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TUM-INFO-07-I0514-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2005

Druck: Institut f ür Informatik der
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Abstract

We present a new and simple algorithm to reconstruct suffix links in suffix trees and suffix
arrays. The algorithm is based on observations regarding suffix tree construction algorithms.
With our algorithm we bring suffix arrays even closer to the ease of use and implementation of
suffix trees.
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1 Introduction

Historically, suffix links were an invention to facilitate linear-time1 construction of suffix trees
[Wei73, McC76, Ukk95]. It has since been discovered that suffix links have uses of there own (e.g.,
[Gus97]), most notable for the computation of matching statistics and approximate pattern match-
ing [CL94]. Other applications are finding tandem repeats inlinear time [GS04] or the construction
of DAWGs [Gus97]. Due to the large size of the suffix tree, suffix links are often discarded or not
even constructed. Giegerich and Kurtz [GKS03] have proposed a very space efficient method for
top-down construction of suffix trees that does not use suffixlinks. In Farach’s construction method
for large alphabets suffix links are not used either [Far97].Furthermore, recent developments have
made the suffix array [MM93] a much more interesting data structure. Kasai et al. [KLA+01] have
shown how the suffix array can be used to simulate a bottom-up suffix tree traversal and how to
compute the longest common prefix information in linear time(see also [Man04]). Abouelhoda
et al. [AKO02, AOK02, AKO04] have enhanced the suffix array sothat it can be used with the
same asymptotically optimal time bounds as suffix trees in exact matching and other applications. In
[AKO04] two methods for suffix link reconstruction are proposed, one with linear-time complexity us-
ing (complex) lowest common ancestor (LCA) data structures(see, e.g., [BFC00, BFCP+01, Sad02]),
and another simpler one that has complexityO(n log n). Kim et al. [KJP04] use suffix links on the
enhanced suffix array to merge two suffix arrays in linear timefor integer alphabets. They also give a
linear-time algorithm that reconstructs suffix links. The algorithm does not need constant time LCA
data structures. On the other hand, it uses2n lists and bucket sorting, and it is therefore less space
efficient than our algorithm, which uses only one additionalinteger array.

1We assume a uniform cost model throughout this paper.
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Linear-time algorithms for suffix array construction have been introduced by Kärkkäinen and
Sanders [KS03], Kim et al. [KSPP03], Ko and Aluru [KA03]. Forpractical use, Larsson and
Sadakane [LS99], Manzini and Ferragina [MF04], and Burkhardt and Kärkkäinen [BK03] have pre-
sented some very fast – but asymptotically non-linear – algorithms which seem to outperform the lin-
ear ones (see [ARS+04, PST05] but also [LP04]). Grossi and Vitter have introduced the compressed
suffix array [GV00] and another succinct representation, the FM-index, has been developed by Fer-
ragina and Manzini [FM00]. Based on the compressed suffix arrays Sadakane describes a succinct
implementation of suffix trees that uses linear space (in bitcomplexity) and also offers suffix links
[Sad04]. The drawback of the compressed suffix arrays is thattheir practical performance is much
worse than that of normal suffix arrays. From the empirical studies in [SS01] and [Kai04] one can
expect an increase in the running time by a factor of twenty when comparing normal to compressed
suffix arrays.

Our contribution is a very simple, easy-to-implement, and efficient algorithm to reconstruct suffix
links on suffix trees and (enhanced) suffix arrays. Under the uniform cost model the algorithm has
linear time and space complexity. It is much simpler than thealgorithms based on LCA computation
because it only does two simple depth first search (DFS) traversals of the tree structure. It is alphabet
independent and can thus be used with integer alphabets, forinstance, together with Farach-Coltons’s
suffix tree construction algorithm. Furthermore, it can be seen as a simple enhancement of the en-
hanced suffix array, making the algorithm [AKO04] run in linear time without the need for LCA or
range minimum query (RMQ) data structures.

2 Algorithm

We assume that the reader has basic knowledge in suffix trees,i.e., for an easy understanding, the
reader should know the suffix tree construction algorithm byUkkonen [Ukk95].

