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Abstract

We draw attention to network abstraction as a fundamental problem within network analysis
and visualization. A combinatorial network abstraction problem is specified by a class P of
pattern graphs and a real-valued similarity measure % based on certain graph properties. For fixed
P and %, the optimization task on any graph G is finding a subgraph G′ which belongs to P
such that %(G,G′) is minimal. In this work, we consider this problem for the natural case of
trees (as the class of pattern graphs) and similarity-measures based on distances. In particular—
with respect to the most standard vector and matrix norms—we systematically study sub-trees
of graphs that minimize distances, approximate distances, and approximate closeness-centrality.
Although these similarity measures lead to reasonable results, the complexity analysis of finding
optimal trees is discouraging: we prove that all problems are NP-complete independent of the
norms used, except for the case of minimizing distances with respect to the L∞ matrix-norm
which was already known to have a polynomial algorithm.

1 Introduction

Network analysis aims at algorithmically exposing meaningful structures and characteristics of com-
plex networks (there is a vast amount of literature on this topic and we refer to [3] for a recent survey).
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These structures might explain network functionality and the inter-relationships between its members
on several levels of aggregation. It emerges as a fundamental issue to decide exactly which aspects
of the network are those that can be considered essential for its functionality. A (simple) sub-network
containing only the essential parts of a given network is what we refer to as network abstraction.

In this work, we formalize the combinatorial network abstraction problem by specifying a class P
of pattern graphs and a real-valued similarity measure % based on certain graph properties. For a fixed
pattern class P and a fixed measure %, the optimization task is to find for any input graph G a subgraph
G′ which belongs to P such that %(G, G′) is minimal. We restrict ourselves to trees as the class of
pattern graphs (although some results seem to easily carry over to related structures such as spanning
subgraphs with a restricted amount of edges). The reasons for considering this class are obvious:
trees are highly convenient network structures due to their structural simplicity—e.g., connectedness,
planarity, bipartiteness—and algorithmically exploitable advantages such as recursive constructibility
and sparseness. Moreover, for several applications the use of spanning trees as an approximation of
the network has some promising advantages:

• Understanding network dynamics. Many dynamical phenomena of complex networks such as
traffic and information flows are hard to predict solely from local information (such as degree
distributions). A recent study [18] of communication kernels which handle most of the traffic
of a network shows that the organization of many complex networks is heavily influenced by
their scale-free spanning trees (that maximize the total sum of betweenness centralities).

• Guiding graph-layout for large networks. Instead of drawing a large and misty network, we
can use elegant tree-layout algorithms for first drawing a tree having approximately the same
characteristics as the network, and then add some missing edges of the overall network, if
necessary at all.

• Compressing networks. Even with the most complex networks being sparse themselves (typi-
cally, the average degree is between two and four), trees reduce network sizes to 25-50 percent.
Without essentially changing the network characteristics, this is worthwhile given storage lim-
itations and time requirements.

Motivated by these examples, we systematically investigate the potential of trees as network abstrac-
tions. In the light of the examples above, we notably focus on computational feasibility. In search of
suitable graph properties, to begin with, we concentrate in this paper on distances as one fundamental
and well-studied network characteristic.

Given a connected and undirected graph G = (V, E), let DG denote the distance matrix of G,
i.e., DG[u, u] = 0 and DG[u, v] = dG(u, v) for all u, v ∈ V . The best possible degree of similarity
between DG and distance matrices of spanning trees is an inherent graph property.1 To quantify this
degree of similarity, we use standard matrix norms ‖ · ‖r (reviewed in Sect. 2) that might be taken
over vectors as well as over matrices. We consider the following three optimization problems:

• Find a spanning tree that minimizes distances with respect to ‖ · ‖r. This corresponds to a
similarity measure %r(G, T ) = ‖DT‖r. For the L1 matrix-norm, i.e., ‖A‖1 =

∑

i

∑

j |aij|, the
tree realizing the minimum is known as the minimum average distance tree (or, MAD-tree for

1Clearly, for all graphs G and G′ over the same set of labeled vertices, we have that DG = DG′ if and only if G = G′.
Thus, in general we cannot hope for exact representations by spanning trees.
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A graph G.

with ||DT ||L,∞ = 2` + 4
A spanning tree for G

`

and ||DT − DG||L,∞ = 2.

A spanning tree for G

with ||DT ||L,∞ = 2` + 2
and ||DT − DG||L,∞ = 2` + 1.

Figure 1: An illustration for the difference between distance minimization and distance approximation
for the L∞ matrix-norm.

short) [17, 10], and for the L∞ matrix norm, i.e., ‖A‖L,∞ = maxi,j |aij|, the tree realizing the
minimum is known as the minimum diameter spanning tree [8, 16].

• Find a spanning tree that approximates distances with respect to ‖ · ‖r. This corresponds to a
similarity measure %r(G, T ) = ‖DT − DG‖r. If we use the L∞ matrix-norm, then we search
for a tree that guarantees for all vertex pairs a certain additive increase in distance. Trees with
more balanced increases are favored. Such trees are called additive tree-spanners [21, 25]. On
the other hand, with respect to the L1 matrix-norm, we search for a tree minimizing the average
increase of distances between vertex pairs. Here, even some large deviations for few vertex
pairs are allowed. Note that this tree is simultaneously a MAD-tree.

• Find a spanning tree that approximates centralities with respect to ‖ · ‖r. A centrality cG for a
graph G is a mapping from vertices of G to the real numbers. Thus, this optimization problem is
based on a similarity measure %r(G, T ) = ‖cG−cT ‖r for some vector norm ‖ ·‖r. In this paper,
we consider the popular notion of closeness centrality [2, 26] which, for any graph G = (V, E)
and vertex v ∈ V , is defined as cG(v) = (

∑

t∈V dG(v, t))−1.

The norms that we use throughout the paper are all standard and are reviewed in Sect. 2.
Note that except for the L1 matrix-norm, distance-minimizing spanning trees and optimal distance-

approximating spanning trees typically cannot be used to provide good approximate solutions for each
other since the different underlying matrices drastically affect the cost of an optimal solution as well
as the structure of the corresponding spanning tree: an example for this, with respect to L∞, is pro-
vided by Fig. 1. Whilst the upper spanning tree provides a minimum diameter spanning tree for G, it
approximates an optimal distance-approximating spanning tree only by a factor of Θ(`) = Θ(‖V ‖).
The lower spanning tree is an optimal distance-approximating spanning tree for G whilst being subop-
timal with respect to minimizing ‖DT‖L,∞. Note that there is no spanning tree for G which provides
an optimal solution to both problems.

Figure 2 gives another example that separates optimal solutions for distance approximation and
distance minimization for Lp. For arbitrary k and ` = 2p(2k + 4) + 1, the distance-minimizing
spanning tree is the single center tree, which is not optimal with respect to distance approximation,
while the best possible distance-approximating spanning tree is a multi-center tree for some r with 0 ≤
r ≤ k, which however, is not optimal for distance minimization. When increasing ` to 2(2k+3)p +1,
the single center solution is optimal for both distance approximation and distance minimization. This
shows that distance approximation, to a certain degree, prefers locally good solutions over globally
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Figure 2: An illustration for the difference between distance minimization and distance approximation
for Lp matrix-norms.

good solutions. When p increases, the “shaft” of the “shovel” can be made even longer compared to
the “blade”. Hence, a large p amplifies the local influence.

Results. In this paper, we study the complexity of the above-mentioned network abstraction problems.
We are particularly interested in the impact of the norm on the complexity of the problems. For
computing distance-minimizing spanning trees, we know that it is NP-complete to decide on input
(G, γ) whether there is a spanning tree T of G such that ‖DT‖L,1 ≤ γ [17]. Moreover, we have
a polynomial algorithm for computing a minimum diameter spanning tree [8, 16]. However, for
computing distance-approximating spanning trees in general graphs, even for L1 and L∞, no such
complexity results are known to the best of our knowledge.2 Research in this area has more focused
on proving the (non-)existence of certain distance-approximating trees for special graph classes (see,
e.g., [25, 5, 13, 21]). These existence theorems are usually complemented with polynomial algorithms
for finding the guaranteed trees. However, as our results show, we cannot break the curse of NP-
completeness for our optimization problems:

• In Sect. 4, we prove that deciding whether there is a spanning tree T such that ‖DT‖r ≤ γ
for any given instance (G, γ) is NP-complete for all matrix norms within our framework where
complexity has been unknown so far. We also consider forced-edge versions (as, e.g., in [6, 15]),
meaning that problem instances are of the form (G, E0, γ) where E0 consists of edges that must
be contained in the spanning tree. If we allow arbitrary edge sets for E0, then even the minimum
diameter spanning tree problem becomes NP-complete.

