A Fast Algorithm for the Inexact Characteristic String
Problem

Moritz G. Maal3*
Fakultit fiir Informatik, TU Miinchen
Boltzmannstr. 3, D-85748 Garching, Germany

maass@informatik.tu—-muenchen.de

August 4, 2003

Abstract

We present a new algorithm to solve the INEXACT CHARACTERISTIC STRING PROB-
LEM using Hamming distance instead of Levenshtein distance as a measure. We embed
our new algorithm and the previously known algorithm for Levenshtein distance in a com-
mon framework which reveals an additional improvement to the Levenshtein distance al-
gorithm. The INEXACT CHARACTERISTIC STRING PROBLEM can thus be solved in time
O(|T)| +1-1/S\ T||) for Hamming distance and in time O(||T|| + k-1 - ||S \ T||) for
Levenshtein distance, where S C ¥*, T C S (T # () is the target set, and [is the length of a
shortest string in 7. The INEXACT CHARACTERISTIC STRING PROBLEM has applications
in probe and primer design.

Both algorithms need to solve the COMMON SUBSTRING PROBLEM for more than two
strings. We present an improved algorithm for this problem being simpler and faster in
practice by a constant factor than the previous algorithm.

Keywords: Algorithms and Data Structures, Pattern Matching, Computational Biology

1 Introduction

Solving the CHARACTERISTIC STRING PROBLEM requires to find a string that matches all
strings of a selected subset (the target set) and that does not match any string in the remain-
der of the given set of strings (the distance set). The solution is then characteristic for the strings
in the target set. Given an arbitrary string out of the set we can decide whether it belongs to the
target set by checking whether the characteristic string matches it.

The problem is motivated by applications in computational biology [6]. In DNA sequencing,
the techniques described here can be used to select a primer that bonds somewhere in a defined
region of a DNA strand, while excluding the possibility that the string hybridizes in another
region. PCR can then be used to replicate the substrings of the DNA starting at the position
where the primer hybridized. This is used in a technique called “chromosome walking” to close
gaps in DNA sequencing.

*Research supported by DFG, grant Ma 870/5-1 (Leibnizpreis Ernst W. Mayr).

Another usage is the design of probes. A probe can be used to verify the presence (or, better,
absence) of a certain genome in a defined environment. A (short) complementary subsequence
(the probe) of the target DNA is synthesized that does not match any other DNA occurring in
the environment (e.g., the target might be a harmful one among a set of harmless bacteria). If
the probe does not hybridize, the target does not appear. If the probe hybridizes, the target might
or might not appear. Therefore, the probe needs to be carefully selected so that it does not
hybridize to other DNA occurring frequently in the defined environment. In both problems, the
primer or probe is selected to match some target DNA while not matching other DNA from the
environment.

The hybridization process does not require an exact match. A probe might hybridize even if
some base pairs do no match. This motivates the definition of the INEXACT CHARACTERISTIC
STRING PROBLEM. To further reduce false hybridization, the probe is selected such that it does
not match non-target DNA (which must be known a priori) even allowing some errors.

There are multiple notions of matching with errors, most prominently Hamming distance
and LEVENSHTEIN DISTANCE'. Ito et al. [9] have presented an algorithm to solve the INEXACT
CHARACTERISTIC STRING PROBLEM in time O(||T'|| + - |S\T|+ k- 1-||S\ T||), where
S C YT C S (T # D) is the target set, S \ T the distance set, and [is the length of a
shortest string in 7". Here |S| is the cardinality of the set S and ||.S|| is the size of all elements
of S. Levenshtein distance is used as a measure, but the algorithm is easily adapted to solve the
problem for Hamming distance in the same asymptotic time bound.

In this paper we present a new algorithm for efficiently solving the INEXACT CHARACTER-
ISTIC STRING PROBLEM for Hamming distance. The new algorithm is faster and more space
efficient than the above algorithm — it runs in time O(||T|| 4+ [- ||S \ T||) — but it works only
for Hamming distance and not for Levenshtein distance. We believe that this is not a severe
restriction because Hamming distance seems to be a very natural measure with respect to DNA
hybridization. Lanctot et al. [10] argue that gaps are much more destabilizing than substitutions,
thus making Hamming distance the measure of choice for the design of short oligomers (e.g.,
probes).

We take a second look at the Levenshtein distance version of the INEXACT CHARACTERIS-
TIC STRING PROBLEM, which can be be solved more efficiently in time O(||T||+k-1-||S\T||)
when embedded in the same framework.

Furthermore we present a practical and very efficient algorithm for the COMMON SUB-
STRING PROBLEM which improves over previous algorithms [8] by a constant factor in speed
and a much smaller memory overhead.

2 Overview and Previous Work

For our algorithm we introduce a four step framework which structures the solution into different
parts. The two major parts of the algorithm consist of computing substrings that do not match
a string from the distance set (“difference part”), and of solving the COMMON SUBSTRING
PROBLEM for the strings in the target set. Both parts use a shortest string v € T of length [as a
reference.

The same framework can be used for Levenshtein distance as distance measure and we show
how to reduce the running time by carefully embedding the core of the algorithm of Ito et al. [9]
in our framework. The computation of the substrings not matching the non-target strings (we will

Talso known as edit distance

call them k-distant substrings) contributes the main term in the running time. Thus, the running
time depends solely on the choice between Levenshtein distance or Hamming distance in the
difference part. As a result, the Hamming distance version of the INEXACT CHARACTERISTIC
STRING PROBLEM can be solved by a factor of k faster than the improved Levenshtein distance
version. Experimental results indicate an additional performance yield for the Levenshtein dis-
tance version even for £ = 1 because no suffix trees and no constant lowest common ancestor
queries are needed. If k is not independent but related to an error rate «, then there is a linear
dependency between k and the length of the characteristic string. This length can be bounded
from below by the size of a 0-characteristic string. Szpankowski [17] has shown that the size of
a minimal string that does not occur as a substring in a string of size n converges almost sure to
% logn as n — oo, where 0 < h < oo is related to the entropy?. So for a fixed error rate o, one
should choose k = Q(log ||S\ T'||).

