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Abstract. Suppose we sequentially throw m balls into n bins. It is a
natural question to ask for the maximum number of balls in any bin.
In this paper we shall derive sharp upper and lower bounds which are
reached with high probability. We prove bounds for all values of m(n) >
n/polylog(n) by using the simple and well-known method of the first and
second moment.

1 Introduction

Suppose that we sequentially throw m balls into n bins by placing each ball into
a bin chosen independently and uniformly at random. It is a natural question
to ask for the maximum number of balls in any bin. This very simple model has
many applications in computer science. Here we name just two of them:

Hashing: The balls-into-bins model may be used to analyze the efficiency of
hashing-algorithms. In the case of the so called separate chaining, all keys that
hash to the same location in the table are stored in a linked list. It is clear that
the lengths of these lists are a measure for the complexity. For a well chosen
hash-function (i.e. a hash-function which assigns the keys to all locations in the
table with the same probability), the lengths of the lists have exactly the same
distribution as the number of balls in a bin.

Online Load Balancing: With the growing importance of parallel and distributed
computing the load balancing problem has gained considerable attention during
the last decade. A typical application for online load balancing is the following
scenario: consider n database-servers and m requests which arise independently
at different clients and which may be handled by any server. The problem is to
assign the requests to the servers in such a way that all servers handle (about)
the same number of requests.

Of course, by introducing a central dispatcher one can easily achieve uniform
load on the servers. However, within a distributed setting the use of such a
central dispatcher is highly undesired. Instead randomized strategies have been
applied very successfully for the development of good and efficient load balancing



algorithms. In their simplest version each request is assigned to a server chosen
independently and uniformly at random. If all requests are of the same size the
maximum load of a server then corresponds exactly to the maximum number of
balls in a bin in the balls-into-bins model introduced above.

1.1 Previous results

Balls and bins games have been intensively studied in the literature, cf.
e.g. [JK77]. The estimation of the maximum number of balls in any bin was
originally mainly studied within the context of hashing functions. In particu-
lar, GONNET [Gon81] determined for the case m = n that the expected num-
ber of balls in the bin containing the maximum number of balls is I'"1(n)(1 +

0] (m)) One can check that Gonnet’s result implies that the maximum

load of any bin is with high probability 102)50 e (14 0(1)). In his dissertation
MITZENMACHER [Mit96] also included a simpler proof of the fact that the max-
imum load is 9(101;{50 <7 )- He also obtains some results for the case m < n/logn.
For the case m > nlogn it was well known that the maximum load of any bin
is ©(7), i.e. of the order of the mean. However, the precise deviation from the
mean seems not to have been studied before.

We note that for the online load balancing also different models of balls into
bin games have been studied. We note in particular the approach of AZAR et
al. [ABKU92|. They study the following model: each ball picks d bins uniformly
at random and places itself in those bin containing fewest balls. For the case
m = n [ABKU92| showed that in this model the maximum load of any bin drops
exponentially from logjﬁ)gn (I1+0(1)) to bﬁ}%(l +0(1)). Compare also CZUMAJ
and STEMANN [CS97] for more results in this direction.

1.2 Our results

In this paper we apply the first and second moment method, a well-known tool
within the theory of random graphs, cf. e.g. [Bol85], to obtain a straightforward
proof of the fact that the maximum number of balls in a bin is lo?ign (I1+0(1))
for m = n with probability 1 — o(1).

Besides being a lot more elementary than GONNET’s proof method the big advan-
tage of our method is that it also easily generalizes to the case where m # n balls
are placed into n bins In particular, this allows to also analyze the case m > n,
which can neither be handled by GONNET’s approach nor by MITZENMACHER'S.
(Both are based on approximating the Binomial distribution B(m, 1) by a Pois-
son distribution, which only gives tight bounds if m - % is a constant.) The
case m > n is particularly important for the load-balancing scenario mentioned
above. Here it e.g. measures how the unsymmetry between different servers grows
over time when more and more requests arrive.

Our results are summarized in the following theorem:




Theorem 1. Let M be the random variable that counts the maximum number
of balls in any bin, if we throw m balls independently and uniformly at random
into n bins. Then Pr[M > k,] = o(1) if « > 1 and Pr[M > k,] = 1 — o(1) if
0 < a<1, where

log n (1+alog(2)711;)#> Zf n <m < nlogn
log nl,‘f” log nogn t’f" ’ polylog(n) - &1,
(de — 1+ a)logn, if m =c-nlogn for some constant c,
ko = m 4oy /2 logn, if nlogn < m <n - polylog(n),

2m | log(2) .
%+¢@%ﬁ<—éﬁﬁﬂ if m>n - (logn)®.

