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Abstract. Given an alphabet X, a (directed) graph G whose edges are weighted and X-labeled,
and a formal language L C ¥*, the Formal Language Constrained Shortest/Simple Path
problem consists of finding a shortest (simple) path p in G complying with the additional constraint
that I(p) € L. Here I(p) denotes the unique word given by concatenating the X-labels of the edges
along the path p. The main contributions of this paper include the following;:

1. We show that the formal language constrained shortest path problem is solvable efficiently
in polynomial time when L is restricted to be a context free language. When L is specified as a
regular language we provide algorithms with improved space and time bounds.

2. In contrast, we show that the problem of finding any simple paths between a source and
a given destination is NP-hard, even when L is restricted to fixed simple regular languages and to
very simple classes of graphs (e.g. complete grids).

3. For the class of treewidth bounded graphs, we show that (i) the problem of finding a
regular language constrained simple path between source and destination is solvable in polynomial
time and (ii) the extension to finding context free language constrained simple paths is NP-complete.
Our results extend the previous results in [MW95, SJB97, Ya90]. Several additional extensions and
applications of our results in the context of transportation problems are presented. For instance,
as a corollary of our results, we obtain a polynomial time algorithm for the BEST k-SIMILAR PATH
problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential
time in the worst case.
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1. Introduction. In many path finding problems arising in diverse areas, certain
patterns of edge/vertex labels in the labeled graph being traversed are allowed /prefer-
red, while others are disallowed. Thus, the feasibility of a path is determined by (i) its
length (or cost) under well known measures on graphs such as distance, and (ii) its
associated label. The acceptable label patterns can be specified as a formal language.
For example, in transportation systems with mode options for a traveler to go from
source to destination the mode selection and destination patterns of an itinerary that
a route will seek to optimize can be specified by a formal language. The problem of
finding label constrained paths also arises in other application areas such as production
distribution network, VLSI Design, Databases queries [MW95, AMMO97], etc. Here,
we study the problem of finding shortest/simple paths in a network subject to certain
formal language constraints on the labels of the paths obtained. We illustrate the
type of problems studied here by discussing prototypical application areas:

1.1. Intermodal Route Planning. Our initial interest in the problem studied
in this paper came from our work in the TRANSIMS! project at the Los Alam-
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os National Laboratory. We refer the reader to [TR+95a, AB+97, TR+95b] for a
detailed description of this project.

As a part of the intermodal route planning module of TRANSIMS, our goal is

to find feasible (near optimal) paths for travelers in an intermodal network (a network
with several mode choices, such as train, car, etc.) subject to certain mode choice
constraints. The mode choices for each traveler are obtained by either processing the
data from the microsimulation module or by certain statistical models built from real
life survey data. We refer the reader to the book by Ben-Akiva and Lerman [BaL]
for a detailed discussion and references on the theory of discrete choice analysis as
applied to transportation science. The following example illustrates a prototypical
problem arising in this context.
Ezxample 1: We are given a directed labeled, weighted, graph G. The graph represents
a transportation network with the labels on edges representing the various modal
attributes (e.g. a label ¢ might represent a rail line). Suppose, we wish to find a
shortest route from s to d for a traveler. This is the ubiquitous shortest path problem.
But now, we are also told that the traveler wants to go from s to d using the following
modal choices: either he walks to the train station, then uses trains and then walks
to his destination (office), or would like to go all the way from home to office in his
car. Using ¢ to represent trains, w to represent walking and ¢ to represent car, the
travelers mode choice can be specified as wTttw™ U ¢*, where U, + and * denote the
usual operators used to describe regular languages.

1.2. Searching the Web. Browsing the Web to find documents of interest as
well as searching a database using queries can be interpreted as graph traversals
in a certain graph. From this viewpoint, one views a Web (database) as a directed
(undirected), labeled graph—the nodes are URL sites (text) and edges are hyperlinks.
A query for finding a particular URL site for instance, proceeds by browsing the
network by following links and searching by sending information retrieval requests
to “index servers”. A serious problem that arises in the context of using pattern
matching based search engines is that the queries cannot exploit the topology of the
document network. For example as pointed out in [Ha88]:

Content search ignores the structure of a hypermedia network. In

contrast, structure search specifically examines the hypermedia struc-

ture for subnetworks that match a given pattern.
We refer the reader to the work of [MW95, AMM97, Ha88] for a more thorough
discussion on this topic. A recent paper by Abiteboul and Vianu [AV99] also discusses
how regular expression constrained path queries can be used to query the web. The
following example is essentially from [AMM97].
Ezxample 2: Let G be a graph describing a hypertext document. Suppose, we want to
search for job opportunities for software engineers. We first query an index server to
find pages that mention the keywords “employment job opportunities” and then, from
each of these pages, we could follow the local paths of length zero, one or two to find
pages that contain the keywords “software engineer”. We can state the above problem
as finding labeled paths in G with constraints on the admissible labelings. We refer
to [AMMO97] for a number of additional interesting queries that can be formulated in
such a framework.

2. Problem Formulation. The problems discussed in the above examples can
be formally described as follows: Let G(V, E) be a (un)directed graph. Each edge
e € E has two attributes — I(e) and w(e). l(e) denotes the label of edge e. In this
paper, the label is drawn from a (fixed) finite alphabet ¥. The attribute w(e) denotes
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the weight of an edge. Here, we assume that the weights are non-negative integers.
Most of our positive results can in fact be extended to handle negative edge weights
also (if there are no negative cycles). A path p of length k from u to v in G is a sequence
of edges (eq,ea,...er), such that e; = (u,v1), e, = (vg—1,v) and e; = (vj—1,v;) for
1 < i < k. A path is simple if all the vertices in the path are distinct. Given a path
p = (e1,e2,...ex), the weight of the path is given by >, .., w(e;) and the label of
p is defined as I(e;) - I(e2) - -+ I(ex). In other words the label of a path is obtained by
concatenating the labels of the edges on the path in their natural order. Let w(p) and
I(p) denote the weight and the label of p respectively.

DEFINITION 1. Formal Language Constrained Shortest Path:

Given a (un)directed labeled, weighted, graph G, a source s, a destination d and a
formal language (regular, context free, context sensitive, etc.) L, find a shortest (not
necessarily simple) path p in G such that I(p) € L.

DEFINITION 2. Formal Language Constrained Simple Path:

Given a (un)directed labeled, weighted, graph G, a source s, a destination d and a
formal language (regular, context free, context sensitive, etc.) L, find a shortest simple
path p in G such that I(p) € L.

For the rest of the paper we denote the formal language constrained shortest
path problem restricted to regular, context free and context sensitive languages by
REG-SHP, CFG-SHP and CSG-SHP respectively. Similarly, we denote the formal
language constrained simple path problem restricted to regular, context free and con-
text sensitive languages by REG-SIP, CFG-SIP and CSG-SIP respectively.

In general we consider the input for these problems to consist of a description
of the graph (including labeling and weights) together with the description of the
formal language as a grammar. By restricting the topology of the graph and/or the
syntactic structure of the grammar we get modifications of the problems. If we claim
a statement to be true ‘for a fired language’ we refer to the variant of the problem,
where the input consists of the graph only, whereas the language is considered to be
part of the problem specification.

Note that in unlabeled networks with non-negative edge weights, a shortest path
between s and d is necessarily simple. This need not be true when we wish to find a
shortest path subject to an additional constraints on the set of allowable labels. As
a simple example, consider the graph G(V, E) that is a simple cycle on 4 nodes. Let
all the edges have weight 1 and label a. Now consider two adjacent vertices = and y.
The shortest path from z to y consists of a single edge between them; in contrast a
shortest path with label aaaaa consists of a cycle starting at z and the additional

edge (z,y).