To avoid confusion, we will say “v is a substring of S, if v is a substring of each string in S.
We will say that “v is a substring in S”, if there is a string in S that has v as a substring.

A linear algorithm to solve the CHARACTERISTIC STRING PROBLEM has been published
by Nakanishi et al. [15]. The algorithm relies on generalized suffix trees and runs in time and
space O(||S||). The generalized suffix tree for all strings in S is first traversed to mark all nodes
which represent a prefix of a string v in S\ 7" (they have a leaf representing a suffix of v as a
child). In a second run for each node n that is unmarked and a child of a marked node p, it is
checked (by a linear time subtree traversal) whether the node represents a substring u of 7. If a
leaf representing a suffix of a string v is found below n for every v € T, then u is a substring
of T. Since u is not a substring in S \ 7 it is a characteristic string. Every prefix of u that is
longer than the string represented by p is a characteristic string. Among all strings thus found,
the shortest one is returned.

Ito et al. [9] have presented an algorithm to solve the INEXACT CHARACTERISTIC STRING
PROBLEM in time O(||T||+ 2+ [S\T|+k-1-||[S\T||), where [is again the length of a shortest
string in 7. The key idea here is to use the diagonal method of dynamic programming to match
every suffix of a shortest string v in 7" against all strings of S\ T’ with k errors. (This method was
introduced by Landau and Vishkin [11] and, at the same time, Myers [14].) If for a suffix of v the
end of the string is not reached in any such match an appropriately sized prefix of the suffix is a k-
distant v-substring. Every such substring is matched against the remaining strings in 7". If every
string has a match, the substring is a k-characteristic substring. Among all these the shortest one
is selected. The algorithm can easily be improved to run in time O(||T|| + k- - ||S\ T||).

Our solution to the INEXACT CHARACTERISTIC STRING PROBLEM for Hamming distance
makes use of the fact that overlapping substrings share common matches and mismatches. For
instance, consider the strings GTTAGGATTA and GTTAGATTA. The substring TTAGG matches
the substring TTAGA with one error. The overlapping substrings AGGATT and AGATTA match
with three errors (AGG and AGA match with one error and the additional substrings ATT and TTA
match with two errors). For Levenshtein distance we can match the substrings AGGATT and
AGATTA with distance two, which does not depend on the previous errors made when matching
TTAGG and TTAGA with one error.

For each string u from the distance set S\ 7" we find for every suffix v[i] of the shortest string
v from T the length of a longest substring of u matching a prefix of v|i]. For each starting position
of v, we thus calculate the length of a longest match with distance k. Instead of calculating the
lengths for each position in v at once, we calculate the maximal matching lengths for each of the
|u| + |v| different alignments of v against u, using information from overlapping substrings.

For a memoryless Source, h = — 10g(pmin)-

The difference part of the algorithm can be implemented very efficiently without the use of
suffix trees or other complex data structures. Only for the solution of the COMMON SUBSTRING
PROBLEM we do need suffix trees.

We also present a much simpler and (by a constant factor) faster algorithm to solve the COM-
MON SUBSTRING PROBLEM for more than two strings. Lucas Hui has given a linear time
solution to this problem that relies on constant time lowest common ancestor computation [8]
(see also [6]). The algorithm builds the generalized suffix tree for the given set of strings and
augments the tree with information to calculate lowest common ancestor queries (see for instance
[16]) in constant time. The resulting data structure is linear in space but with a large constant.

Our algorithm constructs the suffix tree for each string in the set one by one, at any time
keeping only one suffix tree in memory and without the overhead for lowest common ancestor
queries. Experimental results (for an alphabet of size four and from two to one hundred strings of
sizes up to a hundred thousand characters) indicate a better performance of the new algorithm by
a factor of four to five. An even more space efficient version of the algorithm constructs only the
suffix tree for the shortest string in the set. In the computational biology domain the much lower
amount of space needed might enable researchers to tackle previously unreachable problems.

A problem related to the INEXACT CHARACTERISTIC STRING PROBLEM is the INVERSE
PATTERN MATCHING PROBLEM. To solve the INVERSE PATTERN MATCHING PROBLEM for
a given string a short pattern is searched that maximizes (minimizes) the sum of all character
mismatches when the pattern is aligned at all positions of the given string (which is the sum of
the Hamming distance between each corresponding substring and the pattern). There are variants
of the problem depending on whether a pattern is sought to come from the string itself (inter-
nal inverse pattern matching) or not (external inverse pattern matching). Amir et al. [1] have
studied the problem and have given first algorithms to solve the INVERSE PATTERN MATCHING
PROBLEM and its variants. Later, Gasieniec et al. [5] have improved the solution to the exter-
nal INVERSE PATTERN MATCHING PROBLEM. The internal INVERSE PATTERN MATCHING
PROBLEM can be solved in time O(n/mlog®m), where m is the size of the desired pattern.
The INVERSE PATTERN MATCHING PROBLEM and its external variant can be solved in time
O(n) for fixed alphabet size.

