack-
age based on the PVM system which provides message passing and process
management facilities at thread and process level for a cluster of workstations
running the UNIX operating system. Lbs’s distinct features include a modular
multi-threaded software structure, its object-, load-, topology-, management is
implemented as separate Pt-Pvm threads. By implementing a special object
manager in the form of the TfLbs library, we showed how the efficiency of a
well known parallel programming model (task-farming) can be increased if used
in combination with a load-management system for concurrent network based
computing.

Future work include a dynamic virtual topology management (for the mo-
ment the topology is fixed at application startup), and an improved mechanism
to determine the external load of a workstation.

In addition to that, we are currently implementing new object managers,
for example object managers which change the topology dynamically according

to the actual load in the system, and started some promising experiments with
threads as load objects.

M = 16 M = 32 M = 64
PEs Configuration m = 16 m = 32 m = 48 m = 32 m = 64 m = 64

1 nolb noex 57.77 248.44 553.56 885.15 2738.19

lb 33.67 137.16 299.10 535.46 2095.07 8401.88
lb noex 33.32 134.24 292.04 538.01 2096.38 7553.68

2 lb noex ABKU 33.02 142.10 303.53 537.89 2125.26 7938.18
nolb 31.41 131.28 291.50 516.11 2056.58 7992.80
nolb noex ABKU 31.52 147.78 323.92 516.66 2058.75 7568.18

lb 10.71 34.55 73.59 131.17 483.59 2006.93
lb noex 10.54 33.47 71.76 132.40 486.65 1969.86

4 lb noex ABKU 10.90 37.95 76.06 132.39 503.26 1998.43
nolb 12.10 40.74 87.71 159.37 597.68 2552.75
nolb noex ABKU 12.39 48.59 106.96 162.15 676.49 2370.51

lb 8.63 22.19 46.68 70.95 271.11 1003.34
lb noex 8.21 19.72 41.07 70.63 258.05 1000.05

8 lb noex ABKU 8.82 25.34 43.42 72.42 279.38 1003.11
nolb 12.00 32.24 71.92 129.68 494.68 2296.43
nolb noex ABKU 12.32 34.25 74.70 131.57 553.18 2320.82

lb 8.15 15.04 30.11 54.59 180.04 683.60
lb noex 8.26 14.76 31.37 52.56 181.61 684.13

12 lb noex ABKU 17.55 20.56 33.47 89.40 193.59 756.86
nolb 8.53 21.88 44.29 94.74 330.67 1342.02
nolb noex ABKU 15.61 24.10 54.07 97.63 348.71 1383.19

Table 1: Average execution times.

References

1. Y. Azar, A.Z. Broder, and A.R. Karlin. On-line load balancing (extended abstract).
In 33rd Annual Symposium on Foundations of Computer Science, pages 218–225,
Pittsburgh, Pennsylvania, 24–27 October 1992. IEEE.

2. Max Böhm. Verteilte Lösung harter Probleme: Schneller Lastausgleich. PhD thesis,
Universität zu Köln, 1996.

3. E. W. Dijkstra. Cooperating sequential processes. Programming Languages, 1965.

4. O. Krone, M. Aguilar, and B. Hirsbrunner. Pt-pvm: Using PVM in a multi-
threaded environment. In 2nd PVM European Users’ Group Meeting, Lyon,
September 13–15 1995.

5. F. C. H. Lin and R. M. Keller. The gradient model load balancing method. IEEE
Transactions on Software Engineering, 13(1):32–38, January 1987.

6. T. Ludwig. Lastverwaltungsverfahren für Mehrprozessorsysteme mit verteiltem
Speicher. PhD thesis, Technische Universität München, München, Dezember 1992.

7. Trevorr E. Meyer, James A. Davis, and Jennifer L. Davidson. Analysis of Load
Average and its Relationship to Program Run Time on Networks of Workstations.
Journal of Parallel and Distributed Computing, 44(2):141–146, August 1997.

8. Martin Raab. Entwicklung eines Lastverwaltungssystems für vernetzte Arbeit-
splatzrechner. Master’s thesis, University of Fribourg, 1997.

9. Sun Microsystems, Mountain View, California. SunOS 5.3 Guide to Multithread
Programming, November 1993.

10. V.S. Sunderam. PVM: A framework for parallel distributed computing. Concur-
rency: Practice and Experience, 2(4):315–339, December 1990.

11. S. White, A. Alund, and V.S. Sunderam. Performance of the NAS Parallel Bench-
marks on PVM-Based Networks. Journal of Parallel and Distributed Computing,
26(1):61–71, 1995.

12. Niklaus Wirth. Tasks versus Threads: An Alternative Multiprocessing Paradigm.
Software – Concepts and Tools, (17):6–12, 1996.

13. C. Xu, B. Monien, R. Lüling, and F. Lau. An analytical comparison of nearest
neighbor algorithms for load balancing in parallel computers. In Proc. of the 9th
International Parallel Processing Symposium (IPPS ’95), April 1995.

