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Abstract

We present a new and simple algorithm to reconstruct sufikslin suffix trees and suffix
arrays. The algorithm is based on observations regardiffix $tee construction algorithms.
With our algorithm we bring suffix arrays even closer to theeeaf use and implementation of
suffix trees.
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1 Introduction

Historically, suffix links were an invention to facilitaténkar-timé construction of suffix trees
[Wei73, McC76, UKk95]. It has since been discovered thdixslihks have uses of there own (e.g.,
[Gus97]), most notable for the computation of matchingistias and approximate pattern match-
ing [CL94]. Other applications are finding tandem repeatsiar time [GS04] or the construction
of DAWGs [Gus97]. Due to the large size of the suffix tree, suifiks are often discarded or not
even constructed. Giegerich and Kurtz [GKS03] have progh@sgery space efficient method for
top-down construction of suffix trees that does not use sliffis. In Farach’s construction method
for large alphabets suffix links are not used either [Far®rthermore, recent developments have
made the suffix array [MM93] a much more interesting datacttme. Kasai et al. [KLA01] have
shown how the suffix array can be used to simulate a bottomutfix $ree traversal and how to
compute the longest common prefix information in linear ti(eee also [Man04]). Abouelhoda
et al. [AKOO2, AOK02, AKOO0O4] have enhanced the suffix arraytkat it can be used with the
same asymptotically optimal time bounds as suffix trees acematching and other applications. In
[AKOO04] two methods for suffix link reconstruction are preaal, one with linear-time complexity us-
ing (complex) lowest common ancestor (LCA) data struct(ses, e.g., [BFC00, BFC®1, Sad02]),
and another simpler one that has complexity: logn). Kim et al. [KIP04] use suffix links on the
enhanced suffix array to merge two suffix arrays in linear fionénteger alphabets. They also give a
linear-time algorithm that reconstructs suffix links. Thgasithm does not need constant time LCA
data structures. On the other hand, it udedists and bucket sorting, and it is therefore less space
efficient than our algorithm, which uses only one additiantdger array.

lWe assume a uniform cost model throughout this paper.
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Linear-time algorithms for suffix array construction haveeb introduced by Karkkainen and
Sanders [KS03], Kim et al. [KSPP03], Ko and Aluru [KAQ3]. Fpractical use, Larsson and
Sadakane [LS99], Manzini and Ferragina [MF04], and Buréthand Karkkainen [BK03] have pre-
sented some very fast — but asymptotically non-linear —dlgus which seem to outperform the lin-
ear ones (see [AR®4, PST05] but also [LP04]). Grossi and Vitter have intrastlithe compressed
suffix array [GV00] and another succinct representatioa,RN-index, has been developed by Fer-
ragina and Manzini [FMOO]. Based on the compressed suffexyarGadakane describes a succinct
implementation of suffix trees that uses linear space (icdntplexity) and also offers suffix links
[Sad04]. The drawback of the compressed suffix arrays istliedt practical performance is much
worse than that of normal suffix arrays. From the empiricatligs in [SS01] and [Kai04] one can
expect an increase in the running time by a factor of twentgmutomparing normal to compressed
suffix arrays.

Our contribution is a very simple, easy-to-implement, affidient algorithm to reconstruct suffix
links on suffix trees and (enhanced) suffix arrays. Under thismum cost model the algorithm has
linear time and space complexity. It is much simpler tharaligerithms based on LCA computation
because it only does two simple depth first search (DFS)rsalseof the tree structure. It is alphabet
independent and can thus be used with integer alphabetastance, together with Farach-Coltons’s
suffix tree construction algorithm. Furthermore, it can bersas a simple enhancement of the en-
hanced suffix array, making the algorithm [AKOO4] run in Emgime without the need for LCA or
range minimum query (RMQ) data structures.

2 Algorithm

We assume that the reader has basic knowledge in suffix ireedpr an easy understanding, the
reader should know the suffix tree construction algorithnukitonen [Ukk95].