The main difference between the INVERSE PATTERN MATCHING PROBLEM and the INEX-
ACT CHARACTERISTIC STRING PROBLEM lies in the fact that the solution string for the INEX-
ACT CHARACTERISTIC STRING PROBLEM is guaranteed not to match anywhere even with k
errors, while the solution string for the INVERSE PATTERN MATCHING PROBLEM might have
the highest amount of mismatches but still match at a lot of places with few (or no for the non-
external versions) errors. The solution to the INVERSE PATTERN MATCHING PROBLEM is a
string that has a maximal average distance, while the solution to the INEXACT CHARACTERIS-
TIC STRING PROBLEM guarantees a minimal distance for each position. Hence, the INVERSE
PATTERN MATCHING PROBLEM solution pattern is not well suited for sharp classifications. The
applications of the INVERSE PATTERN MATCHING PROBLEM are such that sharp distinctions
are not necessary (see [1] for some examples).

On the other hand, the INVERSE PATTERN MATCHING PROBLEM does not require a tar-
get set. When no target set is given for the INEXACT CHARACTERISTIC STRING PROBLEM,
the given algorithms do not work. A straightforward solution supplying an adequate de Bruijn
sequence of order m (with length |3|™) would lead to a running time of O(|X|™ - ||S||) for
Hamming distance. It is unlikely that an algorithm with a polynomial running time exists. When
there is no target set the problem is, given a set S C ¥* and an integer k, to find a string v € ¥*
such no substring in S is within Hamming distance k& of v. Frances and Litman [4] have shown

that, given a set C' C {0, 1}" and an integer k, the MAXIMUM COVERING RADIUS PROBLEM of
deciding wether there exists a string v € ™ with Hamming distance greater k to every element
of C' is NP-complete. Lanctot et al. [10] show that several related problems such as the DIs-
TINGUISHING STRING SELECTION PROBLEM and the FARTHEST STRING PROBLEM are also
NP-complete. For the FARTHEST STRING PROBLEM a string v € X" with Hamming distance
at least k to all strings of a set S C X" is sought, a generalization of MAXIMUM COVERING
RADIUS PROBLEM. Lanctot et al. also present a PTAS for that problem. The input of the DIS-
TINGUISHING STRING SELECTION PROBLEM isaset B C X" x ¥*, aset G C X" and two
thresholds d;, d,. The objective is to find a string v with Hamming distance at most d; to each
substring of length n in B and Hamming distance at least d,, to each string in G.

3 Preliminaries

Let X be an arbitrary finite alphabet, let >.* denote the set of all finite strings over X (including
the empty string €), let Xt = ¥* \ {€} denote the set of all non-empty strings over . Let
t = titats .. . t, be astring with characters ¢; € X, we define |¢| = n to be its length. By ¢[i] we
will refer to the i-th suffix of ¢: t[i] =1, ...ty. Given a (finite) set of strings S C X*, we denote
by |S| the number of elements of S and by |[S|| the size of S (||S|| = >, [u)).

If ¢ is a condition, then we will let the expression [c] denote 1 if ¢ is true and 0 otherwise ([']
is sometimes called the indicator function). For instance, [a = b] is 1 if a and b represent the
same characters and it is 0 otherwise.

Definition 1 (CHARACTERISTIC STRING PROBLEM). Given a set S of strings and a non-
empty set T C S, find a shortest string u, s.t. u is a substring of T and u is not a substring in

S\T.

The idea behind this definition is that the string v characterizes the set 7" in S.
In inexact pattern matching there are two classical measures for an approximate match, these
are Levenshtein distance and Hamming distance. They are defined as follows:

Definition 2 (Levenshtein distance). Let u,v € X* be two arbitrary strings. The Levenshtein
distance distye, (u, v) is defined as the minimal number of insertions, deletions and replacements
of characters needed to transfer u into v. Ignoring the boundry cases, the Levenshtein distance
ofu=1uy...u,and v = v ...0, can be defined recursively as

distyey (Ug . . . Uy, Vo ... V) + [ug # 1],
distyey (U1 .+« - Up, V1 - .. V) = min ¢ diStyey (U1 - .- Up, Vo ... Uy) + 1, ,
distyey (Ug - . . Up, V1 ... V) + 1

where the first line represents the match/replacement case, the second line represents the deletion
case, and the third line represents the insertion case.

The Hamming distance is only defined for strings of the same length.

Definition 3 (Hamming distance). For n > 0, let u,v € X" be two strings. The Hamming
distance is defined as the number of characters that do not match between u and v:

distpam(u, v) = Z [u; # vi]

1<i<n

With the use of a distance measure dist(u, v) we can define the inexact version of the CHAR-
ACTERISTIC STRING PROBLEM:

Definition 4 (INEXACT CHARACTERISTIC STRING PROBLEM). Given a set S of strings, a
non-empty set T C S, and a number k, find a shortest string u, s.t. u is a substring of T and
u matches no substring in S \ T with k or less errors. Formally, for all w € S\ T, if w' is a
substring of w then dist(w', u) > k.

For convenience, we introduce some further notions. Let u € X* be such that all substrings
w' of all strings w € S\ T have dist(w’,u) > k. Then u is called a “k-distant string” (with
respect to S\ 7). If u is a substring of v and w is a k-distant string with respect to S\ 7" we will call
u a “k-distant v-substring”. We call a string with property P “right minimal”, if u; ... U}y —1
does not have property P. Analogously, a substring u; . .. u; with property P is called “right
maximal”, if u; . .. u;;1 does not have property P.