3. Summary of Results:. We investigate the problem of formal language con-
strained path problems. A number of variants of the problem are considered and both
polynomial time algorithms as well as hardness results (NP-, PSPACE-hardness, un-
decidability) are proved. Two of the NP-hardness results are obtained by combining
the simplicity of a path with the constraints imposed by a formal language. We believe
that the techniques used to prove these results are of independent interest. The main
results obtained in the paper are summarized in Figure 1 and include the following;:

1. We show that CFG-SHP has a polynomial time algorithm. For REG-SHP
with operators (U, -, *), we give polynomial time algorithms that are substantially
more efficient in terms of time and space. The polynomial time solvability holds for
the REG-SHP problem, when the underlying regular expressions are composed of
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(U, -, *,2)T operators. We also observe that the extension to regular expressions over
operators (U, -, %, —) is PSPACE-hard.

2. In contrast to the results for shortest paths, we show that the problem finding
any simple paths between a source and a given destination is NP-hard, even when
restricted to a very simple, fixed locally testable regular language (see Section 6.2 for
details), and very simple graphs (undirected grid graphs).

3. In contrast to the results in (1) and (2) above, we show that for the class
of treewidth bounded graphs, (i) the REG-SIP is solvable in polynomial time, but
(ii) CFG-SIP problem is NP-complete, even for a fixed deterministic linear context
free language. The easiness proof can be extended to one-way-log-space recognizable
languages. It uses a dynamic programming method; although the tables turn out to
be quite intricate.

4. Finally, we investigate the complexity of the problems CSG-SHP and CSG-
SIP. Using simple reductions and in contrast to the complexity results in (1) and (2),
we show that (i) CSG-SIP is PSPACE-complete but (ii) CSG-SHP is undecidable
even for a fixed language.

5. As an application of the theory developed here, we provide a polynomial time

algorithm for a number of basic problems in transportation science. In Section 7 we
consider two examples, namely the BEST k-SIMILAR PATH and the TRIP CHAINING
problem.
The results mentioned in (1)—(4) provide a tight bound on the computational com-
plexity (P versus. NP) of the problems considered, given the following assumptions:
The inclusions of classes of formal languages “finite C locally testable” and “regular
C deterministic linear context free” are tight, i.e. there is no natural class of languages
“in between” these classes. Furthermore in this paper grid-graphs are considered to
be the “easiest” class of graphs that do not have a bounded treewidth.

Preliminary versions of the algorithms outlined here have already been incor-
porated in the Route Planning Module of TRANSIMS. In [JMN98] we conduct
an extensive empirical analysis of these and other basic route finding algorithms on
realistic traffic network.

4. Related Work. We refer the reader to the monograph by Huckenbeck [Hu97]
for a comprehensive survey on path problems. References [TR+95a, AB4+97, TR+95b]
provide a detailed account of the TRANSIMS project. Regular expression con-
strained simple path problems were considered by Mendelzon and Wood [MW95].
The authors investigate this problem in the context of finding efficient algorithms
for processing database queries (see [CMW87, CMW88, MW95]). A recent paper
by Abiteboul and Vianu describes further results on related problems [AV99]. Yan-
nakakis [Ya90] in his keynote talk has independently outlined some of the polynomial
time algorithms given in Section 5. Romeuf [Ro88] also independently considered
some of the problems discussed in Section 5. However, the emphasis in [Ya90] was
on database theory and Romeuf [Ro88] only considered regular languages. Online
algorithms for regular path finding are given in [BKV91]. Our work on finding formal
language constrained shortest paths is also related to the work of Ramalingam and
Reps [RR96]. The authors were interested in finding a minimum cost derivation of
a terminal string from one or more non-terminals of a given context free grammar.
The problem was first considered by Knuth [Ku77] and is referred to as the grammar
problem. [RR96] give an incremental algorithm for a version of the grammar problem

Toperator 02 or simple 2 stands for the square operator. R2 denotes R - R.



FORMAL LANGUAGE CONSTRAINED PATH PROBLEMS 5

>
N
~ i
s £F 55 &
8 5y S S
~ o X P P,
& 0060 s gv‘ S ¢ Sk
£ & F5 5§
fixed finite FP FP FP FP
free finite FP FP FP NP-c.
fixed LT FP FP FP NP-c.?
free RL FP FP! FP NP-c.
fix. 1-log-SPCE-TM FP undec? FP NP-c.
fix. lin. det. CFL FP FP NP-c.4 NP-c.
free CFL FP FP3 NP-c. NP-c.
fixed CSL PSPACE-c. undec. PSPACE-c. PSPACE-c.

ISection 5.1, Theorem 11; 2Section 7.5; 3Section 5.3; *Section 6.3, Theorem 26;
5Section 6.2, Theorem 20.

Fi1G. 1. Summary of results on formal language constrained simple/shortest paths in contrast
to the word recognition problems. LT, RL, CFL, CSL denote locally testable, reqular, context free
and context sensitive languages respectively. For regqular languages, the time bounds hold for reqular
ezpressions with the operators (U,+,*,2). FP states that the problem can be computed in determin-
istic polynomial time, even if the language specification is part of the input. The superscripts in the
table and the corresponding text tell where the result is proven.

and as corollaries obtain incremental algorithms for single source shortest path prob-
lems with positive edge weights. We close this section with the following additional
remarks:

1. To our knowledge this is the first attempt to use formal language theory in
the context of modeling mode/route choices in transportation science.

2. The polynomial time algorithms and the hardness results presented here give
a boundary on the classes of graphs and queries for which polynomial time query
evaluation is possible. In [MW95] the authors state

Additional classes of queries/dbgraphs for which polynomial time evaluation

is possible should be identified ...
Our results significantly extend the known hardness as well as easiness results in
[MW95] on finding regular expression constrained simple paths. For example, the
only graph theoretic restriction considered in [MW95] was acyclicity. On the positive
side, our polynomial time algorithms for regular expression constrained simple path
problem when restricted to graphs of bounded treewidth are a step towards charac-
terizing graph classes on which the problem is easy. Specifically, it shows that for
graphs with fixed size recursive separators the problems is easy. Examples of graphs
that can be cast in this framework include chordal graphs with fixed clique size, outer
planar graphs, series parallel graphs, etc. (see [Bo92] for other examples).

3. The basic techniques extend quite easily (with appropriate time performance
bounds) to solve other (regular expression constrained) variants of shortest path prob-
lems. Two notable examples that frequently arise in transportation science and can
be solved are (i) multiple cost shortest paths [Ha92] and (ii) time dependent shortest
paths [OR90]. These extensions are briefly outlined in Section 7.

The rest of the paper is organized as follows. Section 4.1 contains preliminary
results and basic definitions. In Section 5, we present efficient algorithms for grammar
constrained shortest path problems (namely, REG-SHP and CFG-SHP). Section 6
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contains our hardness/easiness results for simple paths. Section 7 outlines several
extensions and applications of our basic results.

4.1. Basic Definitions. We recall the basic concepts in formal language and
graph theory. Additional basic definitions on topics related to this paper can be found
in [HU79, GJ79, AHU, CLR]. For the rest of the paper, we use |I| to denote the size
of an object I represented using Binary notation.

