
Memory-hierarchy optimal matrix

multiplication-programs

Riko Jacob

June 26, 2007

1 Abstract

In many applications that work on huge data sets, from areas like bioinformatics,
data-mining, network analysis, optimization, and simulation, the computation
time is a major concern. To shorten this time, we have to take into account
the many aspects that determine the running time of a program on a modern
computer. One of these aspects is the range of different type of memory, from
fast but small to huge but slow. More precisely, there are registers on the
CPU, various kinds of caches, main memory and disk, the levels of the memory
hierarchy. The data transfer between these levels happens by means of so called
I/O-operations that can be very slow, and should be minimized to achieve fast
programs.

The core computation of many applications that require huge amounts of
data can be modeled by sparse matrices, such that general purpose high perfor-
mance software libraries for abstract operations can be used. One of the basic
such operations is the multiplication of a huge sparse matrix with a vector. It
has been recognized that this is one of the operations where modern computers
operate significantly below their peak CPU-performance, indicating that indeed
the data transfer in the memory hierarchy is the bottleneck.

In very recent work, we showed a lower bound on the number of data trans-
fers that are necessary to compute the product of an arbitrary sparse matrix
with a vector, and a sorting-based algorithm that is asymptotically optimal.
Fortunately, in many applications the sparse matrices do have a structure that
can be exploited to perform the multiplication with fewer I/O’s.

The focus of this project is to (automatically) analyze the structure of a
huge sparse matrix with respect to the amount of data transfer that is required
to multiply with this matrix. In other words, for a given sparse matrix A we
are interested in a program that transforms a vector x into the product Ax with
the fewest possible I/O-operations.

2 Summary of the Project

The development of computer hardware over the last decades has been tremen-
dous, mostly visibly in terms of CPU-speed and storage capacity. Part of this
progress stems from organizing the memory in a hierarchical fashion, where the
different kinds of memory implement different trade-offs between speed and size.

1



This ranges from the few registers of the CPU that are used at CPU-speed to
the hard-disk that can store basically as many intermediate results as desired,
but is very slow to access in comparison to the CPU-speed. Between these two
extremes, there are other levels of this memory hierarchy, namely the level-1
and level-2 caches, and the main memory. In one way or the other, the slow
speed of the large memories is due to a certain delay that is associated with
chosing some arbitrary position of the memory. In contrast, the bandwidth to
load a chunk of data is much closer to the processing speed of the CPU. To
exploit this effect, the data transfer between the different kinds of memory is
organized in blocks.

This situation naturally leads to the so-called I/O-model [1], where one level
of the hierarchy is modeled as an internal memory that can hold M data-items,
and an external memory that consists of infinitely many blocks of B items. In
this model, a program can work only on the data-items in internal memory, or it
can write a block of B items to the external memory, or read a block of B items
from external memory. The performance of an algorithm is measured only in the
number of I/O-operations (i.e. read and write) it performs and the operations
in internal memory are not counted. Accordingly, this model focuses completely
on the data-transfer between the levels of the memory, which is adequate for
applications where this is the performance bottleneck, like huge databases that
are stored on disk.

There is a rich literature on the performance of algorithms in the I/O-model,
one of the first and most illustrative examples being sorting [1]. Here, the
multi-way merge sort is known to be optimal, and in contrast to the CPU-based
models of computation, it is not only optimal among the comparison based
algorithms, but it is optimal for most reasonable values of M and B, even if
the rank (resulting position) is known a priori for every element. This means
that the input consists of elements together with their position in the output.
The task is called permuting and is very easy to achieve with linearly many
CPU-operations. Hence, in the I/O-model this seemingly innocent task leads
to interesting considerations. For other computations, like the multiplication
of two dense matrices, the floating point calculations contribute to the over-
all running time, but it is also important to minimize the data transfer in the
memory hierarchy. Since there exist algorithms that are optimal (under some
assumptions) or best known in terms of floating point operations, and simul-
taneaously optimal in terms of I/O, it is no surprise that these algorithms are
also very good in practice. This practice is the world of linear algebra libraries,
a very successful toolbox in scientific computing and other applications. Here,
the number of CPU-operations can often be reduced significantly by exploiting
that the matrices are sparse, i.e., only a small fraction of the entries is not zero.

One of the most basic linear algebra operations is the multiplication of a
matrix with a vector. This is an interesting task because it is one of the cases
where the results on permuting show that the I/O operations cannot decrease
as much as the CPU-operations. This is consistent with the observation that
sparse matrix programs operate significantly below the maximum floating point
performance of the CPU.

In very recent work [2], we could show that the results about permutation
matrices actually generalize to sparse matrices. Similarly to permuting, we
found asymptotically I/O-optimal algorithms that are based on sorting to com-
pute a general matrix-vector product, i.e., the situation where both the matrix

2



and the vector are considered input. In the light of the lower bounds on the
number of I/O’s for general matrices, the reported performance of even the
naive sparse matrix-vector multiplication software sounds impossible.