4 A Faster Solution for the Hamming distance INEXACT
CHARACTERISTIC STRING PROBLEM

We will present an O(||T|| +1-||S\ T||) algorithm, where [is the length of some shortest string
v € T'. The input of the algorithm consists of a set of strings S C ¥* and a target set 7" C S.
The algorithm consists of four phases:

1. Find a shortest string v in 7.

2. For i from 1 to |v| find the right minimal k-distant v-substring cand; (if it exists). cand;
occurs at position ¢ in v.

3. For each candidate cand; check whether it is a common substring of all strings in 7" and
hence a k-characteristic string.

4. Select the shortest among all k-characteristic strings.

Observation 5. Let v € T be a shortest string inT'. Each characteristic string is a substring of
v.

We will therefore only need to consider the shortest string v € 1" when comparing it with
strings from S \ 7.

Lemma 6. Every shortest k-characteristic string is a right minimal k-distant v-substring with
respectto S\ T.

Proof. Let s be a shortest k-characteristic string. Obviously, s must be a substring of 7" and
hence also of v. By definition, s must be a k-distant string with respect to S \ 7. Suppose, s
were not right minimal, then s’ = s ... 5|s/—1 would be a k-distant string. Since s is a common
substring of 7', so would be s’. Hence, s’ would be a shorter k-characteristic string, contradicting
the assumption.]

As a consequence, by looking at all right minimal k-distant v-substrings with respect to S\ T’
we will also see every shortest k-characteristic string. Hence, the above scheme is correct. A key
idea to the algorithm is the following observation:

Lemma 7. cand; = v; ... V441 is a right minimal k-distant v-substring, iff cand; = v; . . . V1 is
a right maximal substring of v, such that for any substring v in S\ T at least dist(cand}, u) > k
and there is a substring w in S \ T with dist(cand;, u) = k.

6

Proof. v;...v;1 ;11 must have distance at least k£ + 1 from any substring in S \ 7', otherwise
V; . . . v;4; would not be right maximal. Therefore, v; . .. v;1,41 1S a k-distant string. On the other
hand, there is a substring in S\ T such that v; . . . v;;; matches with distance k. Hence, v; . . . v; 111
is right minimal. [

With Lemma 7 we can find the candidates by finding maximal length matches.

Phase 1 can easily be implemented to run in time O(||T’||). Let [= |v| be the length of the
shortest string in 7. By Lemma 6, there are at most [candidates after Phase 2 and Phase 3.
Hence, Phase 4 can easily be implemented in time O(1).

In the sequel we will show how to implement Phase 2 in time O(l - ||S \ 7'||) and Phase 3 in
time O(||T||). This will lead to a total running time of O(||T'|| + - [|S\ T||).

4.1 A Simple Algorithm for Finding All Common Substrings of a Set of
Strings in Linear Time

Definition 8 (COMMON SUBSTRING PROBLEM). Let T be a set of strings. Find all strings v,
s.t. v is a substring of all strings in T.

Since there may be Q(||7’||?) many common substrings, one has to be careful about the output
representation. The output can be represented in linear space?, if we pick a string v € 7" and store
the length of the longest common substring starting at position ¢ € {1,..., |v|} in v.

Lucas Hui has given a linear solution to this problem that relies on constant time lowest
common ancestor computation [8] (see also [6]). Hui’s algorithm is able to find at the same
time all substrings common to a fixed number of & < |T| strings in 7", while we will only find
substrings common to all strings in 7". Our algorithm is much simpler and faster.

The algorithm is based on matching statistics (see [6], respectively [2]). The matching statis-
tic ms(7) for a pattern p and a text ¢ gives the length of the longest substring starting at position
i in p that is also a substring of ¢. All values of ms(7), 7 € {1,...,|p|}, can be calculated in time
O(|p| + |t]) with the use of a suffix tree for ¢. The linear time algorithm constructs the suffix tree
for ¢ (with suffix links) in time O(|t|). Then it finds a canonical reference pair (see the construc-
tion of suffix trees by Ukkonen [18] for a detailed description of reference pairs, suffix links,
canonizing etc.) for the longest prefix w of p that matches a substring of ¢ by a simple search in
the suffix tree. A canonical reference pair for string w is a node n representing a prefix of w in
the suffix tree and a length denoting a prefix of an edge starting at n representing the remaining
part of w. The length of the prefix w of p is the value of ms(1). The reference pair and the
length for ms(i+ 1) is computed from the reference pair for ms(i) by “shortening” the reference
pair at the front. This is done by replacing the node n with its suffix link parent and afterwards
canonizing and lengthening the reference pair as far as possible. The suffix links are a byproduct
of the suffix tree construction (see [13, 18]). For a node n representing a string v = w1 Us . . . U,
its suffix link leads to a node n' representing the first suffix us . .. u,, of u. The whole traversal
takes amortized time O(|p|).

To find all common substrings of 7" in time O(||T’||) we proceed as shown in Algorithm 1.

Theorem 9. Algorithm I correctly solves the COMMON SUBSTRING PROBLEM.

Proof. Let w be a common substring of all strings in I". Then w is also a substring of the shortest
string v in T'. W.Lo.g. let w appear at position i in v (W = v; . . . V4 |y|). Since w is common to all

30nly in the uniform cost model.

Algorithm 1 Common Substring
1: Let v be the shortest string in 7'.
2: fori =1to |v| do
MSmin(1) = [v| =i+ 1
4: forallu € T,u # v do
5: calculate matching statistics ms(¢) (¢ from 1 to |v|) for v and u.
6: fori=1to |v|do
7 MSmin (1) = min{msm, (1), ms(i)}

(O8]

strings u € T, in every iteration of the loop in line 4 ms(i) > |w| and therefore ms,,, () > |w|.
This is especially true for the longest common substring starting at position .