• In Sect. 5, we prove that deciding whether there is a spanning tree T of G such that ‖DT −
DG‖ ≤ γ for any given instance (G, γ) is NP-complete for all matrix norms within our frame-
work, i.e., essentially for all standard norms with the exceptional case of the spectral norm
which is left open. This is somewhat surprising, since at least in the case of L∞ (without
forced edges), one might have hoped for a polynomial algorithm building up on the polynomial
algorithms for computing minimum diameter spanning trees. Even worse, the polynomial al-

2Note that in contrast to some claim in the literature the results in [22] do not provide a proof for the NP-completeness
of deciding whether there is a spanning tree T with ‖DT −DG‖L,∞(G) ≤ γ, neither does an easily conceivable adaption.
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gorithm for computing the minimum diameter spanning tree cannot be used for approximating
minT ‖DT − DG‖L,∞ within reasonable factors. As the example in Fig. 1 shows, a minimum
diameter spanning tree can be arbitrarily bad as a distance-approximating spanning tree of G.

• Finally, in Sect. 6 we prove that with respect to closeness centrality, deciding whether there is
a spanning tree T such that ‖cG − cT‖r ≤ γ for any given instance (G, γ) is NP-complete for
the L1 vector-norm.

Related work. In addition to the already mentioned minimum diameter spanning trees [8, 16] and
MAD-trees [17, 10], several notions of distance approximability by trees have been considered in the
literature. One variant is obtained by relating pairs of vertices more closely: for a graph G = (V, E)
and a spanning tree T , we can consider the maximum of the ratio dT (u, v)/dG(u, v) over all distinct
vertices u, v ∈ V . If the maximum ratio is at most γ, then the tree is called γ-multiplicative tree
spanner (see, e.g., [25]). As these notions are usually studied in a more general setting of spanning
subgraphs, we do not take multiplicative tree-spanners into consideration. We should mention, how-
ever, that also combinations of additive and multiplicative tree-spanners have recently been proposed
[11]. Another approach is based on (pseudo-)isometric trees [5, 21], where the minimization is not
over spanning trees but over all trees having the same number of vertices as the network in question.
Since this loses a direct linkage between the tree and the network, we do not follow this vein.

Spanning subgraphs (not only trees) with certain bounds on distance increases have been inten-
sively studied since the pioneering work in [1, 24, 9]. These notions are typically motivated by prob-
lems in network design (see, e.g., [23, 7, 28, 15] and the surveys [27, 12]) and not (yet) in network
analysis. The most general formulation of a spanner problem is the following [22]: a spanning sub-
graph H of G is an f(x)-spanner for G if and only if for all u, v ∈ V (G), dH(u, v) ≤ f(dG(u, v)). As
examples, for f(x) = t + x we obtain additive t-spanners, and for f(x) = t · x we obtain multiplica-
tive t-spanners. The computational problem is to find an f(x)-spanner with the minimum number
of edges. It is thus a problem dual to ours, as it fixes a bound on the distance increase and tries to
minimize the size of the subgraphs, whereas we fix the size of the subgraph and try to minimize the
bounds. In a series of papers, the hardness of the spanner problems has been exhibited (see, e.g.,
[23, 6, 20, 19, 4]). The version closest to our problem is the following: given graph G and parameter
m, it is asked for any fixed k ≥ 1 if there is an additive t-spanner with no more than m edges. This
problem has been proven to be NP-complete [22]. In case that m = n − 1 is fixed, the problem
considered in [22] is just the decision version of finding the best possible distance-approximating
spanning tree with respect to ‖ · ‖L,∞. However, the NP-completeness proof relies heavily on the
number of edges in the instance. Thus, a translation to an NP-completeness proof for the tree case is
not obvious. We resolve this issue here.

2 Notation

IN = {0, 1, 2, . . .} is the set of natural numbers, IN+ = {1, 2, . . . }. Throughout the paper we only
consider simple, undirected, unweighted graphs. Let G be any such graph. Then V (G) denotes the
vertex set of G and E(G) denotes the set of edges of G. If the graph is clear from the context, we
simply use V and E. For vertices v, w ∈ V (G), the distance between v and w in G, denoted by
dG(v, w), is the minimum length of a path in G starting in v and ending in w. For a graph G with
vertex set {v1, . . . , vn}, we define DG ∈ INn×n to be its distance matrix, i.e., for all i, j ∈ {1, . . . , n},
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the entries in DG satisfy DG[i, j] = dG(vi, vj). Clearly, DG is a symmetric matrix with all entries
being non-negative. Moreover, for any spanning tree T of a graph G, we have for all vi, vj ∈ V ,
DT [i, j] ≥ DG[i, j]. We use the following well-known norms to evaluate a matrix A in IRn×n:

• ‖A‖L,p
def
=
(
∑n

i=1

∑n
j=1 |ai,j|

p
)1/p

for 1 ≤ p < ∞. (Called Lp norms.)

• ‖A‖L,∞
def
= maxi,j∈{1,...,n} |ai,j|. (Called L∞ norm.)

• ‖A‖1
def
= maxj∈{1,...,n}

∑n
i=1 |ai,j|. (Called maximum column-sum norm.)

• ‖A‖∞
def
= maxi∈{1,...,n}

∑n
j=1 |ai,j|. (Called maximum row-sum norm.)

Trivially, for symmetric matrices we have ‖A‖1 = ‖A‖∞. Thus, all our results regarding the
maximum-column-sum norm also hold for maximum-row-sum norm and vice versa. Therefore, we
only consider the maximum-column-sum norm. In the last part of the paper, we use Lp norms for
vectors as well: for any vector x ∈ IRn define ‖x‖p =def (

∑n
i=1 |xi|

p)
1/p for 1 ≤ p < ∞.

3 Gadgets

All our theorems establish NP-completeness results and the proofs all rely on similar constructions
(which, however, depend on parameters that must be tuned in a non-trivial manner). We gather these
essential constructions in this section.

Graph representation of X3C instances. Deciding whether there is an exact set-cover by sets hav-
ing three elements each is the following, well-known NP-complete problem (see [14]).

Problem: X3C
Input: A family C = {C1, . . . , Cs} of 3-element subsets of a set L = {l1, . . . , l3m}
Question: Is there a subfamily S ⊆ C of pairwise disjoint sets such that

⋃

A∈S = L?

A subfamily S satisfying this property is called an admissible solution to (C, L). It is clear that m ≤ s
and that any admissible solution consists of exactly m sets.

Suppose we are given an X3C instance (C, L). Let a and b be arbitrary natural numbers. Following
a construction from [17], we define the graph Ga,b(C, L) to consist of the vertex set

V =def C ∪ L ∪ {r1, . . . , ra}
︸ ︷︷ ︸

=defR

∪ {x}
︸︷︷︸

=defX

∪{k1,1, . . . , k1,b, k2,1, . . . , k2,b, . . . , k3m,1, . . . , k3m,b}
︸ ︷︷ ︸

=defK

and edge set

E =def

{
{rµ, x} | µ ∈ {1, . . . , a}

}
∪
{
{Cµ, x} | µ ∈ {1, . . . , s}

}
∪

∪
{
{lµ, Cν} | lµ ∈ Cν

}
∪
{
{lµ, lν} | µ, ν ∈ {1, . . . , 3m}

}
∪

∪
{
{kµ,ν, lµ} | µ ∈ {1, . . . , 3m} and ν ∈ {1, . . . , b}

}
.

The representation of an X3C instance according to the graph definition is illustrated in Fig. 3. The
following proposition summarizes some immediate observations.
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Figure 3: Graph representation of an X3C instance and a corresponding solution tree.

Proposition 1. Let (C, L) be an X3C instance and let a and b be natural numbers. Suppose T is a
spanning tree of the graph Ga,b(C, L).

1. For all µ ∈ {1, . . . , a}, T contains the edge {rµ, x}.

2. For all µ ∈ {1, . . . , 3m} and all ν ∈ {1, . . . , b}, T contains the edge {kµ,ν, lµ}.

3. If for some µ ∈ {1, . . . , s}, T does not contain the edge {Cµ, x}, then for all ν ∈ {1, . . . , a},

dT (Cµ, rν) ≥ 4 and dT (Cµ, rν) ≥ dGa,b(C,L)(Cµ, rν) + 2.