DEFINITION 3. Let ¥ be a finite alphabet disjoint from {e, 9, (,),U,-, x}. A regular
expression R over ¥ Is defined as follows:

1. The empty string ‘€”, the empty set “¢” and for each a € X, “a” are atomic
regular expressions.

2. If Ry and R> are regular expressions, then (R1 URy), (R - Rs) and (R1)* are
compound Tegular expressions.

DEFINITION 4. Given a regular expression R, the language (or the set) defined
by R over ¥ and denoted by L(R) is defined as follows.

1. L(e) = {e}; L(9) = ¢; Va € : L(a) = {a}

2. L(R1 U RQ) = L(Rl) U L(Rz) = {w | w e L(Rl) orw € L(RQ)}

3. L(Ry - Ry) = L(Ry) - L(R) = {w1w2 | wy € L(Ry) and wy € L(RQ)}
4. L(R*) = Upey L(R)* where L(R)? = {} and L(R) = L(R)"~! - L(R)

DEFINITION 5. A nondeterministic finite automaton (NFA) is a 5-tuple M =

(S,%,0, 50, F), where
1. S is a finite nonempty set of states;
2. X is the input alphabet (a finite nonempty set of letters);
3. § is the state transition function from S x (X U {e}) to the power set of S;
4. sg € S is the initial state;
5. F C S is the set of accepting states.

If there is an s € S such that d(s, ) is a nonempty subset of S, then the automaton
M is said to have e-transitions. If M does not have any e-transitions and for all s € S
and a € X the set §(s, a), has at most one element, then ¢ can be regarded as a (partial)
function from S x ¥ to S and M is said to be a deterministic finite automaton (DFA).

The extended transition function §* from S x ¥* is defined in a standard manner.
The size of M denoted by |M]| is defined to be equal to |S||Z|.

DEFINITION 6. Let M = (S,%,0, 50, F) be a NFA. The language accepted by M
denoted L(M), is the set

L(M)={wexX*| 8o, w)NF #¢}

A string w is said to be accepted by the automaton M if and only if w € L(M).

DEFINITION 7. A context free grammar (CFG) G is a quadruple (V,%, P, S),
where V and X are disjoint nonempty sets of nonterminals and terminals, respectively,
P CV x(VUX)* is a finite set of productions and S is the start symbol. A CFG G
is said to be linear if at most one nonterminal appears on the right-hand side of any
of its productions.

DEFINITION 8. [Bo88, AL+91] Let G = (V, E) be a graph. A tree-decompo-
sition of G is a pair ({X; | i € I}, T = (I,F)), where {X; | i € I} is a family of
subsets of V and T = (I, F) is a tree with the following properties:

L Ujer X =V.
2. For every edge e = (v,w) € E, there is a subset X;, 1 € I, with v € X; and
w € X;.

3. For alli,j,k € I, if j lies on the path from i to k in T, then X; [ X, C X;.
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The treewidth of a tree-decomposition ({X; | i € I},T) is max|X |—1. The treewidth
of G is the minimum treewidth of a tree decomposition. el

5. Shortest Paths. In this section, we present polynomial time algorithms for
the problems REG-SHP and CFG-SHP.

5.1. Algorithm for REG-SHP and Extensions. In this subsection, we will
describe our algorithms for regular expression constrained shortest path problems. We
note that regular expressions over (U, -, *) can be transformed into equivalent NFAs in
O(n) time [AHU], where n represents the size of the regular expression. Thus for the
rest of this subsection we assume that the regular expressions are specified in terms
of an equivalent NFA.

The basic idea behind finding shortest paths satisfying regular expressions is
to construct an auxiliary graph (the product graph) combining the NFA denoting
the regular expression and the underlying graph. We formalize this notation in the
following.

DEFINITION 9. Given a labeled directed graph G, a source s and o destination d,
define the NFA M(G) = (S, %, 0, so, F') as follows:

1. S=V;sy=s; F={d};
2. X is the set of all labels that are used to label the edges in G and
3. j € 6(i,a) iff there is an edge (i,7) with label a.
Note that this definition can as well be used to interpret an NFA as a labeled graph.

DEFINITION 10. Let My = (Sl, E,(Sl,pg,Fl), and My = (Sz, 2762,q07F2), be two
NFAs. The product NFA is defined as My x My = (S1 X S2,%,6, (o, %), F1 X F),
where Va € X, (p2,q2) € 6((p1,q1),a) if and only if p2 € §1(p1,a) and g2 € d2(q1,a).

It is clear that L(M; x M) = L(M;) N L(M3). ALGORITHM RE-CONSTRAINED-
SHORT-PATHS outlines the basic steps for solving the problem and uses the cross
product construction mentioned above.

ALGORITHM RE-CONSTRAINED-SHORT-PATHS:
o Input: A regular expression R, a directed labeled weighted graph
G, a source s and a destination d.
e 1. Construct an NFA M(R) = (S, %, 0, sg, F') from R.
2. Construct the NFA M (G) of G.
3. Construct M(G) x M(R). The length of the edges in the
product graph is chosen to be equal to the corresponding
edges in G.
4. Starting from state (so, s), find a shortest path to the ver-
tices (f,d), where f € F. Denote these paths by p;,
1 <i < w. Also denote the cost of p; by w(p;)
5. C* := min,, w(p;); p*: w(p*) = C*.
(If p* is not uniquely determined, we choose an arbitrary
one.)
e Qutput: The path p* in G from s to d of minimum length subject
to the constraint that I(p) € L(R).

THEOREM 11. The Algorithm RE-CONSTRAINED-SHORT-PATHS computes the
exact solution for the problem REG-SHP with non-negative edge weights in time
O(T(|R||G|)). Here T'(n) denotes the running time of a shortest path algorithm on a
graph with n nodes.
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Proof. For the correctness of the algorithm observe the following: Consider a
shortest path ¢* in G of cost w(g*), that satisfies the regular expression R. This
path and the accepting sequence of states in the NFA imply a path ¢' of the same
cost between (sg,s) to (f,d) for some f € F. So we know that the sought path is
considered. Conversely, for each path 7 in M(G) x M(R) of cost w(r), that begins
on a starting state and ends on a final state, the projection of 7 to the nodes of G
yields a path of same cost in G from s to d that satisfies the regular expression R.

To calculate the running time of the algorithm, observe that the size of M (R) x
M(G) is O(|R||G|). As the overall running time is dominated by Step 4, we obtain
O(T(|R||G])) as a bound. O

5.2. Extensions: Other Regular Expressions. We consider two possible
extensions for the problem REG-SHP, namely allowing the additional operators for
taking the complement (—) and for squaring an expression (2).

THEOREM 12. Shortest Path in the complement of an NFA or o Regular Expres-
sion over (U, -, x) is PSPACE-hard.

Proof. Let R be such a regular expression. The question of deciding if the
complement of L(R) is empty, (REGULAR EXPRESSION NON-UNIVERSALITY)
is known to be PSPACE-complete. ([GJ79], problems ALl and AL9). Given an
instance of such a problem we create a graph G with one node v. There is a loop from
v to v for each symbol in the alphabet. The existence of a path from v to v with the
label in the complement of the language (X* — L(R)) is equivalent to the existence of
such a word. O

This immediately implies

COROLLARY 13. REG-SHP for regular expressions over (U, -, x,—) is PSPACE-
hard.

It is easy to see that regular expressions consisting of operators from (U, -, *,2)
can be represented by context free grammars with rules of the form A — BB. This
observation together with the results of the next section (Section 5.3) yields the fol-
lowing:

COROLLARY 14. REG-SHP for regular expressions over (U, -, *,2) can be solved
in polynomial time.

5.3. Algorithm for CFG-SHP. We now extend our results in Section 5.1 to
obtain polynomial time algorithms for context free language constrained shortest path
problems. Beside the applicability of the algorithm, this result stands in contrast to
the hardness of simple path problems even for a single fixed regular expression.