Suppose, after Algorithm 1 ms,, (i) = j. For every iteration of the loop in line 4 we have
ms(7) > j and there is a substring of length j or greater in starting at 7 in v that is also a substring
of the current string u. Therefore v; . .. v;;; 1S a common substring of all strings in 7. U

Theorem 10. Algorithm 1 runs in time O(||T|)

Proof. To find the shortest string v in line 1 of the algorithm it takes time O(||T’||). The for-loop
of lines 2-3 takes time O(|v|). Lines 5-7 are is executed for each string u in 7"\ {v}. Line 5
takes time O(|u| + |v|) = O(Jul) (because |u| > |v|) and lines 6 — 7 take time O(|v|) = O(|ul).
Hence, Lines 4-7 take total time 3, 7,3 O(Ju[) = O(||T\{v}[]). As aresult the total running
time is O([[T\ {v}|| + |v| + [[T][) = O(|[T]). [

An even more space efficient implementation uses only one suffix tree for the shortest string
v to calculate the matching statistics for v and u € T\ {v}. This is achieved by storing a “high
water mark” for each edge as the deepest position reached by a traversal with a reference pair
as described above with string u. A first subsequent traversal sets the “high water mark™ to
maximum at all ancestors of marked edges. In a final traversal for each leaf the maximal mark
of any parent edge is stored as the corresponding value of the matching statistics (for the leaf
representing the i-th suffix, the value is stored as ms(i)). The traversal for string u costs O(|ul|),
while the two subsequent traversals (and the building of the suffix tree) cost O(|v|). Hence, the
total time is also O(|u| + |v]). If v is smaller than the other strings in the set, this approach will
save even more space. Additional space to store the high water marks is needed, so the algorithm
needs 2n more integers for the suffix tree.

Compared with Hui’s algorithm either version of this algorithm saves a considerable amount
of space. For a large number of huge strings as they are encountered in DNA databases, space
requirements make computations possible with our new algorithm which would have used a
prohibitive amount of memory with the previous algorithm.

4.2 Finding All Right Minimal k-Distant v-Substrings with Respect to S\ 7T’

This section describes how Phase 2 of the algorithm works for Hamming distance as distance
measure. In Phase 2, for each position ¢ of the shortest string v € T, the right minimal k-distant
v-substrings cand; is searched for. In order to find cand;, we must align the i-th suffix v][i]
against every suffix u[j] of a string in u € S\ T and calculate the shortest prefixes of u[j] and
v[i] that have a distance greater then k. We use Lemma 7 to calculate the right minimal k-distant
v-substrings from the right maximal prefixes with distance k.

Algorithm 2 Minimal Prefixes with Distance &
1: Let m[] be an array of size |v|, initialized to 0
2: Let e[] be an array of size k + 1, organized as a ring buffer, initialized to 0
3: for (pos,,pos,) € {(L,)|l =1...[u|}U{({,1)|l=1...|v|} do

4: lengaten = 0
5: h=0
6: pos,., =0
7. while pos,,, < k and pos, + h < |v| and pos, + h < |u| do
8: I =1ce(posy + h, pos, + h)
9: e[pos,,] =1
10: leNmateh, = leNmaten, + 1+ 1
11: h=h+1+1
12: DOS gy = POS gy + 1
13: while pos, + h — 1 < |v| and pos, + h — 1 < |u| do
14: for r = 0 to e[pos,,, — k — 1] do
15: m[pos, + h — lenyaien + 7] = max{m[pos, + h — lenaich + 7], l€Nmaten — 7}
16: leNmateh = l€Nmaten — €[POS,, — k — 1] — 1
17: | =1ce(posy + h, pos, + h)
18: e[pos,.,| =1
19: lenmatch = lenmatch +1+1
20: h=h+1+1
21: POSory = POSgpy + 1
22: ifpos,+h—1=|v|+1then
23: for h' = |v| + 2 — lenyqien to |v| do
24: mlh'] = |v] +1
25: elseif pos, + h —1 = |u|+ 1 then
26: for I’ = 0 to len g, do
27: if m[pos, + h —l'] < ' then
28: mlpos, + h—1"] =1

The longest common extension (Ice) of two strings v and v is defined as the longest prefix
of u that is also a prefix of v (or vice versa). Using a generalized suffix tree for v and u we
can calculate the Ice between any two suffixes in constant time by means of constant time lowest
common ancestor (Ica) queries (for Ica see [16]). The Ice of two suffixes v[i] and u[j] is the string
represented by the Ica of the leaves (which represent these suffixes) in the generalized suffix tree.
In particular we only need its length, which we can store with each node.

The maximal prefixes of u[j] and v[i] with distance & can thus be calculated in time O(k).
But this simple approach would lead to an overall time O(k - [|[S\T|| -1+ 1-|S\ T]|). We
will improve this basic scheme by reducing redundant comparisons and work in preparing Ice
queries.