In the following, letY be an arbitrary alphabet. Note that we do not require a firibadet.
Let X* denote the set of all finite strings ovEr(including the empty string). Lett = t;-- ¢, € X"
be a string of lengtht| = n. If ¢ = wow with u,v,w € ¥* thenw is a prefix,v a substring, anad
a suffix oft. We define the-th suffix suff;(¢) = ¢;- - -t,,. Following Giegerich and Kurtz [GK97] we
define aX*-treeT as a rooted, directed tree with edge labels fidm For eachr € ¥, every node
in T has at most one outgoing edge whose label startsawith X" -treeT is called compact, if all
nodes are either the root, leaves or branching. For a ptete; € >* be the string that is constructed
by concatenating all edge labels on the path from the rodteémbdep. We define the path qf as
path(p) = u and the string depth gf asdepth(p) = |u|. For aX*-treeT, let its word setvords(T")
be all stringsu for which there exists a nogewith path(p) = wv for somev € ¥*. The suffix tree
CST(t) of a stringt is defined as the compaktt"-treeT” with words(7T") = {u|u is a substring of}.
For each leap of 7" we define the leaf indekndex(p) of p to be: if path(p) = suff;(¢), i.e.,p
represents theth suffix of ¢. For nodep let leaves(p) be the leaves in the subtree rooteg .atVe let
L stand for an undefined value (as an undefined value for a péméenode).

A suffix link is an auxiliary edge of &*-treeT'. A suffix link points from a node to a nodey
which bypath(q) represents the shortest (proper) suffipath(p) in T'. In suffix trees, usually only
suffix links for inner nodes are added. Here, we have the prpfeatpath(p) = zpath(q) for some
character € X7

In the following letT" be a suffix treeCST(¢) for stringt¢ of lengthn. Our algorithm constructs
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suffix links solely based in the structure of the suffix tred &éme leaf indices, therefore the size of
the alphabet does not matter. The intuitive idea is to canstan arrayA of sizen that contains the
branching nodes in the same order as they are encountereslufjxatree construction algorithm of
McCreight [McC76] or Ukkonen [Ukk95]. We can then almostasstruct the suffix links by setting
for each node iM the suffix link to the successor if. This takes care of almost all cases but those
where the “active prefix” [Ukk95] has grown. Thus, we modifetidea to find for each node the
index of the leaf that has “caused” the node. From there weli@dorresponding branch for the next
leaf because we know its leaf index and the branch depth.

For a nodey of T let its minimal index be the minimal value of a leaf index o&aflin the subtree
rooted atg. For an inner node of 7' let S be the set of minimal indices of its children. We define
cause(p) as the second smallest elemensinFormally,

g is a child ofp r€leaves(q)

cause (p) =4ef mMiny {z i= min lindex (T)} ,
where min, / yields the second smallest element in the BetFurther, for a leafp we define
branch(p, d) as the ancestor gfat string depthi, i.e.,

q ,Iif gisan ancestor gf anddepth (¢) = d

branch (p, d) =aes {L otherwise

The correctness of our algorithm follows from the next lemmiate that for every nodg of a
suffix tree withpath(p) = xu there exists a node with path(q) = u to where the suffix link of
will be pointed (see, e.g., Giegerich and Kurtz [GK97]).

Lemma 1 (Suffix Links). Letp be a non-leaf node of the suffix tréefor a stringt € ™. The suffix
link of p is branch(q, depth(p) — 1), whereq is the leaf withlindex(q) = cause(p) + 1.

Proof. Let zu = path(p), v € ¥*, € X. The suffix link of p must point to a node with
path(r) = u. By definition, cause(p) is a leaf index from a leaf in the subtree @f Thus,zu
is a prefix ofsuffcause(p) (t) andu is a prefix ofsuffcause(p)+1(t). The length ofu is depth(p) — 1.
Hence,u is a prefix ofsuffiinqgex(q)(t) Of lengthdepth(p) — 1 andw is represented by an ancestor
r = branch(q, depth(p) — 1) of ¢ with depthdepth(r) = depth(p) — 1. O

Pseudo code for the algorithm is given in Figure 1. The coriyi®f the algorithm is given as
follows.