4. If for some µ ∈ {1, . . . , 3m}, the vertex lµ is not adjacent to any Cν ∈ C, ν ∈ {1, . . . , s}, then
for all κ ∈ {1, . . . , a} and λ ∈ {1, . . . , b},

dT (lµ, rκ) ≥ 4 and dT (kµ,λ, rκ) ≥ 5,

dT (lµ, rκ) ≥ dGa,b(C,L)(lµ, rκ) + 1 and dT (kµ,λ, rκ) ≥ dGa,b(C,L)(kµ,λ, rκ) + 1.

Assume that we are given an admissible solution S to an X3C instance (C, L). Then, we can
identify a corresponding spanning subgraph TS in the graph representation Ga,b(C, L) through the
following edge set:

E(TS) =
{
{rµ, x} | µ ∈ {1, . . . , a}

}
∪
{
{Cµ, x} | µ ∈ {1, . . . , s}

}
∪

∪
{
{lµ, Cν} | lµ ∈ Cν and Cν ∈ S

}
∪

∪
{
{kµ,ν, lµ} | µ ∈ {1, . . . , 3m} and ν ∈ {1, . . . , b}

}

Since S consists of pairwise disjoint sets, TS is a tree.
We observe some properties of solution trees.

Proposition 2. Let (C, L) be an X3C instance having an admissible solution S ⊆ C. Let a and b be
natural numbers. Let TS be the spanning tree of Ga,b(C, L) that corresponds to S.

1. For all µ ∈ {1, . . . , s}, if Cµ ∈ S, then Cµ has four neighbors in TS , otherwise Cµ has only one
neighbor in TS .
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2. For all vertices u ∈ R ∪ X and v ∈ V , dTS
(u, v) = dGa,b(C,L)(u, v).

3. For all µ, ν ∈ {1, . . . , s}, dTS
(Cµ, Cν) = dGa,b(C,L)(Cµ, Cν).

The following lemma provides a structural characterization of spanning trees that correspond to
admissible solutions.

Lemma 3. Let (C, L) be an X3C instance. Let a and b be natural numbers. Let T be any spanning
tree of the graph Ga,b(C, L). There exists an admissible solution S ⊆ C such that T = TS if and only
if the following conditions are all satisfied:

1. For all µ ∈ {1, . . . , s}, T contains the edge {Cµ, x}.

2. For all µ ∈ {1, . . . , 3m}, there is a ν ∈ {1, . . . , s} such that T contains the edge {lµ, Cν}.

3. For all µ ∈ {1, . . . , s}, the vertex Cµ has either four neighbors in T or one.

Proof. Clearly, the three conditions are necessary for a tree TS to correspond to an admissible solu-
tion S. For the other direction, suppose the tree T satisfies all conditions. By the first and second
conditions, for µ, ν ∈ {1, . . . , 3m} such that µ 6= ν, there exist κ, λ ∈ {1, . . . , s} such that the path
(lµ, Cκ, x, Cλ, lν) exists in T . Thus edges {lµ, lν} do not belong to T . Consequently, using the third
condition, we obtain an admissible solution by defining S to consist of all Cµ having exactly four
neighbors in T .

Graph representation of 2-HITTING SET. 2-HITTING SET is better known as the NP-complete
VERTEX COVER problem. However, we use the former problem formulation to avoid overuse of the
terms “vertices” and “edges” for the sake of readability:

Problem: 2-HITTING SET

Input: A family C = {C1, . . . , Cm} of 2-element subsets of a set S = {s1, . . . , sn}
and an integer k

Question: Does there exists a subset S ′ ⊆ S such that ‖S ′‖ ≤ k and for each
µ ∈ {1, . . . , m}, there is at least one element in Cµ ∩ S ′?

A subset F ⊆ S having this property is called an admissible solution to an 2-HITTING SET instance
(C,F , k).

Suppose we are given an instance (C,S, k) of 2-HITTING SET where ‖C‖ = m and ‖S‖ = n. We
define the graph G(C,S, k) to consists of

• vertices a, a′, and b

• literal gadgets Gµ for each sµ ∈ S, consisting of vertices vµ, v′
µ, u

µ
1 , . . . , u

µ
m+1, v

µ
1 , . . . , vµ

m.

• clause paths of length 2n(m + 2) for each clause Cµ = {sν, sκ} ∈ C connecting vν
µ with vκ

µ,
and

• safety paths of length 2n(m + 2) for each clause Cµ = {sν, sκ} ∈ C, connecting vν
µ with a′.

8



S = {s1, s2, s3, s4} C = {{s1, s3}, {s2, s4}, {s1, s4}, {s3, s4}}

a b

gadget for s1 gadget for s2 gadget for s3 gadget for s4

clause paths of length 2n(m + 2)

a′

safety paths of
length 2n(m + 2)

elongation
path

literal
path

Figure 4: Construction of a Hitting Set Gadget G(C,S, k) corresponding to a given instance of
2-HITTING SET. The dashed paths that are drawn bold consist solely of edges that must be con-
tained in a spanning tree for the graph.

Note that the only purpose of the clause paths is capturing forced edges in some versions of our
problems. For each sµ ∈ S the literal gadget Gµ consists of two vertices vµ and v′

µ called connection
vertices. Both vµ and v′

µ are connected via a path (vµ, uµ
1 , . . . , u

µ
m+1, v

′
µ) of length m + 2 called

elongation path and a path (vµ, v
µ
1 , . . . , vµ

m, v′
µ) of length m + 1 called the literal path. Clearly, the

graph size is polynomial in the size of the instance (C,S, k). The construction is illustrated in Fig. 4.

Lemma 4. Let (C,S, k) be an instance of 2-HITTING SET.

1. We have dG(C,S,k)(a, b) = 2 + n(m + 2).

2. There exists an admissible solution S ′ ⊆ S to (C,S, k) if and only if there exists a spanning tree
T of G(C,S, k) containing all edges in the clause paths such that dT (a, b) ≤ dG(C,S,k)(a, b)+k.

Proof. The first statement follows from the observation that any path from a to b using a clause or
safety path has length at least 2 + 2n(m + 2) while the shortest path between a and b via literal or
elongation paths has length n(m + 1) + n + 2.

For the second statement we prove the two directions separately.
(⇒) Suppose S ′ is an admissible solution to (C,S, k), i.e., ‖S ′‖ ≤ k. Construct a spanning tree

of G(C,S, k) as follows:

1. For each clause Cµ = {sν, sκ} ∈ C do the following: if sν ∈ S ′, then remove the edge
{vν

µ−1, v
ν
µ}. If sκ ∈ S ′, then remove the edge {vκ

µ−1, v
κ
µ}. (We denoted vν

0 = vν and vκ
0 = vκ

here.) If not both sν and sκ are elements of S, then remove an edge from the safety path between
sν and a′.3

2. For each sµ ∈ S ′, remove edge {vµ
m, v′

µ}.

3. For each sµ 6∈ S ′, remove the edge {vµ, uµ
1}.

Note that no edge from a clause path was removed. We ensured that each cycle induced by the literal
and elongation paths is broken because at least one edge is removed by second and third construc-
tion rule. The cycles induced by the clause and safety paths are broken by the first and third con-
struction rule: for each clause Cµ = {sν, sκ} ∈ C at least one of the sets {{vν

µ−1, v
ν
µ}, {v

ν
m, v′

ν}}

3Without the safety paths, the given edge removal scheme might leave a clause gadget disconnected in T .
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and {{vκ
µ−1, v

κ
µ}, {v

κ
m, v′

κ}} is removed, thus either vν
µ or vκ

µ is not reachable via the clause path
from vν or v′

ν (vκ or v′
κ, respectively). An edge from the safety path is removed, except if both

{{vν
µ−1, v

ν
µ}, {v

ν
m, v′

ν}} and {{vκ
µ−1, v

κ
µ}, {v

κ
m, v′

κ}} are removed, in which case neither vν
µ nor vκ

µ is
reachable via the clause path from any of vν , v

′
ν, vκ, v

′
κ. A cycle induced by multiple clause paths not

leading via any connection vertices cannot occur, since the connection is broken at one of the literals
in S ′.

As a result, there is a path between a and b in T leading via elongation (sµ ∈ S ′) or literal (sµ 6∈ S ′)
paths. By means of construction, the distance via a literal path is shorter by one than the distance via
an elongation. Therefore,

dT (a, b) = 2 + (n − ‖S‖)(m + 2) + ‖S‖(m + 3) = 2 + n(m + 2) + ‖S‖ ≤ dG(C,S,k)(a, b) + k.