Let u be an arbitrary string in S \ 7. We define the alignment offset of the i-th suffix v[i] of
v and the j-th suffix u[j] of u as 04, = ¢ — j. In order to speed up the distance calculations
we will calculate the lengths of all maximal prefixes with distance & of all suffixes with the same
alignment offset together. This can be done by aligning the (04ign, + 1)-th character of v with the
first character of u, respectively the (—o0gign + 1)-th character of u with the first character of v
(lf Oalign < 0)

For each such alignment of v against u let be the number of aligned characters (if 047595, > 0
then v[0gign + 1] is aligned against u[1] and 7 = min{|u|, |v| — 04iign }, otherwise v[1] is aligned
against u[—ogign, + 1] and 7 = min{|u| + 0gign, [v|}). Let r(u, v) be the number of characters of
all alignments of v and u (for all possible values of 0445):

|v] -1
r(u,v) = Z min{|u|, [v| — Ogign} + Z min{|u| + 0gign, |v]}
Oalign:O oalignzf‘U"

Lemma 11. r(u,v) = |u| - |v]

Proof.
|v] -1
r(w,v) = Y min{|ul,[v] = Ouign} + > min{|ul + ouign, [v]}
0““9”:0 oalign:_|u‘
|v] |ul

= Y min{|u,|v| - i} + > min{ju| — 4, [v[} — min{|ul, [v]}
i=0 1=0

W.o.lg. |[v| > |ul:

o] =lul o] ul
= > lul+ Y (el=0+) (ul i)~ |
=0 i=v]—|u| i=0
|l |l
= (\”|—|u|)'IU\+Z(Iu|—i)+Z(\u\—i)—|u\

1
= (ol =ful) - ful +2- 5 - Jul - (ju] +1) = Jul

= Jvl - ul = |u® + [ul® + [u] = |ul

= |v[-Ju|
O

Lemma 12. There are O(1-|S\ T| + ||S\ T||) different alignments of the pattern v against the
strings in S \ T. The total number of aligned charactersis 1 -||S\ T||.

Proof. For each pair v, u € S\ T, there are |v| alignments with positive 044, and |u| alignments
with negative 0g;g,. Hence, we have - o\ (|v[+[u|+1) = O((v|-[S\T[+||S\T|) different
alignments in total.

The number of alignments is 3, q\r [v] - |[u| =13 o |ul =1 |[S\T]|]

Figure 1 gives a schematic view of the way the algorithm works. Informally, for each value
of 0gign the strings v and v are aligned. A right maximal substring cand’ with £ mismatches is
calculated. The next character will be a mismatch. Hence, the inclusion of this character leads
to the desired right minimal k-distant v-substring cand. If cand’ (or cand) does not start with a
mismatch, the first suffix of cand is also a candidate (and possibly its next suffix and so on). If
cand' (or cand) starts with a mismatch, the mismatch is dropped and the candidate is extended
to the next mismatch with another Ice query.

10

Ice

Figure 1: Schematic view of an alignment between v and u € S \ T and the way previous
information is reused in the algorithm. (A black bullet denotes a mismatch, no bullet denotes a
match.)

Calculating the lengths of the minimal prefixes of all suffixes u[j] and v[i] that match with
distance & can be done in time O(|v| - |u|). Algorithm 2 correctly computes right minimal k-
distant v-substrings with respect to {u} in the array m/[] in time O(|v| - |u|), given that lce(3, j)
can be computed in time O(lce(3, 7)).

Theorem 13 (Correctness). At the end of Algorithm 2,

l if a right minimal k-distant v-substring of
Vi, 0 <i<|v| ml[i]= length | starts at i in v,

lv| +1 ifno k-distant v-substring starts at i in v

Proof. For the first case, suppose v; ... %v;+;—1 1S a right minimal k-distant v-substring. Then
V; ... V41 matches any [-length substring w of u with distpe, (v; ... v 1, w) > k. Since
V; ... Vi1 is right minimal, there is a substring w’ of length [—1, s.t. diStpam (V; . - . Vi 9, w') =
k (Lemma 7). Wlo.glet w' = wu;...u;y o, furthermore let o4y, = ¢ —j > 0. Since
distham (Vi - . . Vigi—1, U5 . . . Wjq—1) > k, either distpam(vi. .. Vigi—1, 4 ... uj4—1) = k+ 1 and
Viti—1 7# Ujpi—1 of j + 1 — 2 = |u| and w' is a suffix of u.

Lines 8—12 and lines 17-21 are identical. If this block is entered with the condition

Uposy-+h—1 7 Uposy+h—1 OINOL (pos, +h —1 € {1,...,|v|} Apos, +h—1€{1,...,|ul}), (1)

then afterwards condition (1) will also be true. Condition (1) is valid at the beginning because
either pos, = 1 or pos, = 1 and h = 0. Hence, (1) is invariant throughout the execution of the
algorithm.

Let h be the value of h before the block is entered and h, the value of h afterwards. Then
Uposy+hy - - - Uposy+ha—2 MACNES Upos, 4 hy - - - Upos, +h,—2. The length of the match | = h,—hy—11s
stored in the next position of the array e[] and pos., is increased by one. The block of lines 8—12
(respectively lines 17-21) is passed through once for each mismatch between v,s, - - - Vpos, +h-1

and Upos,, - - - Upos,+h—1 (ifpos, +h—1 € {1,...,|v|} and pos, +h—1 € {1,...,|ul}) and once
when the end of one of the strings is reached.
Let pos, — posy, = Ogign = 1t — j be chosen in line 3. If v;yy_1 # wu;4—1 and

distham (Vi . . . Vigi—1, ;. . . uj41—1) = k + 1, then the block of lines 8-12 (respectively lines 17—
21) has been passed at least £+ 1 times when pos,+h—1 =i+[l—1and pos,+h—1 =j+1—1
is reached either after the first or after the second block. The algorithm enters the for-loop

11

in lines 14-15 with lenmaen, = k + 1 + Y1) e[pos,,, — t] and condition (1) holds for

h = h — lenmaen, — 1. Hence, either uw or v start at h — lenqsen, Or there is a mismatch
Uposy+h—lenaen—1 7 Uposoth—lennaen—1- Lherefore, 1 > pos, + h — lenpger, — 1 and j >
oSy +h—lenmpaen — 1. On the other hand, i < pos,+h—lenmpaten +€[pos,,, —k—1]+1and j <
DPOSy, + h —lenmagen + e[posm, —k— 1] + 1 because Uposy+h—lenmaicn+e[posy,,—k—1]+1 - - - Upos,+h—1
and Vpos, 4+ h—lenmasen+epos,,,—k—1]+1 - - - Upos,+h—1 Match with k errors. Thus, there exists an
r € {0,...,e[pos,,, — k—1]}, s.t. pos, + h — lenmaten + 7 = 7 and pos, + h — leNmaten +7 = J
and | = len,q1en, — r Will correctly be stored in m[i] (line 15).