Theorem 1 (Correctness and Complexity).Algorithmmain(7") correctly computes the suffix links
for the suffix tred” in time and spacé(n).

Proof. The correctness follows directly from Lemma 1 and the faat tbr any two nodeg andq
cause(p) # cause(q). The latter is easy to see as we take the second smallestfx@hu¢he smallest
values from children below. This value is never passed orp@arant.

The complexity follows directly from the algorithm. We peri two DFSs and take constant
time per node. The space used is that for two arrays of sizestrand the (call) stack (also of size
at mostn). O



prepare(p, A)

compute(p, A, B)

if pis aleafthen
Leti be the leaf index op
return(i)
else
Let d be the depth op
ming :=n+1
ming :=n-+1
for all childrenq of p do
m = prepare(q, A)
if m < min; then
ming := Min

if pis aleafthen
Let: be the index op
if A[i] # L andA[i] is not the roothen
Let d be the depth ofd[i]
Set suffix link of A[i] to B[d — 1]

end if

else
Let d be the depth op
SetB[d] :=p

for all childreng of p do
compute(q, A, B)

ming == m end for
else ifm < mins then end if
e = main(7)
end if Let r be the root and the height ofl’
end for Let A be an array of size initialized to L

SetA[ming + 1] :==p

Let B be an array of sizé initialized to L
return(min)

_ prepare(r, A) //bottom-up traversal
end if compute(r, A, B) /Itop-down traversal

Figure 1:Pseudo code for the suffix link reconstruction algorithmrarA corresponds toause through the
equationA[cause(p) 4+ 1] = p and arrayB corresponds tbranch through the equatio’[d] = branch(p, d).
In prepare(p, A) we take the minimal leaf indices for each subtree and comtpeteninimum (which we pass
back) and the second minimum (which we storedin In compute(p, A, B) we computébranch in B on the
fly and use theause values inA to set the suffix links.

3 Implementation Issues

For suffix trees the implementation is straight forward. #a case that the depth of a node is not
stored explicitly, we need an additional arrady? to accompanyA for storing the string depth of
the nodes inA. The height of the tree — if not readily available — can be coteg during the first
DFS with only small modifications. It is not needed for therapyotic result because we can simply
usen as an upper bound when creating the arBaySince the height of a suffix tree (3(logn) on
average, less memory will be used in practice. Note alsojtthaght be possible to store the depth
in array AH in a smaller field (i.e., a byte).

For suffix arrays we can use the method of Kasai et al. [KDA] for the bottom-up traversal
(prepare(r, A)). For the top-down traversatdmpute(r, A, B)) we need the additional data structures
introduced by Abouelhoda et al. [AKOO02]. Normally, a suffige node is identified by two borders.
It is more practical to have a single identifier. This can besgated in an additional arr&ythrough a
top-down traversal. For each interyalr| we store eithet in Id[r] or  in Id[/]. Using a single bit this
can be marked accordingly and we can use the indékas an identifier fofl, ]. Observe thatin a
top-down traversal for each node (interval) either r is not yet used: The child intervals are always
smaller than the parent intervals. If no index were free, weld have used the left and right border
for two ancestor intervalg, '] and[l’, r]. W.l.0.g., let[, '] be a child ofl’, r|, thenr > +' > r, i.e.,
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r = r’. This is a contradiction t@, »’'| being an ancestor df, r].

Thus, we use an array for node (interval) identifiers and an arr8y for suffix links. Using
the enhanced suffix array data structures [AKOO4] it is alsssfble to retrieve the depth of a node
in constant time. The suffix link creation can thus be impleted to use only one additional tem-
porary array during construction (plus some stack sizeglllarrays are implemented naively, the
total structure takes five integeks (Icp, childtab, Id, SI) plus one integer4) per text character and a
logarithmic amount of space during construction (the ayetze ofB and the stack). The structure
is equivalent to a suffix tree, whose most efficient impleratah also takes twenty bytes in the worst
case [Kur99]. A more elaborate version would take advanvétfee fact that most values in the arrays
are small or can be made small by storing relative distangbsuelhoda et al. [AKOO4] report that
in this way it is possible to reduce the sizelgf andchildtab to one byte per character. The same
is possible forld. As a result we get an implementation using eleven bytesepgrcharacter plus
some small (i.e., logarithmic in) amount of additional space. The latter is comparable evéhe
worst-case size of the suffix tree data structure describf@KS03].