In the following, letΣ be an arbitrary alphabet. Note that we do not require a finite alphabet.
Let Σ∗ denote the set of all finite strings overΣ (including the empty stringε). Let t = t1· · ·tn ∈ Σn

be a string of length|t| = n. If t = uvw with u, v, w ∈ Σ∗ thenu is a prefix,v a substring, andw
a suffix oft. We define thei-th suffix suffi(t) = ti· · ·tn. Following Giegerich and Kurtz [GK97] we
define aΣ+-treeT as a rooted, directed tree with edge labels fromΣ+. For eachx ∈ Σ, every node
in T has at most one outgoing edge whose label starts withx. A Σ+-treeT is called compact, if all
nodes are either the root, leaves or branching. For a nodep let u ∈ Σ∗ be the string that is constructed
by concatenating all edge labels on the path from the root to the nodep. We define the path ofp as
path(p) = u and the string depth ofp asdepth(p) = |u|. For aΣ+-treeT , let its word setwords(T )
be all stringsu for which there exists a nodep with path(p) = uv for somev ∈ Σ∗. The suffix tree
CST(t) of a stringt is defined as the compactΣ+-treeT with words(T ) = {u|u is a substring oft}.
For each leafp of T we define the leaf indexlindex(p) of p to be i if path(p) = suffi(t), i.e., p
represents thei-th suffix of t. For nodep let leaves(p) be the leaves in the subtree rooted atp. We let
⊥ stand for an undefined value (as an undefined value for a pointer to a node).

A suffix link is an auxiliary edge of aΣ+-treeT . A suffix link points from a nodep to a nodeq
which bypath(q) represents the shortest (proper) suffix ofpath(p) in T . In suffix trees, usually only
suffix links for inner nodes are added. Here, we have the property thatpath(p) = xpath(q) for some
characterx ∈ Σ+.

In the following letT be a suffix treeCST(t) for string t of lengthn. Our algorithm constructs
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suffix links solely based in the structure of the suffix tree and the leaf indices, therefore the size of
the alphabet does not matter. The intuitive idea is to construct an arrayA of sizen that contains the
branching nodes in the same order as they are encountered by asuffix tree construction algorithm of
McCreight [McC76] or Ukkonen [Ukk95]. We can then almost reconstruct the suffix links by setting
for each node inA the suffix link to the successor inA. This takes care of almost all cases but those
where the “active prefix” [Ukk95] has grown. Thus, we modify the idea to find for each node the
index of the leaf that has “caused” the node. From there we findthe corresponding branch for the next
leaf because we know its leaf index and the branch depth.

For a nodeq of T let its minimal index be the minimal value of a leaf index of a leaf in the subtree
rooted atq. For an inner nodep of T let S be the set of minimal indices of its children. We define
cause(p) as the second smallest element inS. Formally,

cause (p) =def min2
q is a child ofp

{

i

∣

∣

∣
i = min

r∈leaves(q)
lindex (r)

}

,

where min2 I yields the second smallest element in the setI. Further, for a leafp we define
branch(p, d) as the ancestor ofp at string depthd, i.e.,

branch (p, d) =def

{

q , if q is an ancestor ofp anddepth (q) = d

⊥ , otherwise.

The correctness of our algorithm follows from the next lemma. Note that for every nodep of a
suffix tree withpath(p) = xu there exists a nodeq with path(q) = u to where the suffix link ofp
will be pointed (see, e.g., Giegerich and Kurtz [GK97]).

Lemma 1 (Suffix Links). Letp be a non-leaf node of the suffix treeT for a stringt ∈ Σn. The suffix
link of p is branch(q, depth(p) − 1), whereq is the leaf withlindex(q) = cause(p) + 1.

Proof. Let xu = path(p), u ∈ Σ∗, x ∈ Σ. The suffix link of p must point to a noder with
path(r) = u. By definition, cause(p) is a leaf index from a leaf in the subtree ofp. Thus,xu

is a prefix ofsuffcause(p)(t) andu is a prefix ofsuffcause(p)+1(t). The length ofu is depth(p) − 1.
Hence,u is a prefix ofsuff lindex(q)(t) of lengthdepth(p) − 1 andu is represented by an ancestor
r = branch(q, depth(p) − 1) of q with depthdepth(r) = depth(p) − 1.