The explanation of this paradoxical situation is that we have been compar-
ing apples with oranges. Even though the multiplication software can handle
aribitrary sparse matrices, its performance is reported on matrices stemming
from applications. Now, since the lower bound applies with high probability to
a randomly selected sparse matrix, the paradoxon disappears if we assume that
the matrices arising in practice are actually highly structured.

The focus of this research project is to quantify the above explanation of the
paradoxon. As the first and prime example, we will consider an arbitrary but
fixed sparse matrix A and ask for the I/O-optimal program that computes the
product Ax for an arbitrary vector x. In this setting, the program is allowed (or
required) to use the structure of the non-zero elements of A cleverly to minimize
the number of I/O-operations. This question is not only natural, but it is also
of practical interest.

The best outcome that we aim for is to find an I/O-efficient and CPU-efficient
algorithm that on input A produces the optimal program to transform a vector x
into Ax. This would immediately settle the question of how to compute such
products in all applications.

One such application that has been considered from different angles is the
computation of PageRank, as presumably done on a regular basis by the search
engine Google. Here, some of the known structure of the matrix A that rep-
resents web-pages and hyperlinks is exploited to compute the matrix-vector
product I/O-efficiently, since this is the inner loop of an iterative eigenvector
computation. With full success, these considerations would be done automati-
cally.

The above explained theoretical considerations always immediately lead to
the question if they really capture the important aspects of such computations
on modern computers. Accordingly, the second focus of the project is to test
the theoretical results in practice. This will give important feedback to the the-
oretical analysis, for example to exclude certain unrealistic parameter settings
from the analysis. It can also lead to more accurate models, and provide an
intuition for novel ideas.

For a basic building block like sparse matrix-vector multiplication, this
algorithms-engineering approach naturally starts from already existing collec-
tions of matrices from diverse applications. This approach promises to show
the performance difference of the various algorithms and thus allows to find the
practically relevant structural differences of the matrices that make a matrix
easy or difficult for a particular algorithm.

3 Relation to Previous Research

3.1 State of Research

At the basis of our theoretical consideration is the I/O-model introduced in [1].
Since the problem of permuting a sequence of items can also be understood as
multiplying by a permutation matrix, [1] also provides the first lower bound for
Sparse-Matrix–Vector multiplication. This lower bound proves, that for memory

3



size M and block size B of one level of the memory hierarchy that there exist
permutations that require as many I/O’s (up to a constant factor) as it takes to
sort the elements. The goal of this project is to actually identify these difficult
permutations.

In this I/O-model, the case of full matrices has been considered, and optimal
algorithms are even known for the cache-oblivious model [7], i.e., the version of
the I/O-model where the algorithm does not know about the parameters M
and B of the model, and is analyzed for arbitrary such parameters. The lower
bounds for matrix-multiplication go back to [10], where only the limit on the
main-memory is considered, i.e., the case B = 1, and the computational task
is specified as a circuit. In contrast to these results, this project is focused on
sparse matrices where the block size plays a more important role.

There is an active line of research considering the computation of a sparse-
matrix–vector product in a parallel setting, examples include [11, 3]. There are
several connections between the I/O-model and parallel computing. The key
difference to this project is that the transfer of data-items is ungrouped, i.e.,
there is no notion of a block or a track.

It has long been recognized that the memory hierarchy plays an important
role in basic linear algebra computations. The particular difficulty of cache-
efficiently computing sparse-matrix vector products is, for example, quantified
in [16], where it is reported that for this task the CPU operated at roughly 10%
of peak CPU speed, indicating that indeed the I/O is the bottleneck. There
is a series of papers considering techniques like blocking of the matrix. This
body of work is surveyed for example in [16, 5], and libraries of this kind are for
example [16, 15, 9, 14, 12, 6].

There has been a lot of interest in efficiently computing PageRank, as men-
tioned in the introduction, see for example [4, 8]. This work tries to exploit the
special structure of the web-graph, the concrete sizes of main-memory and the
graph, and similar characteristics of the task at hand. This kind of work illus-
trates that it is indeed possible to algorithmically exploit structure of the input.
Our ambitious goal is to complement such algorithms by lower bounds that also
take the structure of the matrix into account, and ideally to find algorithmically
the program inducing the least possible number of I/O-operations. This strict
focus on the I/O-model and the dependence on the concrete web-graph matrix
are certainly novel.

3.2 Own Previous Work

Initial Work on Random Sparse Matrices Together with Gerth Brodal
(Aarhus, DK), Rolf Fagerberg (Odense, DK), Michael Bender (Stony Brooks,
USA) and Elias Vicari (ETH Zurich), we conducted the already mentioned work
on sparse matrix vector multiplication. Here, we define the parameter k as the
average number of non-zero elements per column, i.e., the N × N matrix A
has kN entries, the interesting values for k range between 1 and N . If A
is stored in column major order, then computing the product with semiring
operations only takes

Θ
(

min
{

kN

B

(
1 + logM/B

N

max{M,k}

)
, kN

})
I/O-operations, where the lower bound holds only for k <

√
N .