Here d. denotes a suitable constant depending only on c, cf. the proof of
Lemma 3.

The paper is organized as follows: in § 2 we give a brief overview of the first
and second moment method, in § 3 we show how to apply this method within
the balls-into-bins scenario and obtain in § 4 the 101;{50 gn(l + o(1)) bound for
m = n. In § 5 we then present some more general tail bounds for Binomial
random variables and combine them with the first and second moment method

to obtain a proof of Theorem 1.

1.3 Notations

Throughout this paper m denotes the number of balls and n the number of bins.
The probability that a ball is thrown into a fixed bin is given by p := 1/n. We
define ¢ by g := 1 — p. We shall denote the iterated log by log(')7 i.e. log(l) T =
log x and log(kﬂ) T = log(log(k) x) for all k > 1. In this paper logarithms are to
the base e.

Asymptotic notations (O (+), o(-) and w(-)) are always with respect to n; f < g
means f = o(g) and f > g means f = w(g). We use the term polylog(z) to
denote the class of functions J;~; O ((log x)*). We say that an event & occurs
with high probability if Pr[£] =1 — o(1).

2 The first and second moment method

Let X be a non-negative random variable. Then MARKOV’s inequality implies
that Pr[X > 1] < E[X]. Hence, we have

E[X] = o(1) = Pr(X =0 =1-o0(1). (1)
Furthermore, CHEBYSHEV’s inequality implies that

Var[X] _ E[X?]
(E[X])? ~ (E[X])?

Pr[X =0] < Pr[|X —E[X]| > B[X]] < ~1



Hence, in order to show that Pr[X = 0] = o(1) we just have to verify that
E[X?] = (1+0(1))(E [X])*. (2)

While it is often quite tedious to verify (2), it is relatively easy if we can write X
as the sum of (not necessarily independent) 0-1 variables X, ..., X,, that satisfy

EX;]=E[X;] and E[X;X;]<(1+o1)(E[Xy])? Vi<i<j<n. (3)

Then

n 2
E[X?|=E (Z)Q) =E ZXE +ZXin < E[X]+(1+o(1)(E[X])?
=1 z?)’(-j i#£]

and we can combine (1) and (2) to obtain

1-0(1), ifE[X]=o0(1),

o(1),  ifB[X] )

Pr[X—O]—{

This is the form which we will use for the analysis of the balls and bins scenario.

3 Setup for the analysis

Let Y; = Y;(m,n) be the random variable which counts the number of balls in the
1th bin if we throw m balls independently and uniformly at random into n bins.
Clearly, Y; is a binomially distributed random variable: we express this fact by
writing Y; ~ B(m, 1/n) respectively Pr[Y; = k] = b(k;m,1/n) := (7)(2)*(1 —
%)m_k. Let X; = X;(m,n, a) be the random variable, which indicates if Y; is at
least ko = ko(m,n) (the function from Theorem 1) and let X = X (m,n,a) be
the sum over all X;’s, i.e.:

- 1L, if ;> ka,
Xi= ;Xi and - X; := {O, otherwise.

Clearly,
E[X;] =Pr[B(m,1/n) > kq] foralli=1,...,n,
and
E[X]=n-Pr[B(m,1/n) > k,]. (5)

In order to apply (4) we therefore need good bounds for the tail of the binomial
distribution. Before we obtain these for the general case of all m = m(n) we
consider the special case m = n.



4 Thecasem=n

The aim of this section is to present a self contained proof of the fact that if
m = n the maximum number of balls in a bin is —2£™ (1 4 o(1)) with high

log® n
probability. We will do this by showing that

1—-o(1), if0<a<l,
o(1), if > 1.

(6)

Pr [EI at least one bin with > ozlol;(gz;’n balls} = {
Note that the claim of equation (6) is slightly weaker than the corresponding
one from Theorem 1. We consider this case first, as here the calculations stay
slightly simpler. So, in the rest of this section we let k, := alolg(%’fn.

Recall from § 2 that in order to do this we only have to show that condition (3)
is satisfied for the random variables X; introduced in the previous section and
that

oo, f0<a<l,
0, ifa>1.