The algorithm for solving context free grammar constrained shortest paths is
based on dynamic programming. Hence we will first investigate the structure of an
optimal shortest path from s to d in the graph G that is labeled according to the
context free Grammar R. Assume that R is in Chomsky normal form, i.e. all rules of
the form C' — AB or C — a (see [HU79] for details). Consider any such shortest path
p with I(p) = a1a2. .. ay. One important property of any CFG is that nonterminals
are expanded independently. In the case of a Chomsky Normal form, the derivation
forms a binary tree, which means that the label of p can be decomposed into two
parts I; and I such that I(p) = l1ls, S — AB, A 51, and B 5 I,.

With this structure in mind let us define the quantity D(i, j, A) as the shortest
path distance from ¢ to j subject to the constraint that the label on this path can be
derived starting from the nonterminal A.
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These values are well defined and fulfill the following recurrence:

® DGijiA)= , min _min (DG.kB)+D(k,j,C))

2) D(i,j,a) = {w(i;j) if 1((3, 7)) = a;
00 otherwise.

OBSERVATION 15. These equations uniquely determine the function D and im-
mediately imply o polynomial time dynamic programming algorithm.

Proof. Consider the case, that D and D’ satisfy the above recurrence but are
different. Then there must be a smallest witness of this fact a = D(4,5,X) and
b= D'(i,j,X), and a # b. Let us assume a > b and consider the smallest such b.
As the definition (2) is unambiguous, we know that X = A is a nonterminal. As b is
minimal, it is finite and satisfies (1). This implies that there must exist the witnesses
e = D(i,k,B) and f = D(k, j,C) that establish b = e+ f as their sum. As all lengths
in the graph are positive, both e and f are smaller than b. By the choice of a and b
we know that e = D'(i, k, B) and f = D'(k, j,C), implying with (1) the contradiction
a<e+ f=0.

This discussion immediately implies a dynamic programming approach to com-
pute the table of D. Starting with the values for links in the network, we fill the table
with increasing values. This can be done with a Bellman-Ford type algorithm. This
algorithm will finally set at least one entry in the table per round. The execution time
is bound by the square of the number of entries in the table times the amount of time
needed to compute the two minima in 1. This is polynomial, namely O(|V |*| N |?| R|?)
with V being the vertices of the graph, N the nonterminals and R the rules of the
grammar in Chomsky normal form.

Another way of implementing this is to set the table by filling in the small-
est values first. There a heap is used to hold the current estimates on entries,
and the smallest one is finally put in the table generating or changing estimates.
This implies for every entry one extract-min operation and up to 2|V||R| update
operations. Using Fibonacci-Heaps (see [CLR] for an analysis), this sums up to
O([V?|N| - (log(|[V[*|N) + 2|V||R])), that is O([V]*|N||R]). O

A naive adaptation of a Floyd-Warshall type algorithm fails, because we cannot
split an optimal path in two optimal subsolutions at an arbitrary node of the path.
The splitting in the above dynamic programming works only because it is done in
accordance with the grammar.

6. Simple Paths. Next, we investigate the complexity of finding formal lan-
guage constrained simple paths. For the ease of exposition, we present our results
for directed, multilabeled graphs. The following lemma shows how to extend these
results to undirected and unilabeled graphs.

LEMMA 16.

1. REG-SIP on directed, multilabeled grids can be reduced to REG-SIP on di-
rected grids.

2. REG-SIP on directed grids can be reduced to REG-SIP on undirected grids.

3. for all k > 1, CFG-SIP on directed graphs of treewidth k can be reduced to
CFEFG-SIP on undirected graphs of the same treewidth.

Proof. (1) Applying the changes illustrated in Figure 2 to all nodes of a mul-
tilabeled grid G, we obtain an unilabeled grid G'. G’ is part of a grid roughly ||?
times larger than the original one. Furthermore, the alphabet needs to be extended
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by two symbols, one for inaccessible edges and the symbol v for the edges “inside”
the extended nodes.

Fi1G. 2. Ezample for replacing multi-labels. All the dotted edges “inside” are labeled with v.
Only the connection to the right is completely depicted.

The regular language L is replaced by the regular language L' defined as follows:
L'={we Eu{v})" |w=v*51v* 50" - - -v*zpv* and z122---7, €L}

Now paths in the new instance (G’, L") are in one to one correspondence to paths in
the original instance (G, L).

(2), (3) It is well known (see for example [HU79]) that regular and context
free languages are closed under substitution. Let ¥ = {a,b,...,2} be an alphabet.
Then ¥' = {d,¥,...,2'} is a marked copy of this alphabet. Substitution with the
homomorphism a +— aa’ for all a € ¥ yields the following: If L C X* is regular, the
language

L'={we(EuX)|w=z12\22} - 2px, and z122---2, € L}

is also regular. Let G be the original graph. The directed edges in G labeled with a,
get replaced by two consecutive edges labeled with a and o', introducing a new node.

In this situation paths in G’ complying with L' are in a one-to-one correspondence
to paths in G complying with L. It is straightforward to extend the weight function
on the edges to preserve the weights of paths. Additionally relative path length (in
number of edges used) are preserved.

The proof of (2) follows from the fact that the resulting G’ can be embedded in
a grid using a new symbol v ¢ (X U X') as label.

For (3) let T be a tree-decomposition of treewidth k. If k = 1 the graph itself
is a tree and replacing edges by paths of length two does not change the treewidth.
Otherwise let T be a tree-decomposition of width £ > 1. For every new node we create
a new set of the tree-decomposition consisting of the new node and the endpoints of
the edge it splits. This set is included in the tree of the decomposition by attaching
it to the set that covered the split edge. As k > 1 sets of cardinality three cannot
change the treewidth, yielding a new tree-decomposition of width k. O

6.1. Finite Languages. DEFINITION 17. A language L is called finite if there
are only finitely many words in L.

Finite languages are considered one of the smallest subclasses of the regular lan-
guages.
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THEOREM 18. For any fixed finite language L the problem REG-SIP can be
solved in polynomial time.

Proof. Let k be the maximum length of a word in L. Considering all k-tuples of
nodes, and checking if they form the sought path, yields a polynomial time algorithm
of running time O(n*). O

THEOREM 19. Let C be a graph class (such as planar, grid, etc) such that the
HAMILTONIAN PATH problem is NP-hard when restricted to C. Then the problem
REG-SIP is NP-hard when restricted to C and (free) finite languages.

Proof. Consider a fixed class of graphs C for which the HAMILTONIAN PATH
problem is NP-hard. Then given an instance G of the HAMILTONIAN PATH problem
in which G € C, with n nodes, we construct an instance GG; of the regular expression
constrained simple path problem by labeling all the edges in G by a. We now claim
that there is a Hamiltonian path in G if and only if there is a simple path in G;
that satisfies a™~!, i.e. the constraining language is chosen to be the finite language
L={a""'}. 0

6.2. Hardness of REG-S1P. Before formally stating the theorem and the proof
we present the overall idea. We perform a reduction from 3-SAT. It will be easy to
verify that the reduction can be carried out in polynomial time (logarithmic space).

Our encoding of a satisfiability question naturally decomposes into two parts.
The first is to choose an assignment, the second is to check whether this assignment
satisfies the given formula. Choosing the assignment will correspond to choosing a
certain part of the path. The 3-CNF formula will be checked clause by clause. This
requires access to the value of a variable more than once. Here this is achieved by
forcing sufficiently many subpaths to be similar (in the sense that they stand for
the same assignment). These “copies” of the assignment can then be used to check
whether the underlying assignment satisfies the 3-CNF formula. This is now a local
task, as there is one copy of the assignment for every clause.