If j+1—2 = |u| and w’ is a suffix of u, then the block of lines 8—12 (respectively lines 17-21)
has been passed at least k + 1 times when pos, +h—1 =4+l —1and pos,+h—1 = j+[—11is
reached either after the first or after the second block. Since pos,+h—1 = j+1—2+1 = |u|+1
the second block of the if-statement in lines 26-28 will be entered. By the same argument as
above, © > pos, + h — lenmaten, — 1 and j > pos, + b — lenpaen — 1. Hence, there exists an
'€ {0,...,lenmaten]}> st. i = pos, + h —1I' =i+ 1 —1"and | = I" will correctly be stored in
m/i] (line 28).

For the second case, suppose no k-distant v-substring starts at position ¢ in v. Then the
i-th suffix of v matches with distance less than k£ any substring of u, i.e. even the longest
substring of v starting at ¢ is matched somewhere in v with £ or less mismatches. W..o.g.
distpam (Vi - - - V|, Uy« - - Ujpjo)—i) < Kk and 0gign =1 — j > 0.

Let pos, — pos, = 0qign = ¢ — j be chosen in line 3. At some point after the block of lines
8—12 (respectively lines 17-21) has been passed, we will have pos, + h — 1 & {1,...,|v|} by
condition (1). At the beginning pos, + h € {1,...,|v|} and for each call to lce(-,-) we have
that pos, + h + lce(pos, + h,-) — 1 < |v|. Therefore, pos, + h — 1 < |v| + 1. It follows that
pos, + h — 1 = |v| 4+ 1 and the first block of the if-statement in lines 23-24 will be entered.

In lines 4 and 5, len,qcn and h are set to zero. Throughout the first while-loop both values
are increased synchronously. Only after at least £ + 1 passes through the block of lines 8—12
leNmaten 1s decreased by the length of the (k + 1)-th last mismatch each time a new mismatch or
the end of the string is reached. Hence, if h # lenpascn, there are at least £ mismatches between
Upos,+h—lenmatch - + - Upos,+h—1 and VUposy,+h—lenmatch - - - Upos,+h—1-

Since v; ... v, matches u;...u;;,—; With no more than k errors, we have either h =
leNmaten, and pos, = i or pos, + h — 1 — (lenpmaern, — 1) < i. Hence, we always have
oSy + h — lenmaien, < @ and therefore |v| 4+ 2 — lenpaien < 7 (since pos, + h — 1 = |v| + 1).

As aresult, h will run from |v| + 2 — lenqien < @ to [v| > 7 and m[i] will be set to |v| + 1 in
line 24.]

Theorem 14 (Complexity). If 1ce(i, j) can be computed in time O(lce(i, 7)), Algorithm 2 has a
running time of O(|u| - |v]).

Proof. During each iteration of the while loops in lines 7 and 13, A is increased by at least one
and the length [= lce(i, 7) of the Ice calculated in line 8, respectively line 17. The for loop of
line 14 is iterated / times for each Ice of length /. Hence the total number of iterations of any line
between 7 and 21 is at most A. The for loops of line 23 and 26 are also iterated at most A times.
Since h never exceeds the number of characters aligned when v[pos,] is aligned to u[pos,], the
total number of iterations of any line of Algorithm 2 is at most r(u, v) = O(|u| - |v]). O

Executing Algorithm 2 for all strings in S \ 7" will therefore lead to a running time of O(! -
IS\ TY)).

The longest common extension of the i-th and j-suffix lce(i, j) can either be calculated di-
rectly in O(lce(4, j)) or with the use of a generalized suffix tree and lca queries in constant time.

12

In practice, calculating the Ice by direct comparison of characters performs much better.
Without constant time longest common extension queries no suffix tree needs to be build and
no matching statistics need to be calculated. The expected number of characters to compare for
finding the longest common extension under the assumption that the strings are generated by a
memoryless source with probabilities Pr{z; = i| = p; for i € ¥ is constant:

1
El:z,#ZuyAVj<l zj=y] = ——=—-
! ! 1-3p}
For a uniform distribution over a four letter alphabet, the expected length is 4/3. Hence, it is no
surprise that this approach outperforms the constant time longest common ancestor calculations
by far in practice.

S An Improvement for the Levenshtein distance INEXACT
CHARACTERISTIC STRING PROBLEM

The algorithm presented by Ito et al. [9] uses the diagonal method of dynamic programming (see
[11]) to calculate the Levenshtein distance of a suffix v; of the shortest string v € T' against any
suffix (and thereby substring) of a string u € S\ T with the help of constant time lce queries in
time O(|u| - k + |v]), where time O(|u| + |v]) is needed for the suffix tree construction and time
O(|ul - k) for calculating the Levenshtein distance of the O(|u|) suffixes of u against v;. (This is
possible since only distances of at £ + 1 are considered.) The generalized suffix tree for v and
v can be used for all suffixes v;. Hence, the Levenshtein distance of all suffixes of v against all
suffixes of v can be calculated in O(|v|- |u|- k). The second phase of calculating all right minimal
k-distant v-substrings with respect to S \ 7" can thus be implemented in time O(k - [- [|S'\ T'||),
where [is the length of the shortest string in I". The Phases 1, 3, and 4 described in Section 4
will be the same. The modified algorithm then has a running time of O(||T'|| + &k - - [|S\ T]).
The term (2 - |S'\ T of Ito et al. disappears because suffix trees are reused in the construction.