(7)

') = Plog@n

E[X]=n-Pr|B(n,1)>a log n } —>{

The fact that E[X;] = E[X;] for all 1 < i < n follows immediately from the
definition of the X;’s. The proof of the second part of (3) is deferred to the end
of this section. Instead we start with the verification of (7). For that we prove a
small lemma on the binomial distribution. We state it in a slightly more general
form then necessary, as this version will be helpful later-on.

Lemma 1. Let p = p(m) depend on m. Then for all h > 1
Pr[B(m,p) > mp+h] = (1 +0 (%)) “b(mp + h;m, p).

Proof. Observe that for all k > mp + h:

bk +Limp)  (m—Kkjp _ (A—pm—h)p _ |
b(k;m, p) (k+1)(1=p) = (mp+h+1)1-p) "

One easily checks that A < 1 for h > 1. Thus

, 1
. < . . T _ - . . .
E b(k;m,p) < b(mp + h;m,p) E A T—x b(mp + h;m,p)
k>mp+h >0

As ﬁ <1+ % the claim of the lemma follows. O

We apply Lemma 1 for “m” = n, “p" = %L and “mp + h” = k,. Subsequently,

we use STIRLING’s formula z! = (1 4 o(1))v27rxze ™ 2® to estimate the binomial
coefficient. Together we obtain:

E[X]=n Pr[B(n,3) > ko] = n-(1+0(1)) b(kain, ;)

>k .
() ()7 (-2



—n ea 101;(52;”11 ~(1710g a—log® n+log® n+o(1))

— nlfaJro(l)’

which implies the statement of equation (7).

To complete the proof for the case m = n we still have to verify that E [X;X;] <
(1+ o(1))(E[X1])? for all i # j. In order to keep the proof elementary we shall
proceed similarly as in the proof of Lemma 1. A more elegant version can be
found in § 5.

i A\
noka nokio oo\ g K 1\ Fithe o N (ki+ka)
= = 1- 2
k1 ko n n
1=k ka—ke -2

a K2 A
<(s) <(1-3)°
n n k1+ko 2n—2(k1+k2)

n n 1 1

< - 1—--—

<> > (W6 ()

k1=kq ko=Fkq
1 1\ P &
< [b(ka;n )(1_E> Z)\z

=0

where ) is defined as \ = Zii‘;tﬁ;é{;i}i As XA = o(1) and b(kq;n, %) =

(14 o(1))E [X1] (cf. Lemma 1) this concludes the proof of (6).

5 The general case

For the proof of Theorem 1 we will follow the same pattern as in the proof
of the previous section. The main difference is that in various parts we need
better bounds. We start by collecting some bounds on the tails of the binomial
distribution.

5.1 Tails of the binomial distribution

The binomial distribution is very well studied. In particular it is well-known that
the binomial distribution B(m, p) tends to the normal distribution if 0 < p <1
is a fixed constant and m tends to infinity. If on the other hand p = p(m)
depends on m in such a way that mp converges to a constant A for m tending
to infinity, then the corresponding binomial distribution B(m,p) tends to the
Poisson distribution with parameter A. For these two extreme cases also very
good bounds on the tail of the binomial distributions are known. In the context
of our “balls and bins” scenario, however, we are interested in the whole spectrum
of values p = p(m).



In this section we collect some bounds on the tails of the binomial distribution
which are tailored to the proof of Theorem 1.

For values of p(m) such that mp tends to infinity one can analyze the
proof of the theorem of DEMOIVRE-LAPLACE to get asymptotic formulas for
Pr [B(m,p) > mp + h] for all values h that are not “too* large:

Theorem 2 (DeMoivre—Laplace). Assume 0 < p < 1 depends on n such
that pgm = p(1 — p)m — oo for m — oo. If 0 < h = z(pgm)*/? = o((pgm)?/?)
and x — oo then

Pr[B(m, p) > h = (1 L=

- . 2
r[B(m,p) > mp+ h] = (1+0(1)) o=l

For an explicit proof of this version of the DEMOIVRE-LAPLACE Theorem see
e.g. [Bol85].
The probability that a binomial distributed random variable B(m,p) obtains
a value of size at least mp(1 + €) for some constant € > 0 is usually estimated
using the so-called CHERNOFF bounds. Recall, however, that CHERNOFF bounds
provide only an upper bound.
With the help of Lemma 1 in the previous section we are now in the position to
prove the tail bounds for those special cases of the binomial distribution which
we will need further-on.