In order to achieve sufficiently many similar copies of the assignment, the following
beads and holes argument will be useful: Think of n + 1 holes forming a straight line
and n beads between every two of them. Each bead is allowed to fall in one of the
two holes adjacent to it. Moreover, we allow at most one bead in each hole. The state
of the system after the beads fall down in the holes is a description of the contents of
each hole. By reporting which hole is free, the state of the beads and holes system is
described completely; since all beads left of the free hole fell in the left hole and the
remaining beads fell into the right hole. We additionally know that there exists a set
of at least n/2 consecutive beads that fell in the same direction.

The construction presented enforces an overall snake like path, that goes up and
down several times. This is schematically depicted in Figure 3. Figure 4 provides
additional details about the construction and will be described in the sequel. At this
point it is sufficient to note that nodes on a vertical dotted line will be referred to as
nodes on a column and vertices on each horizontal dotted line will be referred to as
nodes on a level (or a row). For the case of n levels (variables) and m columns the
following statements provide an overall outline of the proof:

1. Every column of the rotated grid (depicted in Figure 4) represents a member
of an extended sequence of clauses. Any feasible path from S to D will use all of the
column nodes. Such a path naturally decomposes into subpaths which span an entire
column and are called legs.

2. The shape of a leg uniquely corresponds to an assignment; for this levels of
the rotated grid are identified with variables.
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F1G. 3. Owerall shape of all feasible paths; the dotted circles stand for nodes to be identified.
One possible leg in the first column is depicted as a dashed line.

3. Identically shaped legs do not interfere on neighboring columns.

4. Let p be one fixed feasible path, i.e. a path that consists of m legs, as many as
there are columns. Such a path visits every node but precisely n variable nodes, one
per level. Therefore the shape of the legs of p cannot change too often (following the
beads and holes argument), which in turn assures that there will be a lot of similar
legs.

5. On each column the labeling together with the language allows us to check
that the assignment represented by the leg satisfies a clause (of the extended set of
clauses). For this we use three symbol of the alphabet to stand for the three literals
of the clause.

We will prove the theorem for multi-labeled directed grid-graphs. Lemma 16
implies that the result holds for unilabeled undirected grid graphs.

THEOREM 20. The REG-SIP Problem is NP-hard for complete multi-labeled
directed grids and o fixed regular expression.

Proof. We present a reduction from the problem 3-SAT, which is well known to
be NP-complete. See for example [GJ79).

Given a 3-SAT-formula we construct a labeled complete directed grid, such that
there exists a path from the start vertex to the destination vertex, that complies with
a fixed (independent of the formula) regular expression, if and only if the formula is
satisfiable.

Let F = (X, C) be a 3-CNF formula, X = {z1, 22, z3,..., 2z} the set of variables,

and C = {c1,¢2,¢3,...,cn} the set of clauses.
For the beads and holes argument we need n + 2 repetitions of the sequence
of clauses. To do this, we construct an extended sequence di,...,dys of clauses that

consists of exactly n+2 copies of the original sequence of clauses (M = m(n+2)). It is
important that the ordering of the basic sequence remains unchanged between different
copies. This extended sequence of clauses is used in the sequel for constructing the
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graph.

We will describe a grid rotated by 45 degree against the coordinate system that
we use to define levels (i.e. rows) and columns. There are three different types of
vertices—(i) clause-vertices, (ii) variable-vertices and (iii) join-vertices. The layout
of these vertices is illustrated in Figure 4 by means of an example. The coordinate
system essentially has for every clause C; a vertical line with the name of the clause
and for every variable z; a horizontal line named by the variable. These lines are
shown as dotted lines in Figure 4. The vertices of the grid lie in the middle of the
so formed line-segments. Clause-vertices lie on dotted vertical (clause-) lines and are
drawn as rhombuses. Variable vertices lie on horizontal (variable-) lines and are drawn
as circles. There are additional bottom and top line of join vertices that are drawn
as hexagons. It is easy to see that this grid is part of a complete square grid with
(M +n + 2)? nodes.
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Fi1G. 4. Graph corresponding to the formula (1 V x2 V —x3) A (—x2 V T3 V x4), west-true, east-
false, in general upward edges are labeled a, b and ¢, downward edges are labeled d, e and f. The
label ¢ in the figure states that the corresponding edge is not labeled with a (by this deviating from
the general rule). For simplicity the additional 4 = (4+2) —2 repetitions of the basic clause-sequence
are omitted.

To simplify the description we assume that M is even. For the rest of the proof,
by a slight abuse of notation, we use the phrase edges incident on a vertex v to mean
both the incoming and outgoing edges that have v as one of the endpoints. The start
node S is the lowermost clause node on Cf, the destination node D the lowermost
clause node on Cjs. To achieve paths of the snake like form depicted in Figure 3,
we direct all edges incident on a clause-vertex on an odd numbered column upward
and all edges incident on a clause-vertex lying on even numbered columns downward.
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This orientation is depicted in Figure 4. In order to enforce the overall shape of
admissible paths, we label the edges incident on join vertices with w. Furthermore,
with important exceptions to be described later, upward edges are in general multi-
labeled with a, b and ¢, where as downward edges are in general multi-labeled with
d, e and f. Let us define the regular expression

R= ((a* Ub* U cHww(d* Ue* U f*)ww)*(a* Ub* Uc)ww(d* Ue* U f*)

and the corresponding language L = L(R).

The final construction will have some of the labels removed; this only makes the
set of feasible paths smaller. The following proposition summarizes a key property of
the above construction.

PROPOSITION 21. Let P be a simple path in the described graph from S to
D complying with the regular language L. Then the following holds: (i) P can be
partitioned into o set of legs and (i) there exist m consecutive legs that have identical
shape.

Proof. (i): Call every subpath labeled with w(dtUet U f*)w or w(atUbtUch)w

aleg. Here % := z*z is the usual shorthand used in regular expressions. As the label
of P is in the given regular language, this defines a partitioning of P into M subpaths
L;. Because of the labeling of the grid, all legs have one endpoint at the lower join
level and one at the upper join level. Because of this all L; have the same length.
Additionally every second vertex of a leg is a clause-node, and all these clause nodes
are in the same column. As we traverse a leg from the low numbered end to the high
numbered end, we deviate from the vertical line passing through variable-vertices on
the way. The sequence of deviations (east/west) define the shape of the leg. The
shape of a leg is used to infer an assignment to the variables as discussed later.
(ii) As P is simple, every node of the grid is visited at most once by P. As a result
the shapes of two neighboring legs L; and L;;; are not independent. If L; deviates
at (variable-) level j to the east, L;; may not deviate to the west on that level. As
there are (M + 1)n variable-vertices in the grid and Mn variable-vertices on P, there
are exactly n variable-vertices not used by P. An averaging argument yields that
there must exist m consecutive columns of variable-vertices that are all used by P.
This implies that all legs in that range must have identical shape. O

These m legs will be used as multiple copies of an encoding of an assignment of
truth values to the variables. The removing of some of the labels of the graph will
allow us to enforce the semantics of the clauses. Given the shape of a leg we use the
following rule (denoted rule R) to infer an assignment to the variables:

If the shape deviates on level z; to the west (east), we assign z; the

truth value TRUE (FALSE).
Note that we have m legs with identical shapes and thus we have a consistent as-
signment to the variables across clauses. The constraining regular expression and
appropriate labels to the edges also have to ensure that the following holds. The
leg corresponding to each C; can only have shapes such that the corresponding as-
signment to the variables using rule R makes C; true. For an odd numbered clause
Cok+1 = (u1 V ua V ug), we remove labels from the graph in the following way: If
up = x; (resp. u3 = —z;) we remove the label a from both the edges incident on the
variable-vertex x; that is to the east (resp. west) of the column Cogy1. For us (resp.
us) the label b (resp. ¢) is removed in the same way on the level corresponding to the
variable of the literal. For even numbered clauses d, e and f take the role of a, b and
c.
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PROPOSITION 22. Let Ly be a leg of a path in G from S to D on column Cy
complying with L and let A be the assignment corresponding to the shape of Ly, using
rule R. Then the labeling of Ly can be chosen to be of the form wzxzx ...xxw with
z € {a,b,c,d, e, f} if and only if A evaluates Cy, to TRUE.