(⇐) Suppose T is a spanning tree of G(C,S, k) containing all edges of the clause paths and
satisfying dT (a, b) ≤ dG(C,S,k)(a, b) + k. Since dG(C,S,k)(a, b) + k ≤ 2 + n(m + 3) < 2 + 2n(m + 2),
the path cannot lead via any clause or safety paths. Hence, it must lead via literal and elongation paths
only. The length of any (intact) elongation path is m+2, the length of any (intact) literal path is m+1.
Therefore, the path from a to b leads over exactly k elongation paths. Let S ′ be the set of literals sµ for
which the path leads from vµ to v′

µ via an elongation path. Here, the literal path must be broken (due
to the minimality of the path length). Conversely, for every sµ 6∈ S ′, the literal path is not broken, i.e.,
(vµ, vµ

1 , . . . , vµ
m, v′

µ) is a path in T . Assume that we have for any clause Cµ = {sν, sκ} ∈ C (where
ν < κ), Cµ ∩ S ′ = ∅. The clause path connects vν

µ with vκ
µ. Since sν, sκ 6∈ S ′, the vertex vν

µ is
connected to v′

ν is connected to vκ is connected to vκ
µ which is a contradiction to T being a tree.

4 Trees that Minimize Distances

In this section, we consider the problem of computing spanning trees of given graphs that minimize
distances among the vertices of the graph under certain matrix norms.

Problem: DISTANCE MINIMIZING SPANNING TREE (with respect to ‖ · ‖r)
Input: A connected graph G and an algebraic number γ
Question: Does G contain a spanning trees T with ‖DT‖r ≤ γ?

We also consider the forced-edge version of this problem. Here, the input is a graph G, an edge set
E0 ⊆ E(G), and an algebraic number γ, and the question is whether there exists a spanning tree T
such that E0 ⊆ E(T ) and ‖DT‖r ≤ γ.

We begin with our study by proving that computing distance-minimizing spanning trees is com-
putationally hard under the Lp matrix-norm for all reasonable 1 ≤ p < ∞. Note that the case p = 1
corresponds to the MAD-tree problem which was shown to be NP-complete in [17]. In fact, our proof
generalizes the X3C-based proof technique from [17].

Theorem 5. DISTANCE MINIMIZING SPANNING TREE with respect to ‖ · ‖L,p is NP-complete, for
all p ∈ IN+.

Proof. Containment in NP is obvious. We prove the hardness by reduction from X3C using the
graph representation Ga,b(C, L) for any X3C instance (C, L). We will fix the parameter a, b and γ in
an appropriate manner later, so that (C, L) has an admissible solution S ⊆ C if and only if Ga,b(C, L)
has a spanning tree T such that ‖DT‖

p
L,p ≤ γp.
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Suppose S ⊆ C is an admissible solution to instance (C, L). Let TS be the corresponding spanning
tree of Ga,b(C, L). Define

N =def

∑

u∈R∪C

∑

v∈V

dGa,b(C,L)(u, v)p.

By Proposition 2, N remains unchanged if the distance in Ga,b(C, L) are replaced by the distances in
TS . More precisely,

N = 2




2pa2 − a

2
︸ ︷︷ ︸

R to R

+ a
︸︷︷︸

R to X

+ 2psa
︸︷︷︸

R to C

+ 3p3ma
︸ ︷︷ ︸

R to L

+ s
︸︷︷︸

X to C

+ 2p3m
︸ ︷︷ ︸

X to L




 .

Define
M =def

∑

u,v∈C∪L

dTS
(u, v).

We obtain

M = 2




2ps2 − s

2
︸ ︷︷ ︸

C to C

+ 3m + 3p3m(s − 1)
︸ ︷︷ ︸

C to L

+ 2p3m + 4p9m2 − 9m

2
︸ ︷︷ ︸

L to L




 .

We now set our parameter as follows:

a =def

⌈
M

4p − 3p

⌉

b =def 0

γ =def (N + M)1/p

Clearly, ‖DTS
‖p

L,p = N + M = γp. Thus, TS is a spanning tree of Ga,b(C, L) having the desired
distance property.

Suppose T is a spanning tree of Ga,b(C, L) such that ‖DT‖
p
L,p ≤ γp. We apply the characteri-

zation of a solution tree given in Lemma 3 and show that all conditions are satisfied. Note that, by
Proposition 2, N is a lower bound for the p-distance sum between vertices in R ∪ X .

• Assume to the contrary that the first condition of Lemma 3 does not hold, i.e., for some µ ∈
{1, . . . , s}, the edge {Cµ, x} is not in T . Then, dT (Cµ, x) ≥ 3 and for all ν ∈ {1, . . . , 3m},
dT (Cµ, rν) ≥ 4. Thus, ‖DT‖

p
L,p ≥ N − 1p − 2pa + 3p + 4pa and we conclude

‖DT‖
p
L,p − γp ≥ 3p − 1 + a(4p − 2p) − M > 1 + M

(4p − 2p)

4p − 3p
− M > 1,

a contradiction.

• Assume to the contrary that the second condition of Lemma 3 does not hold, i.e., there is a
vertex lµ not adjacent to any Cν in T . Then, ‖DT‖

p
L,p ≥ N − 2p − 3pa + 3p + 4pa and we

conclude

‖DT‖
p
L,p − γp ≥ 3p − 2p + a(4p − 3p) − M > 1 + M

(4p − 3p)

4p − 3p
− M = 1,

a contradiction.
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• Note that, if the first and second condition in Lemma 3 are both satisfied, then all edges but
those between C and L are already fixed by now and the distances in T and Ga,b(C, L) are the
same except for those between vertices in L (between L and C, each lµ has p-distance one to
exactly one Cν and 3p otherwise). Let g be the number of pairs (lµ, lν) such that edges {lµ, Cκ}
and {lν, Cκ} exist in T . The total number of pairs is 9m2 − 3m. We obtain

3m∑

µ=1

3m∑

ν=1

dT (lµ, lν)
p = 2pg + 4p(9m2 − 3m − g).

The maximum possible value of g is 6m which corresponds to the case that the third condition
in Lemma 3 is satisfied. Assume to the contrary g < 6m. Then we have

‖DT‖
p
L,p − γp ≥ −2p6m − 4p(9m2 − 9m) + 2pg + 4p(9m2 − 3m − g) =

= (6m − g)(4p − 2p) > 1,

a contradiction.

This proves the theorem by applying Lemma 3.

We know from the literature [8, 16] that a minimum diameter spanning tree in a graph can be found
in time O(mn+n2 log n) via computing absolute 1-centers. However, if we require that certain edges
have to be in the spanning tree, feasibility becomes out of reach.

Theorem 6. The forced-edge version of DISTANCE MINIMIZING SPANNING TREE with respect to
‖ · ‖L,∞ is NP-complete.

Proof. Containment in NP is obvious. To show the NP-hardness, we give reduction from 2-HITTING SET

based on the graph representation G(C,S, k) for any given instance (C,S, k) of 2-HITTING SET. Let
N be the number of vertices of G(C,S, k). Define G to be the graph constructed from G(C,S, k) by
adding

• vertices c, c′, d, d′,

• edges {c, c′}, {d, d′}, {c′, a}, {b, d′}, and

• two paths P and Q connecting c, c′ and d, d′, respectively, each of length N + 1.

An illustration of G is given in Fig. 5. Define the set E′ of edges that must be contained in any
desired spanning tree to consist of all edges in clause paths of G(C,S, k) and all edges in paths P and
Q. That is, any spanning tree T of G with E ′ ⊆ E(T ) must include P and Q completely. Therefore,
dT (c, d) ≥ 2N . For any vertices v, w in G(C,S, k) and any vertex u which is G but not in G(C,S, k),
we have dT (v, w) ≤ N − 1 and dT (v, u) ≤ 2N − 1. All in all, this shows that the distance in T
between vertices c and d determines the diameter of T , i.e., ‖DT‖L,∞ = dT (c, d). Clearly, any path
from vertex c to vertex d must pass vertices a and b. Consequently,

‖DT‖L,∞ = 2N + 2 + dT (a, b).

Define γ =def 2N + 4 + n(m + 2) + k where n = ‖S‖ and m = ‖C‖ for a given 2-HITTING SET

instance (C,S, k). Using Lemma 4, we immediately see that (C,S, k) has an admissible solution
S ′ ⊆ S if and only if there exists a spanning tree T in the graph G which includes all edges of E ′ and
satisfies ‖DT‖L,∞ ≤ γ. This proves the theorem.
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G(C,S, k)
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dd′
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c′c

�

paths of length
N + 1 each

Figure 5: Construction for proving the NP-completeness of the fixed-edge version of DISTANCE

MINIMIZING SPANNING TREE with respect to ‖ · ‖L,∞. The dashed bold paths consist solely of
edges that are included in the edge set required to be in a spanning tree for G).