Lemma 2. a) Ifmp+1<t< (logm)’, for some positive constant ¢, then
Pr[B(m,p) > t] = etlosmp=log t+1)—mp+0(log® m)

b) Ift=mp+o ((pqm)%> and x = f;ﬂ tends to infinity, then

pgm

Pr[B(m,p) > t] = e—%—logm—% log 2m+o(1)

Proof. a) Using STIRLING’s formula z! = (1 + o(1))v2rze “2® we obtain:

b(tsm,p) = (1+ (1)) \/;_m (?)t (1 + i;f‘f)m_t .

Together with Lemma 1 we thus get for logPr[B(m,p) > t] the following ex-
pression:

log (1 +O( mp )) +t (logmp — logt + 1) — mp — lo§t +0 ((t_mlz)Q) -0(1)

t—mp

The term O (M) gets arbitrarily small if mp < t = o(y/m) because

m—t
(t,_n”j];)z < m(1fo(1)) = o(1). By assumption mp + 1 < (logm)’. That is,
log (1 4+ O (mp)) = O (loglog m).
b) This case is simply a reformulation of the DEMOIVRE-LAPLACE theorem.O




5.2 Proof of Theorem 1

We follow the setup outlined in § 2. That is, we only have to show that the
variables X; satisfy condition (3) and that the expectation of X = X, tends
either to infinity or to zero depending on the fact whether « is smaller or greater
than 1. We start with the later.

Lemma 3. Let k., be defined as in Theorem 1. Then

00, if0<a<l,

logE [X
s Bl ]_){oo, ifa>1,

for all values m = m(n) > n/polylog(n).

Proof. The case ——— < m < nlogn.

polylog(n)
We first note that it suffices to consider non-negative a’s. Assume that m =
nlogn

#=8% where g = g(n) tends to infinity arbitrarily slowly and g(n) < polylog(n).

Then @
1 log"”
kazogn 1—|—aog 9.
log g log g
From equation (5) and Lemma 2 case a) (we leave it to the reader to verify that
this case may be applied) it follows that

logn

logE[X] =logn + kq (log(2) n —logg —logk, + 1) — +0 (log(z) m)

1 log(®
— o8 log g + 14+a—8 9 (l—logg+1og(2)g>+o(1)
log g log g
logn - 1og(2) g
log g

=(1-a+o0(1))

)

which yields the desired result.

The case m = c¢-nlogn.
Let ko := (d. — 1 + «). By Lemma 2 we get:

logE[X] =1logn (14 (d: — 1+ «a) (loge—log(d. — 1+ a)+1) —c+o0o(1)).

As a consequence, for @ = 1 log E[X] is exactly then o(logn) when d. is a
solution of
fe(z) =14z (logc —logx +1) —c=0.

For all ¢ > 0 this equation admits exactly two real zeros x1, x2. One of these
solutions is smaller than ¢ and is therefore not the one we are looking for. That
is, we define d. as the (unique) solution of f.(x) = 0 that is greater than c. In
the neighborhood of the solutions 1 and zs, f.(z) changes its sign. This means
that for d.—1+a for a given a > 1, log E [X] tends to —oo, whereas for d.— 1+«
for an 0 < o < 1, log E [X] tends to oo.



The case nlogn < m < n - polylog(n).
Assume that m = gnlogn where g = g(n) < polylog(n) tends to infinity arbi-

trarily slowly. Then
2
ko = glogn (1 +a\/j> .
9

From Lemma 2 case a) it follows that

logE [X] =logn + k, (logg + log(z) n —logk, + 1) —glogn+ O (log(2) n)

movan (+ (oo 5) (o5 5o () -2 (5))

=logn (1—a®+o(1)).

One easily to checks, that we didn’t hurt the conditions of Lemma 2.

The case m > n(logn)3.
For this case we shall use the theorem of DEMOIVRE-LAPLACE. Recall that in

this case
ka:ﬂ—" 2mlogn 1_llog(2)n .
n n a 2logn

Using the notations of Lemma 2 case b) we set

ko — 1 log® 1
x:zimp: 2logn 1——0g n 1+ .
V/Pqm 2a0 logn n—1

Applying DEMOIVRE-LAPLACE we obtain:

2
logE[X]:logn—%—logx—log\/2ﬂ+o(1)
1 1
—log@n-[— -2 10(1)).
og® - (5o =+ ol1))

We still need to check that we didn’t2 violate the conditions of DEMOIVRE—

LAPLACE, i.e. that ko, — 7 = 0 ((pqm)§>, but this is true if 55— =w (log2 n).
O

In order to show that the variables X; satisfy the second part of condition (3)
(note that the first part is trivially true) we start with two simple lemmas.