Proof. Let A evaluate C to TRUE. Then at least one of the literals of C} is
TRUE. We can choose the z accordingly (for example z = a if it is the first literal
and k is odd). On the level corresponding to this positive (resp. negative) literal the
path deviates to the west (resp. east), and can thus be labeled with z; independent
of its shape Ly can be labeled with z on all other levels.

Conversely, if the leg is labeled in wzx ... zzw, we can focus on the literal of the
clause corresponding to z (for example the first literal if x = a). As the labeling at
the level of that variable is only available in the correct direction, A must evaluate
the clause to true. O

This completes the construction of the graph. We now prove the correctness of
the reduction.

Suppose there exists a satisfying assignment A to the formula. Then we choose
the shape of the path from S to D in the snake like fashion with the additional
property that we deviate to the west on level z; if ; is set to TRUE by A, otherwise
we deviate to the east. Since A is a satisfying assignment, each clause contains at
least one literal that is set true by A. So we choose the labeling on all legs Ly, of the
path in column C} corresponding to this literal of C}. This yields a simple path that
complies with L.

Conversely, let there be a simple path from S to D complying with L. By Propo-
sition 21, we know that the path has m consecutive legs of the same shape corre-
sponding to an assignment A. By construction of the extended sequence of clauses
and Proposition 22 we know that A satisfies all of the original clauses. So the formula
is satisfiable. O

In fact this results stays valid for a smaller class of infinite regular languages.

DEFINITION 23 ([Str94]). A language L is called locally testable, if there exists a
k and o finite set S such that

weL < W<pw:veS).

Here v <y, w stands for the fact that v is a subword of length k of w.

COROLLARY 24. The REG-SIP Problem is NP-hard for a complete multi-labeled
directed grid and o fized locally testable language.

Proof. In the proof of Theorem 20 the constraining regular language can be
replaced by the regular language L defined as follows:

L:{UGE*

T1To <2 U — (:L'l € {a,b,c,d,e, f} = 22 =1 V 22 =w)}

This condition is equivalent to stating that any sequence of y € {a,b,c,d,e, f}
may only be ended by a w. Starting from the first symbol in the word, L guarantees
that this single symbol is repeated until the next w. The labeling of the grid ensures
that this w is at the top join vertex between the columns C; and C>. There the
simplicity enforces another w and it follows inductively that L enforces the snake like
shape of the path as well as the uniform labeling of the legs. So it is as strong as the
language used in the proof of Theorem 20.

It should be noted that Lemma 16 cannot be applied immediately in this situation.
Nevertheless the result of the corollary extends. This is easy to verify using a slight
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modification of the graph proposed in the proof of the Lemma 16 and a modification
of the language. This makes use of the fact that the directionality can readily be
omitted and that constructions of the form z; = y — z;15 = y are also expressible in
locally testable languages. O

Note that the result of Theorem 20 immediately extends to other graph classes:

COROLLARY 25. Let C be a class of graphs such that for all k > O there is an
instance I € C that contains as a subgraph a k x k-mesh and both the graph and
the subgraph are computable in time polynomial in k, then the REG-SIP problem is
NP-hard for C.

Thus the REG-SIP problem is NP-hard even for (i) complete cliques, (ii) in-
terval graphs, (iii) chordal graphs, (i) complete meshes, (v) complete hypercubes,
(vi) permutation graphs.

6.3. Hardness of CFG-S1P. We show that CFG-SIP, the problem of finding
a simple path complying with a context free language, is NP-hard even on graphs
with bounded treewidth. Before formally stating the proof, we give the overall idea.
We present a reduction from 3-SAT (See e.g. [GJ79] for definition). The basic idea
is to have a path consisting of two subpaths. The first subpath uniquely chooses
an assignment and creates several identical copies of it. The second subpath checks
one clause at every copy of the assignment and can only reach the destination if the
assignment satisfies the given formula.

Consider the language L = {w#wBSw#w? .. . wH#w|w € X*}. As is standard,
w® denotes the reverse of string w. At the heart of our reduction is the crucial
observation that L can be expressed as the intersection of two context free languages
L; and L,. Consider L; = {wo#wiSwi#w.$wit .. wpSwli#wy1 |w; € £*} and
Ly = {vi#vfSva#toll .. up#vl |v; € ¥} To see that L = Ly N Lo, observe that
wo = v1, vi =wy, and for all i, WP = v;11,v2, = w1 , establishing that v; = viq
holds for all 4, and thus L = Ly N Ls.

Now, imagine w representing an assignment to the variables of a 3-CNF formula
with a fixed ordering of the variables. For every clause of the formula, we create
a copy of this assignment. L is used to ensure that all these copies are consistent,
i.e. identical.

Note that we have two basic objects for performing the reduction—a CFG and a
labeled graph. We will specify L; as a CFG and use the labeled graph and simple paths
through the graph to implicitly simulate Ls. Recall that there is a straightforward
deterministic pushdown automaton M for accepting Ls. Our graph will consist of
an “upward chain” of vertices and a “downward chain” of vertices along with a few
additional vertices. The upward chain will simulate the behavior of M when it pushes
w on the stack. The “downward chain” will then simulate popping the contents of
the stack and verifying that they match w’. We will call such a gadget a “tower” as
an analogy to the stack of M.

We now describe the proof in detail. For the purposes of simplicity, we prove the
results for directed graphs, the extension to undirected graphs follows with Lemma 16.

THEOREM 26. The CFG-SIP problem is NP-hard, even for Graphs of constant
treewidth and a fized deterministic Context Free Language.

Proof. Reduction from 3-SAT. Let F(X,C) be a 3-CNF formula, where X =
{z1,...,2,} denotes the set of variables and C = {¢1,...,¢n} denotes the set of
clauses. Corresponding to F', we create an instance G(V, E; U Ey) of CFG-SIP as
follows. We will describe the reduction in two parts—first the subgraph (V, Ey) and
then the subgraph (V, Es).
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The subgraph (V, Ey) is constructed as follows: Corresponding to each clause ¢;,
we have a Tower T7. It consists of n “simple-path stack-cell” gadgets H, for each
variable one. This basic gadget is depicted in Figure 5.

Consider a simple path p from one of the bottom nodes (marked by a square in
the Figure) to one of the top nodes. Because of the labels of this gadget, we can
define the signature y of this path by I(p) = cyc with y € {a,b}. Let ¢ be another
simple path, that has no vertex in common with p, starts at one of the top nodes and
ends in one of the bottom nodes. Then we can again properly define the signature z
of this path by I(q) = czc.

Because of the nodes a and 3, the signatures are identical, i.e. y = z. Furthermore,
if p uses the node =z}, the node z; is not used at all, and ¢ has to use the node —z;.
Similarly, if p uses the node -z}, the node —z; is not used at all, and ¢ has to use the
node x;.