Next we state that distance-minimizing spanning trees are hard to find under the maximum column-
sum norm and thus, maximum row-sum norm as well.

Theorem 7. DISTANCE MINIMIZING SPANNING TREE with respect to ‖ · ‖1 is NP-complete.

Proof. Containment in NP is obvious. Again, NP-hardness is proven by reduction from X3C using
the graph representation Ga,b(C, L) for a given X3C instance (C, L) and an appropriate choice of the
parameters a, b and γ. We will fix the parameter later, so that (C, L) has an admissible solution S ⊆ C
if and only if Ga,b(C, L) has a spanning tree T such that ‖DT‖1γ.

Suppose S ⊆ CF is an admissible solution to (C, L). Let TS be the corresponding spanning tree
in the graph Ga,b(C, L). The vertices in the sets R, X , and L all have the same column sums. We
calculate for µ ∈ {1, . . . , a} and ν ∈ {1, . . . , 3}:

∑

v∈V

dT (rµ, v) = 2a + 2s + 9m − 1

∑

v∈V

dT (x, v) = a + s + 6m

∑

v∈V

dT (lν, v) = 3a + 3s + 12m − 8

For C we have to make a distinction between vertices with one neighbor in TS or four:

∑

v∈V

dT (Cµ, v) =

{
2a + 2s + 9m − 1 if Cµ has one neighbor in TS

2a + 2s + 9m − 7 if Cµ has four nighbors in TS

We define our parameters as follows:

a =def s + 12m + 8

b =def 0

γ =def 6s + 48m + 16

Clearly, we have ‖DTS
‖1 = 6s + 48m + 16 = γ. Thus, TS is a spanning tree in Ga,b(C, L) having a

distance property as desired.
Suppose T is a spanning tree in Ga,b(C, L) satisfying ‖DT‖1 ≤ γ. We apply the characterization

of a solution tree given in Lemma 3 and show that all conditions are satisfied.
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• Assume to the contrary that the first condition in Lemma 3 does not hold, i.e., for some µ ∈
{1, . . . , s}, the edge {Cµ, x} does not belong to T . We obtain

∑

v∈V

dT (Cµ, v) ≥ 4a + 2s + 9m − 5 = 6s + 57m + 27 > γ,

a contradiction.

• Assume to the contrary that the second condition in Lemma 3 does not hold, i.e., there is a
vertex lµ not adjacent to any vertex Cν in T . Then

∑

v∈V

dT (lµ, v) ≥ 4a + 2s + 3 = 6s + 48m + 35 > γ,

a contradiction.

• Assume to the contrary that the third condition in Lemma 3 does not hold, i.e., there is a vertex
Cµ having two or three neighbors in T . Let lν be one of Cµ’s neighbors in T . We calculate

∑

v∈V

dT (lν, v) ≥ 3a + 3s + 12m − 6 = 6s + 48m + 18 > γ,

a contradiction.

This proves the theorem by Lemma 3.

Remark 8. Both constructions in Theorem 5 and Theorem 7 do not really use the edges between
the vertices in L of the graph representation of an X3C instance. Consequently, the constructed
graphs are planar (if we assume that all clauses in the X3C instance are distinct). That means, that
computing distance-minimizing spanning trees for these norms is NP-hard already in planar graphs.

5 Trees that Approximate Distances

In this section, we turn to the problem of finding spanning trees approximating the distances in a
graph reasonably well under a certain given matrix norm.

Problem: DISTANCE APPROXIMATING SPANNING TREE (with respect to ‖ · ‖r)
Input: A connected graph G and an algebraic number γ
Question: Does G contain a spanning trees T with ‖DT − DG‖r ≤ γ?

The forced-edge version of this problem is specified by the instance consisting of a graph G, edge set
E0 ⊆ E(G), and an algebraic numbers γ and the question whether there exists a spanning tree T such
that E0 ⊆ E(T ) and ‖DT −DG‖r ≤ γ. Clearly, the forced-edge version is algorithmically not easier
than the original one.

Notice that with respect to L1 matrix-norm, computing distance-minimizing and optimal distance-
approximating spanning trees is equivalent. As a consequence, we immediately have NP-completeness
under L1 matrix-norm (from Theorem 5 or [17]).

We show that, independent of the norm, all problems are NP-complete.
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Theorem 9. DISTANCE APPROXIMATING SPANNING TREE with respect to ‖ · ‖L,p is NP-complete
for all p ∈ IN+.

Proof. Containment in NP is obvious. NP-hardness is proven by reduction from X3C using the
graph representation Ga,b(C, L) for a given X3C instance (C, L) and an appropriate choice of the
parameters a, b and γ. We will fix the parameter later, so that (C, L) has an admissible solution S ⊆ C
if and only if Ga,b(C, L) has a spanning tree T such that ‖DGa,b(C,L) − DT‖

p
L,p ≤ γp.

Suppose S ⊆ C is an admissible solution to (C, L). Let TS be the corresponding spanning tree
in Ga,b(C, L). By Proposition 2, we only have dTS

(lµ, lν) − dGa,b(C,L)(lµ, lν) > 0 and dTS
(lµ, Cν) −

dGa,b(C,L)(lµ, Cν) > 0. Thus,

‖DGa,b(C,L) − DTS
‖p

L,p = 2




2p3m(s − m) + 3m(m − 1)
︸ ︷︷ ︸

C to L

+ 3m + 3p 9m2 − 9m

2
︸ ︷︷ ︸

L to L




 .

We now set our parameters as follows:

a =def γ

b =def 0

γ =def ‖DGa,b(C,L) − DTS
‖L,p

Note that computing γ in polynomial time is possible, since all information needed is already given
in the input. By definition, TS is a spanning tree in Ga,b(C, L) having the desired distance property.

Suppose T is a spanning tree in Ga,b(C, L) satisfying ‖DGa,b(C,L) − DT‖
p
L,p ≤ γp. We apply the

characterization of a solution tree given in Lemma 3 and show that all conditions are satisfied.

• Assume to the contrary that the first condition in Lemma 3 does not hold, i.e., for some µ ∈
{1, . . . , s}, the edge {Cµ, x} does not belong to T . This implies dT (Cµ, x) ≥ dGa,b(C,L)(Cµ, x)+
2 and for all ν ∈ {1, . . . , a}, dT (Cµ, rν) ≥ dGa,b(C,L)(Cµ, rν) + 2. Thus,

‖DGa,b(C,L) − DT‖
p
L,p ≥ (a + 1)2p > γp,

a contradiction.

• Assume to the contrary that the second condition in Lemma 3 does not hold, i.e., there is a
vertex lµ not adjacent to any vertex Cν in T . We obtain dT (lµ, x) ≥ dGa,b(C,L)(lµ, x) + 1 and for
all ν ∈ {1, . . . , a}, dT (lµ, rν) ≥ dGa,b(C,L)(lµ, rν) + 1. This gives

‖DGa,b(C,L) − DT‖
p
L,p ≥ a + 1 > γp,

a contradiction.

• Note that, if the first and second condition in Lemma 3 are both satisfied, then all edges but
those between C and L are already fixed by now and the distances in T and Ga,b(C, L) are the
same. For the distances from vertices in C to vertices in L we have

dT (lµ, Cν) =







dGa,b(C,L)(lµ, Cν) if edge {lµ, cν} is in T
dGa,b(C,L)(lµ, Cν) + 1 if edge {lµ, cν} is not in T and lµ /∈ Cν

dGa,b(C,L)(lµ, Cν) + 2 if edge {lµ, cν} is not in T and lµ ∈ Cν
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Let hi be the number of vertices Cµ having exactly i neighbors in T . It clearly holds h1 + h2 +
h3 + h4 = s and h2 + 2h3 + 3h4 = 3m. Moreover, we have

3m∑

µ=1

s∑

ν=1

(
dGa,b(C,L)(lµ, Cν) − dT (lµ, Cν)

)p
= 2 (3s(m − 1) + 2p(3h1 + 2h2 + h3)) .

For the distances between vertices in L, we obtain for µ, ν ∈ {1, . . . , 3m} and µ 6= ν,

dT (lµ, lν) =







dGa,b(C,L)(lµ, lν) + 1 if edges {lµ, Cκ} and {lν, Cκ} belong to T
for some κ ∈ {1, . . . , s}

dGa,b(C,L)(lµ, lν) + 3 otherwise

Let g be the number of pairs (lµ, lν) such that µ 6= ν and for some κ ∈ {1, . . . , s}, edges
{lµ, Cκ} and {lµ, Cκ} exist in T . We calculate

3m∑

µ=1

3m∑

ν=1

(
dGa,b(C,L)(lµ, lν) − dT (lµ, lν)

)p
= g + 3p(9m2 − 3m − g).