Lemma 4. Let p < 1 and m be such that p>m = o(1). Then

Pr [B(m(l —p),1%5) 2t| < (1+0(1)) Pr[B(m,p) = {] forall0 <t <m.



Proof. We will show that for all 1 <t < m we have b(t;m(1 —p), t£5) < (1 +

0(1))b(t; m, p). Clearly, this then completes the proof of the lemma. So consider

an arbitrary, but fixed 1 < ¢ < m. For t > m(1—p) we have b(t; m(1—p), 1%})) =0

so we might as well assume that ¢ < m(1 — p). Then

b(t;m(l—p),lp;p):(m(lt—p)>.(%)t.(l_ﬁ)m(l—zﬂ—t

si-p <@-pm

< e2p2 m

= b(tim,p) - (1 + o(1)).
O

t—mp

Lemma 5. Let p = o(1) and m,t be such that x := T satisfies © — oo,
z = o((mp(1 — p))Y/%) and xp = o(1). Then

Pr[B(m(1 = p), 1%5) = t] < (1+0(1))Pr [B(m,p) = 1].
Proof. Observe that the assumptions of the lemma are such that we may apply
case b) of Lemma 2 to compute Pr[B(m,p) > t]. Observe furthermore that we
may also apply this case of Lemma 2 to bound Pr [B(m(l -p)15) = t}, as

here the corresponding x-value is

t—m(l-p) & t— 1— 2
o (1-p)- 5 B mp P

Jml—p) 51— ) Vm-p) V1= 1-2p’

Together we deduce

22

P Bt~ ), 1) 2] = =ity
1-p

= Pr[B(m,p) > t] - e O(#*2%)=0(p?) o))

= Pr[B(m,p) > t] - (1 + o(1)).



Corollary 1. Let m = m(n) and p = L be such that m > logn, and let kq
denote the value from Theorem 1. Then

Pr [B(m(1 - p), %) = ka| < (1+0(1)) - Pr[B(m,p) > ko).

Proof. One easily checks that for all m = o(n?) Lemma 4 applies and that for
all m > n(logn)® Lemma 5 applies. O

Lemma 6. Let Xy,...,X,, be defined as in § 3. Then for all1 <i<j<mn
E[X;X;] < (1+0(1)) - (B [X1])?.
Proof. Using the notation from § 3 we have

E[X;X;] = Pr[Y; > ko AY; > ko)

m m — ki kq+k m—ky—ka
= TRz (1 -2
> (7))

e

m—kq m—ki
- m 3 m—k m — kl » k}z p ’I’I’L*k}lsz
S (s T () (- )

k1=kqa ko=kq

m—keq
= (Z)pkl(l_p)m_kl -Pr [B(m—kl,lf;p) > ka} .

ki1=ka

As k1 > ko > mp we observe that

Pr {B(m ki) > ka} < Pr {B(m(l —p),2) > ka}

- — ) 1_p

= (L+o(1)) - Pr[B(m,p) > kal,

where the last equality follows from Corollary 1. Hence,

m—keq
B = 3 ()= (1 o(0) - PriBOmp) > ]
k1=keq
m—keq m
— o) PeBnp) 2kl Y ()

ki=kea

< Pr[B(m,p)>kal

< (14 0(1)) - (Pr[B(m,p) = ka])*.

As Pr[B(m,p) > ko] = E[X1], this completes the proof of the lemma. O



6 Conclusion

In this paper we derived an asymptotic formula for the maximum number of
balls in any bin, if m = m(n) balls are thrown randomly into n bins, for all
values of m > n/polylog(n). Our proof is based on the so-called first and second
moment.

The result for m = n was well-known before. However, our method gave a much
simpler proof compared to those which were previously available in the literature.
To the best of our knowledge the result for the case m > n is new. In our opinion
it is a challenging open problem to study the behavior of the modified balls into
bins scenario as introduced in [ABKU92] for the case m > n as well. Intensive
computational experiments seem to indicate that in this case the difference of
the maximum load in any bin from the mean m/n should be independent of m.
We intend to settle this problem in a forthcoming paper.
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