These gadgets are now composed to form towers TI , by identifying the top termi-
nal nodes of H} with the bottom terminal nodes of H7, ;. The tower has four levels
corresponding to every variable. We call this a floor of the tower. The bottom of the
tower T7 is connected to the bottom of the tower T7+!. The start vertex is connected
to the bottom of the tower T!. These connections are depicted in Figure 6. Before
we describe the remaining edges, we discuss the properties of a tower.

F1G. 5. the gadget H; used to implement the tower, forcing the assignment to be spread consis-
tently over the graph. Dashed ellipses denote the so called level sets.

Consider a Tower T7 and a simple path r labeled according to (c(aUb)c)*#(c(aU
b)c)* that starts at one bottom vertex and reaches the other bottom vertex. Such a
path has the following important properties:

1. The path r consists of two simple subpaths p and ¢ separated by an edge
labeled with #. p starts at the bottom of the tower and is labeled according to
the regular expression (c(a U b)c)*. On every floor it uses exactly one of the nodes
{z},—x}}, by this realizing an assignment to the variables of X. This assignment
uniquely corresponds to the labeling of this path.

2. The constraints of simplicity and the direction of edges implies that ¢ has the
following structure: it starts at the unused top vertex, is labeled with I(q) = I(p)%,
avoids already used nodes, and reaches the unvisited bottom vertex. Furthermore ¢
is uniquely determined given p.
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3. Note that for each variable z;, the simple path r visits exactly one of the
nodes in {z;,~x;}. If the path reflects an assignment in which z; is true, then z; is
unused and —z; is used and vice versa. These free nodes will be used in the second
part of the reduction to verify the chosen assignment is indeed satisfying F'.
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F1G. 6. Assembling the gadgets, building the graph Gi.

We now assemble the towers to form the graph 1 depicted in Figure 6.

PROPOSITION 27. Any simple path in Gi starting at the start node s, and
reaching the intermediate node T, with the constraint that the labeling belongs to
$((c(aUb)e)*#(c(aUb)c)*$)* generates the language

Ly = { $wi #wESwo#wES . . w,#whES$ | w; € (c(aUb)e)* }.

Proof. The statement follows from the above.l

We now choose the constraining CFL for the path from s to 7 to be
L1 = {Swi#waSwl#wsSwlt# .. wp_1$wl  #wi$ |k € Nyw; € (c(aUb)e)* }.

The following important lemma, follows from Proposition 27 and the definition of L;.

LEMMA 28.

1. Proposition 27 enforces that in every tower the used and unused nodes can be
uniquely interpreted as an assignment to the variables of X.

2. L1 enforces that these assignments are consistent across two consecutive tow-
ers.

We now describe the subgraph (V, E2). The label of each edge in this subgraph
is u. The subgraph is composed of m subgraphs D; ... D,,, the subgraph D; cor-
responding to clause ¢;, depicted in Figure 7. Every D; basically consists of four
simple chains. The first one goes up the tower. There it splits into three downward
directed paths. Each of them corresponds to a literal of ¢;. The node in the tower
T; corresponding to that literal is used as part of the path. At the very bottom the
three paths are joined and connected to D; 1. At the boundaries Dy is replaced by d
and D,, 41 by 7. This completes the description of the graph G(V, E; U E»).
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F1G. 7. One tower of the second part of the graph, according to the clause (z; V —x; V xy,).

The instance of CFG-SIP consists of the graph G(V, E;UE,) and the constraining
CFL L = L; - u*. This enforces the path to go through every tower using edges in
G(V, Ey), visit vertex T and then use the edges of G(V, E,) to reach d.

We now prove the correctness of the reduction. Suppose, there exists a satisfying
assignment for F. Then we choose the path from s through all the towers to 7
accordingly. For the remaining path to d we use the fact that for every clause of F' at
least one literal is true. Choosing the downward directed subpath according to this
literal we can complete a simple path to d. By construction, the label of this path
complies with the context free grammar.

Conversely suppose there exists a simple path in G from s to d satisfying the
labeling constraint. The alternation of # and $ in L enforces that such a path visits
every tower, then the vertex 7 and finally the destination. In this situation we can
define an assignment A according to the path in the first tower. By Lemma 28, and
the path being simple, we know that A is consistently represented in all the towers.
The second part of the path shows that A is a satisfying assignment for F'.

Finally it is easy to verify that G has a constant treewidth. For this we describe
a tree decomposition of the graph. The up to four nodes of one level in a gadget H;
and the up to four nodes of the path D; form so called level-sets. Two neighboring
level-sets together, and two bottom level sets of neighboring towers respectively, form
a set of the tree decomposition. Additional sets for s, d, and 7 with all the adjacent
nodes are needed. This shows that the treewidth is bounded by 16. O

Actually the result of Theorem 26 can be extended to obtain the following:

COROLLARY 29. CFG-SIP is NP-hard when restricted to graphs of treewidth 3
and o fized linear, deterministic CFG.

Proof. The proof is similar to the proof of Theorem 26 and thus we only describe
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the necessary modifications needed to prove the corollary. First we can replace the
second part of the graph, used to verify that the assignment satisfies the formula.
This is done as in the proof of Theorem 20, by replacing a (and b) by three symbols
a1, az and ag (b1, ba, b3). We modify the language such that for the context-free part
all a; are equivalent and all b; are equivalent. Then we add a regular component to
the language (take the intersection), enforcing that on one leg all the indices have to
be identical. By removing certain labels we can make sure that in every tower one
clause is tested.

Fic. 8. the smaller gadgets replacing the H; used in the original construction. a stands for
ai,a2,a3, b for by,ba,b3. To encode the clauses some of these labels get removed, like in the proof
of Theorem 20.

Since we do not need the free nodes anymore, the gadget H; depicted in Figure 5
can be replaced by a much smaller one, depicted in Figure 8. Note that replacing
parallel directed links by disjoint paths of length two does not increase the treewidth in
this situation. The additional nodes and edges can be covered in a tree decomposition
by some more leaf-sets of size three. This does not increase the width of the tree
decomposition. In total the treewidth of the modified construction is reduced to 3.

Taking a new alphabet symbol z we define the language H = { wrxw? #vjw €
Li,v e (X—{#})* }. It is easy to see that H can be specified by a linear context free
grammar if L, is a regular language. Here w? is defined to be the reverse of w with
bottom marker $ and top marker # exchanged. We take L; to be a regular language
that enforces the path to use the top marker of every tower. It is sufficient to argue
that the proof of Theorem 26 can be modified such that the constraining context free
language can be replaced by H.

For this we double the sequence of variables, introducing a new set of variables
{2} = Tap_iy1} yielding the extended sequence z1,Z2,...,%n, T, &l _1,...,2]. The
new variables are only used while constructing the towers, but not for the evaluation
of clauses. Additionally we have to incorporate the middle marker z into the graph.
Assuming the number of clauses m is odd, this means, that we modify the tower
m/2 at the level of the lowermost gadget H," +/f created for the new variable z}. In
this gadget we replace both upward edges by paths of length two. The upper edge
gets the original label, the lower edge gets labeled with . The proof of correctness
consists of showing that the new H ensures a single assignment is represented by all
the subpaths in the towers. This can be shown inductively from the middle symbol x
outwards. The way the information is spread is depicted in Figure 9. The induction
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F1G. 9. schematic labeling of the path; w1 = vwf; solid arrows stand for correspondence
enforced by the language, dashed arrows for correspondence resulting from the graph.

starts with the fact that the signature wy of the upward path in tower m/2 is forced
by H to comply with v; = vf, leading to the definition w; = v;v#, with the property
w; = wf. So we do not have to distinguish between w; and wf. Then the graph
enforces wo = wy, H enforces w3 = ws and so on. This establishes that all the (lower
halfs of the) signatures are identical. The remaining part of the proof follows the
details given for Theorem 26 closely. O

Note that the language H in the proof of Theorem 26 can also be accepted by a

deterministic log-space bounded Turing machine having a two-way input tape.