The maximum possible value of g is 6m and that of h4 is s both values simultaneously corre-
sponding to the case that the third condition in Lemma 3 is satisfied. Assume to the contrary
g < 6m and h4 < s. Then we have

‖DGa,b(C,L) − DT‖
p
L,p − γp ≥

− 6s(m − 1) − 6m − 3p(9m2 − 9m) + 6s(m − 1) + 2p+1 + g + 3p(9m2 − 3m − g)

= 2p+1 + (3p − 1)(6m − g) > 1,

a contradiction.

This proves the theorem by Lemma 3.

For proving NP-completeness for L∞ matrix-norm, it is helpful to prove a completeness result
first for the forced-edge version.

Lemma 10. The forced-edge version of DISTANCE APPROXIMATING SPANNING TREE with respect
to ‖ · ‖L,∞ is NP-complete.

Proof. The proof is the same as the one for DISTANCE MINIMIZING SPANNING TREE with respect
to ‖ · ‖L,∞ (see Theorem 6). The only difference in the reduction from 2-HITTING SET is that the
parameter γ is now defined as 2N + k (what is clear to follow from Lemma 4) for a 2-HITTING SET

instance (C,S, k).

We now try to get rid of the forced edges. In order to achieve this, we replace forced edges by cycles
such that deleting a forced edge will cause the distance between two cycle vertices to increase by
more than the allowed threshold γ. A similar technique with two cycles was used in [6, Lemma 3] to
guarantee that any minimum t-spanner (i.e., a spanning subgraph with smallest number of edges such
that dG(u, v) ≤ t · dT (u, v) for all u, v ∈ V ) contains a certain edge. However, this construction does
not work in the context of additive distance growth and trees.
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Lemma 11. Let G = (V, E) be any graph and let {v, w} be an arbitrary non-bridge edge in G. For
k > 3, let G′ be the graph resulting from adding a path (v, u1, . . . , uk, w) to G where uµ /∈ V for
all µ ∈ {1, . . . , k}. There exists a spanning tree T of G which includes the edge {v, w} and satisfies
‖DT −DG‖L,∞ ≤ k if and only if there exists a spanning tree T ′ of G′ such that ‖DT ′−DG′‖L,∞ ≤ k.

Proof. For any spanning tree T of a graph G = (V, E), we define δT (v) =def maxw∈V (dT (v, w) −
dG(v, w)). Let P be the path (v, u1, . . . , uk, w) to be added to the graph G = (V, E) with respect to
the edge {v, w}. That is, G′ = G ∪ P . We prove the two directions separately.

(⇒) Suppose there is a spanning tree T of G such that ‖DT − DG‖L,∞ ≤ k and edge {v, w}
belongs to T . Without loss of generality, we assume that δT (v) ≤ δT (w). Define T′ to be the
spanning tree in G′ with edge set E(T )∪E(P ) by removing the edge {ub k

2
c, ud k+1

2
e} in the middle of

P . We have two cases.

• Suppose δT (v) < k. We have the following bounds on distance changes in T ′ with respect to
G′.

– For x, y ∈ V (G) we have dT ′(x, y) ≤ dG′(x, y) + k.

– For x, y ∈ V (P ) we have dT ′(x, y) ≤ dG′(x, y) + k.

– For µ ∈ {1, . . . , bk
2
c} and y ∈ V (G) we find

dT ′(uµ, y) − dG′(uµ, y) = dT ′(uµ, v) + dT ′(v, y) − dG′(uµ, v) − dG′(v, y)

= dT ′(v, y) − dG′(v, y) ≤ k.

– For µ ∈ {dk+1
2
e, . . . , k} and y ∈ V (G), we have a similar inequality, if the shortest path

from uµ to y in G′ contains vertex w. Otherwise, we obtain

dT ′(uµ, y) − dG′(uµ, y) = dT ′(uµ, v) + dT ′(v, y) − dG′(uµ, v) − dG′(v, y)

= 1 + dT ′(v, y)− dG′(v, y) ≤ 1 + (k − 1) = k.

This completes the first case.

• Suppose δT (v) = δT (w) = k. For k ≥ 0 and for any vertex z ∈ V , define B=k(z) =def {x ∈
V | dT (x, z) − dG(x, z) = k}. First, we consider vertices x, y ∈ B=k(v) ∪ B=k(w) and claim
that

– either dT (v, x) = dT (w, x) + 1 and dT (v, y) = dT (w, y) + 1

– or dT (w, x) = dT (v, x) + 1 and dT (w, y) = dT (v, y) + 1.

Assume to the contrary that this is not true, i.e., we have dT (v, x) = dT (w, x)+1 and dT (w, y) =
dT (v, y) + 1. (By symmetry, it is enough consider this situation.) Now we may conclude that a
path from x to y in T must pass v and w where x is nearer to w and y is nearer to v. Hence,

dT (x, y) − dG(x, y)

= dT (x, w) + 1 + dT (v, y)− dG(x, y)

≥ dT (x, w) + 1 + dT (v, y)− dG(x, w) − dG(v, y)− 1 (by triangle inequality)

≥ dT (x, w) − dG(x, w) + dT (v, y)− dG(v, y)− 2 (edge {v, w} belongs to T )

≥ 2k − 4 (since x, y ∈ B=k(v) ∪ B=k(w))
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For k > 4 this leads to a contradiction and thus, our claim is true in this case. The case k ≤ 4
will be treated separately below.

So, without loss of generality, we suppose that dT (v, x) = dT (w, x) + 1 and dT (v, y) =
dT (w, y) + 1. We obtain the following distance changes in T ′ with respect to G′

– For x, y ∈ V (G) we trivially have dT ′(uµ, y) ≤ dG′(uµ, y) + k.

– For µ ∈ {1, . . . , bk
2
c} and y ∈ V (G), the shortest path between uµ and y visits v. Thus,

dT ′(uµ, y) ≤ dG′(uµ, y) + k.

– For µ ∈ {dk+1
2
e + 1, . . . , k} and y ∈ V (G), the shortest path between uµ and y visits w.

Thus, dT ′(uµ, y) ≤ dG′(uµ, y) + k.

– For µ = dk+1
2
e and y ∈ B=k(v) ∪ B=k(w) we know from above that the shortest path

between uµ and y visits w and hence, dT ′(uµ, y) ≤ dG′(uµ, y) + k. For y 6∈ B=k(v) ∪
B=k(w) we obtain

dT ′(uµ, y) − dG′(uµ, y) = dT ′(uµ, v) + dT ′(v, y) − dG′(uµ, v) − dG′(v, y)

≤ 1 + (k − 1) = k

Finally, for k = 4, note that dT (uµ, v) = dG(uµ, v) and dT (uµ, w) = dG(uµ, w), if we
remove the edge {u2, u3}. Hence,

dT ′(uµ, y) − dG′(uµ, y) = min (dT (v, y)− dG(v, y), dT (w, y)− dG(w, y)) ≤ k.

This completes the second case.

(⇐) Suppose there is a spanning tree T ′ for G′ with ‖DT ′ − DG′‖L,∞ ≤ k. We show that for any
such tree, the edge {v, w} must be in T ′. Note that {v, w} is in at least two cycles in G′, where one
is a cycle with P and another one is the cycle making {v, w} a non-bridge-edge in G. These cycles
must be broken in order for T ′ to be a tree. We show that there is only one possibility to break these
cycles (see Fig. 6 for illustration):

• Breaking the cycle in P at {uµ, uµ+1} and the cycles in G at {v, w} yields

dT ′(uµ, uµ+1) − dG′(uµ, uµ+1) = dT ′(uµ, uµ+1) − 1

= dT ′(uµ, v) + dT ′(v, w) + dT ′(w, uµ+1) − 1

≥ dT ′(uµ, v) + 2 + dT ′(w, uµ+1) − 1

= k + 1 > k,

a contradiction.

• Breaking the cycles in P at {v, w} and any of the other one at an arbitrary edge, say {x, y} with
y /∈ {v, w} yields

dT ′(x, y) − dG′(x, y) = dT ′(x, y) − 1

= dT ′(x, v) + dT ′(v, w) + dT ′(w, y)− 1

≥ dT ′(x, v) + k + 1 > k,

again a contradiction.
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Figure 6: Illustration of the proof of Lemma 11. Only T3 has distance difference ≤ k for i = b k
2
c.