We conducted some simple testing to compare the above dedcanhanced suffix array
(ESA) with the currently most memory efficient linear-timeffsx tree data structure (ILLI) by
Kurtz [Kur99]. We used Ukkonen’s algorithm [Ukk95] for suffiree construction and Manzini and
Ferragina’s algorithm [MF04] for suffix array constructiorhe latter is not asymptotically linear but
has a very good performance in practice [Maa05] (better ésgmptotically linear algorithms).

For our tests we used a set genetic sequences available niaGle (which have the identifiers
NC_001460, NC001454, NC004001.2 NC002067, NC001405, NC003266, U47924, AC002397,
L43967, NC000912, BAOO0008, AE002161, N@00922, NC003098.1) and the Calgary Corpgus
The cumulated results measured on an AMD Athlon XP1800+ W&#4.732 MHz and 1 GB of
main memory are shown in Figure 2. With all its new gadgetsstiféx array has become fat, fatter
even than the suffix tree when we take a look at the maximal meosed during construction. On
the other hand, the suffix array has become faster and, asilg @snparable to the suffix tree in
our implementation. Only when including the highly repeétfile “pic” from the Calgary Corpus
the coding scheme leads to large time and size penaltiesul¥eef witness the effect that a larger
alphabet size results in a smaller size of the suffix tree dajar construction time (due to the linked
list implementation). As a result, we find that the differerbetween using a suffix tree or a suffix
array has become very small. The rule of thumb that suffixyareae smaller but slower does not
count any more if one wants “full functionality”.

4 Conclusion

The last years have seen a major change in the focus of the dath structures. The suffix array
is becoming more and more the most adequate data structag freferred to the suffix tree. This
is mostly due to the demand for indexing huge texts. Suffes@nd arrays have converged towards
each other as a result of the space reduction of suffix treeth@mrunning time enhancement of suffix
arrays. We hope to have added another small part to this mgewvee process. As the difference be-
tween both data structures has become very small, it wouildteeesting whether one could describe
their relation and derive fundamental differences thated&mm the two different concepts of using
intervals and nodes.

2Available fromftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compre ssion.corpus
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Average ratio

Average time memory-usage/input-size
Algorithm  Input construction search traversal maximum exabnly

ESA GB 157s 1.25s 0.77s 16.13 12.10
ILLI GB 1.37s 0.95s 0.78 s 13.07 13.07
ESA CcC 11.49s 1.38s 0.56s 16.72 12.48
ILLI CC 0.48s 0.39s 0.24 s 9.97 9.97
ESA CC\pic 0.35s 0.29s 0.22s 16.41 12.27
ILLI CC\pic 0.48s 0.33s 0.22s 9.99 9.99

Figure 2:Comparison of the enhanced suffix array and the space effmidfix tree with genomic data (GB)
and the Calgary Corpus (CC). The table gives average vahitsr. the index was constructed we performed
1000 random searches with words from the index text to tessélarch performance and 100 matching statistic
like traversals with the text itself to test the suffix linkrfi@mance. The maximum memory usage per input
character is met during construction. After constructiome memory could be freed for the suffix array. Thus,
the last column gives the operating size per input charadtete that the text itself contributes another byte
to the size. The Calgary Corpus contains a file “pic” with apeigh redundancy which lead to a lot of nodes
with a depth greater than 255 (the size fitting one byte). Timple size reduction scheme for the array
does not work here as more than half of the values stored wrgerlthan 255. This resulted in an extra table
with four times the size of the smadlp array.
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