6 Conclusion

We have developed an efficient algorithm for the INEXACT CHARACTERISTIC STRING PROB-
LEM for Hamming distance. It improves over previous results by a factor of £, the number of
mismatches allowed in matching with the non-target set. Our algorithm is faster even for £ = 1
because we do not need suffix trees and constant time lca queries in the main part of the al-
gorithm. The possibility to use different weights depending on the kind of mismatch allows a
broader field of application. We have also improved the known INEXACT CHARACTERISTIC
STRING PROBLEM algorithm by Ito et al. [9] by incorporating both algorithms for Levenshtein
distance and Hamming distance in a common framework, thus pointing out the main differences.

The presented algorithm can be easily adapted to use arbitrary weights depending on the kind
of mismatch. For applications in biology this can be used to reflect different base pair bonding
strengths, thus allowing a more realistic probe design. The advantage of our algorithm for probe
design is that a certain distance to every substring in the model is guaranteed.

The running time depends highly on the shortest string v in the target set 7. For short se-
quences the algorithm is still feasible. Experiments with the small subunit database from the
ARB project have shown that a single run with a 1500 bp sequence target (TmgMar22) and dis-
tance set of roughly twelve thousand sequences of total size 20 MB takes about 31 minutes on

13

an Athlon XP1800+. The work can easily be distributed among multiple workstations scaling
almost linearly to about 4 minutes on 10 machines.

Additionally, we presented a new practical, space efficient, and fast algorithm to solve the
COMMON SUBSTRING PROBLEM, which outperforms previously known algorithms.

The NP-completeness results for the strongly related problems DISTINGUISHING STRING
SELECTION PROBLEM and FARTHEST STRING PROBLEM make it unlikely that there exist ef-
ficient algorithms for versions of the CHARACTERISTIC STRING PROBLEM without a target set
or that allow errors in matching the target set.

References

[1] AMIR, A., APOSTOLICO, A., AND LEWENSTEIN, M. Inverse pattern matching. J. Algo-
rithms 24, 2 (1997), 325-339.

[2] CHANG, W. 1., AND LAWLER, E. L. Sublinear approximate string matching and biological
applications. Algorithmica 12 (1994), 327-344.

[3] DE BRUIIN, N. G. A combinatorial problem. Koninklijke Nederlandse Akademie v.
Wetenschappen (1946), 758-764.

[4] FRANCES, M., AND LITMAN, A. On covering problems of codes. Theory of Computing
Systems 30 (1997), 113-119.

[S] GASIENIEC, L., INDYK, P., AND KRYSTA, P. External inverse pattern matching. In
Combinatorial Pattern Matching (1997), pp. 90-101.

[6] GUSFIELD, D. Algorithms on Strings, Trees, and Sequences — Computer Science and
Computational Biology. Press Syndicate of the University of Cambridge, 1997.

[7] HAMMING, R. W. Error detecting and error correcting codes. Bell Syst. Tech. J. (1950),
147-160.

[8] Hul, L. Color set size problem with applications to string matching. In CPM: Proceed-
ings of the 3rd Symposium on Combinatorial Pattern Matching (1992), vol. 644 of LNCS,
Springer, pp. 230-243.

[9] ITO, M., SHIMIZU, K., NAKANISHI, M., AND HASHIMOTO, A. Polynomial-time algo-
rithms for computing characteristic strings. In CPM: Proceedings of the 5th Symposium on
Combinatorial Pattern Matching (1994), vol. 807 of LNCS, Springer, pp. 274-288.

[10] LaNcTOT, J. K., LI, M., MA, B., WANG, S., AND ZHANG, L. Distinguishing string
selection problems. In Proc. of the 10th SIAM-ACM Symposium on Discrete Algorithms
(1999), SIAM,ACM, pp. 633-642.

[11] LANDAU, G. M., AND VISHKIN, U. Introducing efficient parallelism into approximate
string matching and a new serial algorithm. In Proceedings of the 8th Annual ACM Sym-
posium on Theory of Computing (May 1986), ACM, ACM, pp. 220-230.

[12] LEVENSHTEIN, V. . Binary codes capable of correcting deletions, insertions and reversals.
Doklady Akademii Nauk SSSR 163, 4 (1965), 845-848.

14

[13] MCCREIGHT, E. M. A Space-Economical Suffix Tree Construction Algorithm. J. ACM
23,2 (April 1976), 262-272.

[14] MYERS, E. W. An o(nd) difference algorithm and its variations. Algorithmica 1 (1986),
251-266.

[15] NAKANISHI, M., HASIDUME, M., ITO, M., AND HASHIMOTO, A. A linear-time algo-
rithm for computing characteristic strings. In Proceddings of the 5th International Sympo-
sium on Algorithms and Computation (1994), vol. 834 of LNCS, Springer, pp. 315-323.

[16] SCHIEBER, B., AND VISHKIN, U. On finding lowest common ancestors: Simplification
and parallelization. SIAM J. Comput. 17, 6 (December 1988), 1253—-1262.

[17] SZPANKOWSKI, W. A generalized suffix tree and its (un)expected asymptotic behaviors.
SIAM J. Computing 22 (1993), 1176-1198.

[18] UKKONEN, E. On-Line Construction of Suffix Trees. Algorithmica 14 (1995), 249-260.

15