Pseudo code for the algorithm is given in Figure 1. The complexity of the algorithm is given as
follows.

Theorem 1 (Correctness and Complexity).Algorithmmain(T ) correctly computes the suffix links
for the suffix treeT in time and spaceO(n).

Proof. The correctness follows directly from Lemma 1 and the fact that for any two nodesp andq

cause(p) 6= cause(q). The latter is easy to see as we take the second smallest valuefrom the smallest
values from children below. This value is never passed on to aparent.

The complexity follows directly from the algorithm. We perform two DFSs and take constant
time per node. The space used is that for two arrays of size at mostn and the (call) stack (also of size
at mostn).
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prepare(p, A)
if p is a leafthen

Let i be the leaf index ofp
return(i)

else
Let d be the depth ofp
min1 := n + 1
min2 := n + 1
for all childrenq of p do

m = prepare(q, A)
if m < min1 then

min2 := min1

min1 := m

else ifm < min2 then
min2 := m

end if
end for
SetA[min2 + 1] := p

return(min1)
end if

compute(p, A, B)
if p is a leafthen

Let i be the index ofp
if A[i] 6= ⊥ andA[i] is not the rootthen

Let d be the depth ofA[i]
Set suffix link ofA[i] to B[d − 1]

end if
else

Let d be the depth ofp
SetB[d] := p

for all childrenq of p do
compute(q, A, B)

end for
end if

main(T )
Let r be the root andh the height ofT
Let A be an array of sizen initialized to⊥
Let B be an array of sizeh initialized to⊥
prepare(r, A) //bottom-up traversal
compute(r, A, B) //top-down traversal

Figure 1:Pseudo code for the suffix link reconstruction algorithm. ArrayA corresponds tocause through the
equationA[cause(p) + 1] = p and arrayB corresponds tobranch through the equationB[d] = branch(p, d).
In prepare(p,A) we take the minimal leaf indices for each subtree and computethe minimum (which we pass
back) and the second minimum (which we store inA). In compute(p,A,B) we computebranch in B on the
fly and use thecause values inA to set the suffix links.

3 Implementation Issues

For suffix trees the implementation is straight forward. Forthe case that the depth of a node is not
stored explicitly, we need an additional arrayAH to accompanyA for storing the string depth of
the nodes inA. The height of the tree – if not readily available – can be computed during the first
DFS with only small modifications. It is not needed for the asymptotic result because we can simply
usen as an upper bound when creating the arrayB. Since the height of a suffix tree isO(log n) on
average, less memory will be used in practice. Note also, that it might be possible to store the depth
in arrayAH in a smaller field (i.e., a byte).

For suffix arrays we can use the method of Kasai et al. [KLA+01] for the bottom-up traversal
(prepare(r, A)). For the top-down traversal (compute(r, A, B)) we need the additional data structures
introduced by Abouelhoda et al. [AKO02]. Normally, a suffix tree node is identified by two borders.
It is more practical to have a single identifier. This can be generated in an additional arrayId through a
top-down traversal. For each interval[l, r] we store eitherl in Id[r] or r in Id[l]. Using a single bit this
can be marked accordingly and we can use the index inId as an identifier for[l, r]. Observe that in a
top-down traversal for each node (interval) eitherl or r is not yet used: The child intervals are always
smaller than the parent intervals. If no index were free, we would have used the left and right border
for two ancestor intervals[l, r′] and[l′, r]. W.l.o.g., let[l, r′] be a child of[l′, r], thenr ≥ r′ ≥ r, i.e.,
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r = r′. This is a contradiction to[l, r′] being an ancestor of[l, r].
Thus, we use an arrayId for node (interval) identifiers and an arraySl for suffix links. Using