4



If the algorithm is free to choose the layout of the matrix (even if it has
access to all entries of the matrix in some read-only memory), then the number
of I/O-operations reduces to

Θ
(

min
{

kN

B

(
1 + logM/B

N

kM

)
, kN

})
.

Here, the lower bound holds for k ≤ 3
√

N .
This cooperation started at the Dagstuhl seminar “Data Structures” in

March 2006. The results are now written down as [2] and submitted for publi-
cation.

Vector–vector multiplication for non-distributive algebraic operations
In joint work that is part of the PhD-project of Franz Roos [13], we consider
the problem of searching measured mass-spectra of peptides in a huge set of
possible peptides, either as given in a database or as all peptides stemming
from a sequenced DNA. Abstractly, this task can be understood as computing
the sum of all entries in a matrix given as the product of two vectors, where the
algebraic operations are not distributive. In the setting of the I/O-model, where
one measured peptide and a predicted peptide occupy precisely one cell, we give
I/O-optimal algorithms that compute M ·B comparisons between measured and
predicted peptides per I/O.

So far, the focus is clearly on this single biological application. At this stage
our current software outperforms some of the established standard software by
roughly a factor 100, and is thus amongst the fastest programs for the task. A
final comparison on the same data that we plan to conduct soon will quantify
this comparison of different software.

Our preliminary, general conclusion is that the I/O-model is adequate to
explain the performance of the software. Since a brute force approach of an
all-against-all comparison is only feasible if a single comparison is not too CPU-
demanding, cleverly scheduling the I/O’s shows a visible improvement in run-
ning time. This work will appear soon as part of the PhD-thesis of Franz Roos.

References

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and
related problems. Comm. ACM, 31(9):1116–1127, September 1988.

[2] M. A. Bender, G. S. Brodal, R. Fagerberg, R. Jacob, and E. Vicari. Opti-
mal sparse matrix dense vector multiplication in the i/o-model. In Proceed-
ings 19th ACM Symposium on Parallelism in Algorithms and Architectures.
ACM, 2007.

[3] R. H. Bisseling and W. Meesen. Communication balancing in parallel sparse
matrix-vector multiplication. Electronic Transactions on Numerical Anal-
ysis, 21:47–65, 2005. special issue on Combinatorial Scientific Computing.

[4] Y.-Y. Chen, Q. Gan, and T. Suel. I/o-efficient techniques for computing
pagerank. In CIKM, pages 549–557. ACM, 2002.

5



[5] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, R. V. Antoine Petitet,
R. C. Whaley, and K. Yelick. Self-adapting linear algebra algorithms and
software. Proceedings of the IEEE, Special Issue on Program Generation,
Optimization, and Adaptation, 93(2), February 2005.

[6] S. Filippone and M. Colajanni. Psblas: A library for parallel linear al-
gebra computation on sparse matrices. ACM Trans. on Math. Software,
26(4):527–550, December 2000.

[7] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In Proc. 40th Annual Symp. on Foundations of Com-
puter Science (FOCS), pages 285–297, New York, NY, October 17–19 1999.

[8] T. Haveliwala. Efficient computation of pagerank. Technical Report 1999-
31, Database Group, Computer Science Department, Stanford University,
February 1999. Available at http://dbpubs.stanford.edu/pub/1999-31.

[9] E. J. Im. Optimizing the Performance of Sparse Matrix-Vector Multiplica-
tion. PhD thesis, University of California, Berkeley, May 2000.

[10] H. Jia-Wei and H. T. Kung. I/O complexity: The red-blue pebble game.
In STOC ’81: Proceedings of the thirteenth annual ACM symposium on
Theory of computing, pages 326–333, New York, NY, USA, 1981. ACM
Press.

[11] G. Manzini. Lower bounds for sparse matrix vector multiplication on hy-
percubic networks. Discrete Mathematics & Theoretical Computer Science,
2(1):35–47, 1998.

[12] K. Remington and R. Pozo. NIST sparse BLAS user’s guide. Techni-
cal report, National Institute of Standards and Technology, Gaithersburg,
Maryland, 1996.

[13] F. Roos. Algorithms for peptide identification by tandem mass spectrometry.
PhD thesis, Eidgenssische Technische Hochschule ETH Zrich, 2006. Nr
16844.

[14] Y. Saad. Sparsekit: a basic tool kit for sparse matrix computations. Tech-
nical report, Computer Science Department, University of Minnesota, June
1994.

[15] R. Vudac, J. W. Demmel, and K. A. Yelick. The Optimized Sparse Ker-
nel Interface (OSKI) Library: User’s Guide for Version 1.0.1b. Berkeley
Benchmarking and OPtimization (BeBOP) Group, March 15 2006.

[16] R. W. Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels.
PhD thesis, University of California, Berkeley, Fall 2003.

6