It follows that when breaking the cycle in G at any edge e 6= {u, w} and the cycle with P at the edge
{ub k

2
c, ud k+1

2
e}, we can “reverse” the assembly - that is we can omit the part of T ′ that spans P , and

thus obtain a tree T of G for which ‖DT − DG‖L,∞ ≤ k and {v, w} is an edge in T .

From these two lemmas we easily obtain our result concerning the L∞ matrix-norm.

Theorem 12. DISTANCE APPROXIMATING SPANNING TREE with respect to ‖·‖L,∞ is NP-complete

Proof. Using Lemma 10, we prove the NP-hardness by a reduction from the fixed-edge version of
DISTANCE APPROXIMATING SPANNING TREE. We may restrict ourselves to instance (G, γ, E ′)
with γ > 3. First, note that if E ′ contains any bridges, we may remove these from E ′ without
changing the optimum solution to the given instance, as a bridge must be contained in any spanning
tree of G. Second, if some edges in E ′ form a cycle, we may immediately reject the instance. Using
Lemma 11 we describe the following reduction: for every edge {v, w} ∈ E ′ iteratively add a path
(v, u1, . . . , uk, w) with new vertices. Let G′ be the resulting graph which of course can constructed in
polynomial time in the size of G. An easy induction on the size of E ′ now shows that G has a spanning
tree containing all edges of E ′ such that ‖DT − DG‖L,∞ ≤ γ if and only if G′ has a spanning tree T ′

such that ‖DT ′ − DG′‖L,∞ ≤ γ.

We finally show the hardness with respect to the maximum column-sum norm.

19



Theorem 13. DISTANCE APPROXIMATING SPANNING TREE with respect to ‖ · ‖1 is NP-complete.

Proof. Containment in NP is obvious. We prove NP-hardness by reduction from X3C using the
graph representation Ga,b(C, L) for a given X3C instance (C, L) and an appropriate choice of the
parameters a, b and γ. We will fix the parameter later, so that (C, L) has an admissible solution S ⊆ C
if and only if Ga,b(C, L) has a spanning tree T such that ‖DGa,b(C,L) − DT‖1 ≤ γ. We may suppose
that s ≥ 1 and thus m ≥ 1. For each µ ∈ {1, . . . , 3m}, let h(µ) denote the number of sets of C in
which lµ appears, i.e., h(µ) = ‖{ν | lµ ∈ Cν}‖. Define hmax =def maxµ h(µ).

Suppose S ⊆ C is an admissible solution to (C, L). Let TS be the corresponding spanning tree in
Ga,b(C, L). The vertices in the sets R, X , L, and K all have the same column sums. We calculate for
µ ∈ {1, . . . , s}, ν ∈ {1, . . . , 3m}, and κ ∈ {1, . . . , b}:

∑

v∈V

dT (rµ, v) − dGa,b(C,L)(rµ, v) = 0

∑

v∈V

dT (x, v) − dGa,b(C,L)(x, v) = 0

∑

v∈V

dT (lν, v) − dGa,b(C,L)(lν, v) = s + h(ν) + 9m − 9 + b(9m − 7)

∑

v∈V

dT (kν,κ, v) − dGa,b(C,L)(kν,κ, v) = s + h(ν) + 9m − 9 + b(9m − 7)

For vertices in C we have to make a distinction between vertices with one neighbor in T and vertices
with four neighbors in T . We obtain for µ ∈ {1, . . . , s}:

∑

v∈V

dT (Cµ, v) − dGa,b(C,L)(Cµ, v) =

{
(3m + 3)(b + 1) if Cµ has one neighbor in TS

(3m − 3)(b + 1) if Cµ has four neighbors in TS

We set our parameters in the following way:

a =def γ + 1

b =def s + 1

γ =def s + hmax + 9m − 9 + b(9m − 7)

This gives ‖DGa,b(C,L)−DT ‖1 = s+hmax +9m−9+b(9m−7) = γ. Consequently, TS is a spanning
tree of Ga,b(C, L) having the desired distance property.

Suppose T is a spanning tree in Ga,b(C, L) satisfying ‖DGa,b(C,L) − DT‖1 ≤ γ. We apply the
characterization of a solution tree given in Lemma 3 and show that all conditions are satisfied.

• Assume to the contrary that the first condition in Lemma 3 does not hold, i.e., for some µ ∈
{1, . . . , s}, the edge {Cµ, x} does not belong to T . Then

∑

v∈V

dT (Cµ, v) − dGa,b(C,L)(Cµ, v) ≥ 4a > γ,

a contradiction.
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• Assume to the contrary that the second condition in Lemma 3 does not hold, i.e., there is a
vertex lµ not adjacent to any vertex Cν in T . Then

∑

v∈V

dT (lµ, v) − dGa,b(C,L)(lµ, v) ≥ a > γ,

a contradiction.

• Note that, if the first and second condition in Lemma 3 are both satisfied, then all edges but
those between C and L are already fixed by now and the distances in T and Ga,b(C, L) are the
same. Assume to the contrary that the third condition in Lemma 3 does not hold, i.e., there is a
vertex Cµ having two or three neighbors in T . Let lν be a neighbor of such a vertex Cµ and let
degT (Cµ) denote the number of neighbors of Cµ in T . Then, we conclude

∑

v∈V

dT (lν, v) − dGa,b(C,L)(lν, v)

= s + h(lν) − 2 + degT (Cµ) − 2 + 3(3m − degT (Cµ) + 1)(b + 1)

= γ − s − hmax − 9m + 9 − b(9m − 7)s + h(lν) − 4 + degT (Cµ) +

+ 3(3m − degT (Cµ) + 1)(b + 1)

= γ + (h(lν) − hmax) + 8 − 2 degT (Cµ) + b(10 − 3 degT (Cµ))

≥ γ − s + b > γ,

a contradiction.

This proves the theorem by Lemma 3.

6 Trees that Approximate Centralities

A centrality measure is a mapping from the vertices of a graph to real numbers. Closeness centrality
cG : V → IR for a graph G is defined for all v ∈ V as follows [2, 26]:

cG(v) =def

(
∑

t∈V

dG(v, t)

)−1

It is clear from the definition that for each subgraph G′ of a graph G, we have cG(v) ≥ cG′(v) for all
vertices v in the graph.

We are interested in the problem of computing a spanning tree of a given graph such that its cen-
trality function is as close as possible to the centrality function of the graph under some vector norms.
We consider the following decision version of that problem.

Problem: CLOSENESS APPROXIMATING SPANNING TREE (with respect to ‖ · ‖r)
Input: A graph G (not necessarily connected) and an algebraic number γ
Question: Does G contain a spanning tree T with ‖cG − cT‖r ≤ γ?

It turns out that computing trees approximating the closeness centrality best possible with respect to
the average deviation is computationally hard.
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Theorem 14. CLOSENESS APPROXIMATING SPANNING TREE with respect to ‖·‖1 is NP-complete.

Proof. Containment in NP is obvious. We prove NP-hardness by reduction from X3C using a graph
representation slightly different to the one we used so far. The difference lies in the following: the
graph representation Ga,b(C, L) for an X3C instance (C, L) has edges {lµ, lν} for all pairs of literal
vertices. In our new graph representation G∗

a,b(C, L) = (V ∗, E∗) we omit these edges, i.e., we have

V ∗ = V

E∗ = E \
{
{lµ, lν} | µ, ν ∈ {1, . . . , 3m} and µ 6= ν

}

where Ga,b(C, L) = (V, E). It is easy to see that Lemma 3 also holds for the new graph representation.
Later we will set the parameters a, b and γ in a way that (C, L) has an admissible solution S ⊆ C if
and only if G∗

a,b(C, L) has a spanning tree T such that ‖cG∗

a,b
(C,L) − cT‖1 ≤ γ. In the following we

may restrict ourselves to the cases where m ≥ 5.
Suppose S ⊆ C is an admissible solution to (C, L). Let TS be the corresponding spanning tree in

G∗
a,b(C, L). We obtain

cTS
(v)−1 =







2s + 3(3 + 4b)m + 2a − 1 if v ∈ R
s + 3(2 + 3b)m + a if v ∈ X
2s + 3(3 + 4b)m + 2a − 6(b + 1) − 1 if v ∈ S
2s + 3(3 + 4b)m + 2a − 1 if v ∈ C \ S
3s + 3(4 + 5b)m + 3a − 8(b + 1) if v ∈ L
4s + 3(5 + 6b)m + 4a − 8(b + 1) − 1 if v ∈ K

We set our parameters as follows:

a =def 3s(b + 1) + 3m(s − 1)(b + 1) + 3m(m − 1)(b + 1)2

b =def 9s + 1

γ =def ‖cG∗

a,b
(C,L) − cTS

‖1

Thus, TS is a spanning tree of G∗
a,b(C, L) having the desired centrality property. Note that all parame-

ters and the graph representation G∗
a,b(C, L) can be computed in polynomial time in the size of (C, L).