the enhanced suffix array data structures [AKO04] it is also possible to retrieve the depth of a node
in constant time. The suffix link creation can thus be implemented to use only one additional tem-
porary array during construction (plus some stack size). Ifall arrays are implemented naively, the
total structure takes five integers (sa, lcp, childtab, Id, Sl) plus one integer (A) per text character and a
logarithmic amount of space during construction (the average size ofB and the stack). The structure
is equivalent to a suffix tree, whose most efficient implementation also takes twenty bytes in the worst
case [Kur99]. A more elaborate version would take advantageof the fact that most values in the arrays
are small or can be made small by storing relative distances.Abouelhoda et al. [AKO04] report that
in this way it is possible to reduce the size oflcp andchildtab to one byte per character. The same
is possible forId. As a result we get an implementation using eleven bytes per text character plus
some small (i.e., logarithmic inn) amount of additional space. The latter is comparable even to the
worst-case size of the suffix tree data structure described in [GKS03].

We conducted some simple testing to compare the above described enhanced suffix array
(ESA) with the currently most memory efficient linear-time suffix tree data structure (ILLI) by
Kurtz [Kur99]. We used Ukkonen’s algorithm [Ukk95] for suffix tree construction and Manzini and
Ferragina’s algorithm [MF04] for suffix array construction. The latter is not asymptotically linear but
has a very good performance in practice [Maa05] (better thanasymptotically linear algorithms).

For our tests we used a set genetic sequences available via GenBank (which have the identifiers
NC 001460, NC001454, NC004001.2 NC002067, NC001405, NC003266, U47924, AC002397,
L43967, NC000912, BA000008, AE002161, NC000922, NC003098.1) and the Calgary Corpus2.
The cumulated results measured on an AMD Athlon XP1800+ with1544.732 MHz and 1 GB of
main memory are shown in Figure 2. With all its new gadgets thesuffix array has become fat, fatter
even than the suffix tree when we take a look at the maximal memory used during construction. On
the other hand, the suffix array has become faster and, as a result, comparable to the suffix tree in
our implementation. Only when including the highly repetitive file “pic” from the Calgary Corpus
the coding scheme leads to large time and size penalties. We further witness the effect that a larger
alphabet size results in a smaller size of the suffix tree and alarger construction time (due to the linked
list implementation). As a result, we find that the difference between using a suffix tree or a suffix
array has become very small. The rule of thumb that suffix arrays are smaller but slower does not
count any more if one wants “full functionality”.

4 Conclusion

The last years have seen a major change in the focus of the suffix data structures. The suffix array
is becoming more and more the most adequate data structure being preferred to the suffix tree. This
is mostly due to the demand for indexing huge texts. Suffix trees and arrays have converged towards
each other as a result of the space reduction of suffix trees and the running time enhancement of suffix
arrays. We hope to have added another small part to this convergence process. As the difference be-
tween both data structures has become very small, it would beinteresting whether one could describe
their relation and derive fundamental differences that come from the two different concepts of using
intervals and nodes.

2Available fromftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compre ssion.corpus .
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Average ratio
Average time memory-usage/input-size

Algorithm Input construction search traversal maximum index-only
ESA GB 1.57 s 1.25 s 0.77 s 16.13 12.10
ILLI GB 1.37 s 0.95 s 0.78 s 13.07 13.07
ESA CC 11.49 s 1.38 s 0.56 s 16.72 12.48
ILLI CC 0.48 s 0.39 s 0.24 s 9.97 9.97
ESA CC\pic 0.35 s 0.29 s 0.22 s 16.41 12.27
ILLI CC\pic 0.48 s 0.33 s 0.22 s 9.99 9.99

Figure 2:Comparison of the enhanced suffix array and the space efficient suffix tree with genomic data (GB)
and the Calgary Corpus (CC). The table gives average values.After the index was constructed we performed
1000 random searches with words from the index text to test the search performance and 100 matching statistic
like traversals with the text itself to test the suffix link performance. The maximum memory usage per input
character is met during construction. After construction some memory could be freed for the suffix array. Thus,
the last column gives the operating size per input character. Note that the text itself contributes another byte
to the size. The Calgary Corpus contains a file “pic” with a very high redundancy which lead to a lot of nodes
with a depth greater than 255 (the size fitting one byte). The simple size reduction scheme for thelcp array
does not work here as more than half of the values stored were larger than 255. This resulted in an extra table
with four times the size of the smalllcp array.
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