In particular, it is not necessary to know exactly the vertices of S.
Suppose that T is a spanning tree of G∗

a,b(C, L) satisfying ‖cG∗

a,b
(C,L) − cT ‖1 ≤ γ. We compare the

centrality of each vertex in the tree T with its centrality in a hypothetical solution tree for the X3C
instance (C, L). For v ∈ V , define imitating centralities ĉ(v) as follows: if v ∈ V \ C, then ĉ(v) is
equal to the values cTS

from above; for vertices v ∈ C, we define

ĉ(v)−1 =def

{
2s + 3(3 + 4b)m + 2a − 6(b + 1) − 1 if v ∈ {C1, . . . , Cm}
2s + 3(3 + 4b)m + 2a − 1 if v ∈ {Cm+1, . . . , Cs},

i.e., the clause vertices C1, . . . , Cm simulate an admissible solution to (C, L). Note that ‖cG∗

a,b
(C,L) −

ĉ‖1 = γ. We apply the characterization of a solution tree in Lemma 3 (in the version suitable for the
graph representation G∗

a,b(C, L)) and show that all conditions are satisfied.

• Assume to the contrary that the first condition in Lemma 3 does not hold, i.e., for some µ ∈
{1, . . . , s}, the edge {Cµ, x} does not belong to T . Simple calculations yield the following
bounds on deviations from the imitating centralities.
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– For v ∈ R ∪ X we obtain cT (v)−1 ≥ ĉ(v)−1 + 2. Note that this inequality is crucial in
getting a contradiction as it holds for a + 1 vertices.

– For v ∈ C we obtain cT (v)−1 ≥ ĉ(v)−1 − 6(b + 1).

– For v ∈ L ∪ K, we have cT (v)−1 ≥ ĉ(v)−1 − 2(s − 1) − 6(m − 1)(b + 1).

Thus, using the identity 1
x+y

= 1
x
− y

x(x+y)
which is at least true whenever x > 0 and y 6= −x,

the total centrality of T can be estimated as

∑

v∈V

cT (v) ≤

(
∑

v∈V

ĉ(v)

)

−
2(a + 1)

(a + c1)(a + c2)
+

A

(2a + c3)(2a + c4)

where c1, c2, c3, c4 and A are appropriate positive integers (that depend on s, m, and b). It is
clear that the latter sum in the inequality is negative for a large enough. Inspecting the concrete
values

c1 = s + 3(2 + 3b)m

c2 = s + 3(2 + 3b)m + 2

c3 = 2s + 3(3 + 4b)m − 6(b + 1) − 1

c4 = 2s + 3(3 + 4b)m − 12(b + 1) − 1

A = 6s(b + 1) + 6m(s − 1)(b + 1) + 18m(m − 1)(b + 1)2,

we see that 0 ≤ c1 ≤ c3 and 0 ≤ c2 ≤ c4 for m ≥ 5. Thus, our choice of a from above is
appropriate. Hence,

‖cG∗

a,b
(C,L) − cT‖1 > ‖cG∗

a,b
(C,L) − ĉ‖1 = γ,

a contradiction.

• The second condition of Lemma 3 holds because T is a spanning tree of G∗
a,b(C, L).

• Note that, if the first and second condition in Lemma 3 are both satisfied, then all edges but
those between C and L are already fixed by now and the distances in T and Ga,b(C, L) are the
same. Assume to the contrary that the third condition in Lemma 3 does not hold, i.e., there is a
vertex Cµ having two or three neighbors in T . Let degT (v) denote the degree of vertex v in T .
We consider several cases:

– For v ∈ R ∪ X we clearly obtain cT (v)−1 = ĉ(v)−1.

– For v ∈ C we have cT (v)−1 ≥ ĉ(v)−1 − 6(b + 1).

– For v ∈ L it suffices to have cT (v)−1 ≥ ĉ(v)−1.

– For v ∈ K we obtain cT (v)−1 ≥ ĉ(v)−1 + 2(b + 1)(4 − degT (u)) where u ∈ C and T
contains edges {v, w} and {w, u} for some w ∈ L. Note that since there is a vertex in C
with at most three neighbors in T , there are at least b vertices in K such that cT (v)−1 ≥
ĉ(v)−1 + 2(b + 1). This is the crucial inequality in getting a contradiction.
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Using the identity 1
x+y

= 1
x
− y

x(x+y)
from above once more, we get the following estimation

for the total centrality:

∑

v∈V

cT (v) ≤

(
∑

v∈V

ĉ(v)

)

+
6s(b + 1)

ĉ(v0)−1(ĉ(v0)−1 − 6(b + 1))
−

−
2(b + 1)b

ĉ(u0)−1(ĉ(u0)−1 + 4(b + 1))
,

where v0 ∈ C and u0 ∈ K. An easy estimation of the relation between ĉ(v0)
−1 and ĉ(u0)

−1

shows that, for m ≥ 5, the latter difference is at most

18s(b + 1) − 2(b + 1)b

ĉ(u0)−1(ĉ(u0)−1 + 4(b + 1))
< 0,

by our choice of b. Hence,

‖cG∗

a,b
(C,L) − cT‖1 > ‖cG∗

a,b
(C,L) − ĉ‖1 = γ,

a contradiction.

This proves the theorem by Lemma 3.

Corollary 15. CLOSENESS APPROXIMATING SPANNING TREE with respect to ‖·‖L,1 is NP-complete,
even restricted to planar graphs.

Proof. Observe that the graph representation used in the proof of Theorem 14 always produces planar
graphs, if X3C instance are assumed not to contain two or more identical clauses.

7 Conclusion

We have introduced the problem of combinatorial network abstraction and systematically studied it
for the natural case of trees and distance-based similarity measures (distance minimization, distance
approximation, and centrality approximation). This provides the first computational complexity study
in this area, presented in a unifying framework. Notably, all problems are NP-complete independent
of the norms used, except for the case of minimizing distances with respect to the L∞ matrix-norm
which is the polynomial-time solvable minimum diameter spanning tree problem [8, 16].

Although we do not exactly understand at this point what makes the problems computationally
hard, a simple observation is that the more closely the sub-trees and the graphs are related the more
likely the problem is hard. As an example, it is harder to approximate the distances of the original
graph (DISTANCE APPROXIMATING SPANNING TREE) than to optimize the tree itself (DISTANCE

MINIMIZING SPANNING TREE) with respect to the L∞ norm. On the other hand, as we have shown,
DISTANCE MINIMIZING SPANNING TREE becomes NP-complete if some edges of the original graph
have to be kept. For instance, ILP formulations of DISTANCE MINIMIZING SPANNING TREE and
DISTANCE APPROXIMATING SPANNING TREE with respect to ‖ · ‖L,∞ are not very different, how-
ever, the first problem leads to an ILP with a homogenous set of constraint inequalities whereas the
latter problem’s set of constraint inequalities is inhomogenous. This not only provides a promising
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way for a better understanding of differences of these problems but also to approximation algorithms.
A direct link between the subgraph and the given graph is essential for network abstraction (indepen-
dent of the pattern classes and similarity measures) and it seems that it is exactly this link that also
makes the problems hard. Hence, it is inevitable to look for approximation algorithms, exponential
algorithms with small bases, or fixed-parameter algorithms.

An interesting technical problem is also left open. No results are known with respect to the spectral
norm ‖ · ‖2, i.e., ‖A‖2 = λmax(A) where λmax(A) is the largest eigenvalue of any symmetric matrix
A ∈ IRn×n. Notice that for any symmetric matrix A, we have ‖A‖2 ≤ ‖A‖L,∞ ≤ ‖A‖L,p for all
p ∈ IN+ and ‖A‖2 ≤ ‖A‖L,∞ ≤ ‖A‖1 = ‖A‖∞. Can we expect that computing distance-minimizing
spanning trees with respect to ‖ · ‖2 is polynomial-time solvable (in the light that NP-completeness
appears with coarser norms) ?

Acknowledgments. We thank Klaus Holzapfel and Alexander Offtermatt-Souza for helpful discus-
sions and hints.
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