6.4. Algorithm for REG-SIP on graphs of bounded treewidth. In con-
trast to the above NP-hardness results we show that for graphs of bounded treewidth
the problem REG-SIP is solvable in polynomial time. The class of treewidth bounded
graphs includes interval graphs and Chordal graphs with bounded clique size, com-
plete meshes, with fixed length or width, outer planar graphs, series parallel graphs,
etc. This easiness result along with the hardness result in the preceding section also
imply that these results are in a sense the best possible. We will use the notion of a
nice tree decomposition discussed in [Bo92].

DEFINITION 30. A tree decomposition ({ X; |i € I},T = (I, F)) is nice, if one
can choose a root r in the tree such that:

o T is a binary tree,
o if i is a leaf, then |X;| =1 (Start node);
e if i has two children j and k then X; = X; = X}, (Join node);
e if i has one child j, then there exists a vertexr v such that either
— X; = X; \ {v} (Forget node), or
- X; = X; U {v} (Introduce node).

We use the fact, that there exists always a nice tree decomposition of optimal
width (treewidth), and that it can be constructed in linear time [B092].

THEOREM 31. The REG-SIP problem is solvable in polynomial time on treewidth
bounded graphs
Proof sketch: Given a treewidth bounded graph G along with a nice tree decom-
position T(I, F), we describe an algorithm, that computes tables of (partial) shortest
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simple paths in a bottom up fashion in T'. Specifically, we have one table for every
set X; corresponding to the node ¢ of T'. We describe the entries of these tables and
how to compute the values (i) for leaf sets and (ii) for internal nodes from the values
in the tables of the child node(s). Since the number of values computed as well as
the number of tables is polynomial in the size of @, this yields a polynomial time
algorithm.

The complicated task is to keep track of is the simplicity of the path or more
precisely the nodes used by the partial solutions represented by entries of the table.
We have an entry for each type of path going through the set of nodes the table
is attached to. Since these sets are separators in G it is not necessary to keep the
complete information about possible paths “behind” the separator. For the remainder
of this section, we use k to denote the treewidth of the tree decomposition 7. In the
following, given for a set X; corresponding to a node 4 in T we give a characterization
of the distinct subsolutions that need to be maintained.

The indices (also called “atoms” for this proof) used to describe the subsolutions
stored in the table are the following:

1. Node in S the path starts,
2. State the automaton is in before reading in the label of the path,
3. Node in S the path ends,
4. State of the automaton after having read in the label of the path.
We accept the special situation of one node paths, i.e. indices with identical nodes
and states.? There are two special “half” atoms standing for a beginning segment
and an end segment of the path: There we have a node and a state, identifying the
end node of a simple path that starts at the source, such that its label can lead the
automaton to the specified state. Similarly, for the end segment of a path we have
a node and a state such that the labeling along the path gets the automaton from
this state to an accepting state at the sink. Thus the subsolutions are completely
described by
the k/2 — 1 atoms plus the two special half atoms together with a set
of other used nodes in X;
We only need to allow the atoms to be empty; meaning that they do not denote any
path. Noting that the total number of ways to partition a set of size k is O(k*) leads
to an upper bound of O((k - |[NFA| +1)* - 2¥) for the number of entries in the tables®
which is polynomial in the size of the NFA for fixed treewidth k.

Note that the entry in the table where both of the special half atoms are empty
stands for a complete solution in the already visited part of the graph. For every type
of partial solutions we maintain the total length of the shortest partial solution.

We now describe the tables more formally. For the leaf sets consisting of a single
node v the table is easy to compute. It has entries with value 0 for the following
partial solutions:

s #v #d for all states i: the length 0 path v-v, with start and end states 4, no
additional nodes used.
v = s the length 0-path from s to v ending in the initial state.
v =d for all accepting states f € F : the length 0-path from v to d beginning in
state f.
In order to compute the tables in a bottom up fashion in 7', we need to consider

2Here we could actually account for € moves in the automaton if we choose to.
3We have not attempted to optimize the size of the tables. To do so one could understand a
certain usage pattern that chooses one of the (k/2)! possible representations.
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three possible cases depending on the type of nodes in T'. Let ¢ be a node in T'.

7 is a Join Node: 1. Letting j and [ be the children of i, we know that X; =
X; = X;. Combine a partial solution stored in the table associated j with a
partial solution stored in the table associated with I. For all pairs of types
of partial solutions check if they can be combined to form another partial
solution (no commonly used nodes, matching boundary node and state of the
partial solution, respecting special cases for source and destination subpaths).
Create the new type and compute the value of the combined solution. If
the type does not yet exist in the table or the newly computed value is
smaller than the old table entry, update the table entry. This is justified by
the observation that the described subsolutions associated with j and k are
disjoint except at the set of separator nodes X;.

2. Keep the componentwise min of the tables: for all types of partial
solutions (their description match as the two sets of the decomposition are
identical), keep the smaller value. If the solution according to a type does
not exist, we assume its value to be infinity. (This can also be seen as (1.),
where we combine the entry with an “empty sub solution” of cost 0 from the
left and from the right and then choose the better one.)

i is a Forget node: Let v be the node removed from the set in the nice tree decom-
position. We discard all partial solutions that contain a path with endpoint v.
In all partial solutions, we delete v in the set of used nodes. For the resulting
identical subsolutions we keep the one with minimum value.

i is an Introduce node: Let v be the new node, e; the edges between v and nodes
in the set of the child.

1. Set up the new node. Copy all known partial solutions. Create new
partial solutions by combining all known with all solutions created according
to the rules stated above for leaf sets of the form {v}.

2. Include the incident edges one by one. Consider all possible new
paths using this edge.

The correctness of the algorithm follows by noting the following:

1. Given an entry in the root of the table for the existence of a path p of a given
length, we can easily find such a path recursively from subsolutions associated with
the children of the root.

2. Conversely, let p be one of the optimal (shortest) solutions. Let X, be the
set associated with the root of 7. Assume that r is a join node and let I and w be
the left and right children. The argument for the other two cases is similar and thus
omitted. It is easy to see that the path p can be broken into two paths p; and ps (p2
could be empty) such that p; is a sub solution maintained at ! and ps is sub solution
maintained at w. O

The following generalization of the previous result holds:

COROLLARY 32. Let L be a fized language decidable by a one-way input tape,
log-space bounded nondeterministic Turing machine. Then the problem of finding a
shortest simple path from source to destination according to L is solvable in polynomial
time on treewidth bounded graphs.

Proof. The length of a simple path in the graph is bounded by n. The num-
ber of configurations of a nondeterministic Turing machine using logn tape cells is
polynomial in n. No other configurations of the machine can be used while recog-
nizing a word of length smaller or equal n. As the machine reads the input tape in
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one direction only, we can create an NFA with states representing configuration that
(i) decides L for words of length < n and (ii) has a size polynomial in n. Using the
algorithm in the proof of Theorem 31 with NFA M, we can compute the sought path
in polynomial time. O

Note that a™b™c™ and all languages accepted by pushdown automata having only
one stack-symbol are examples of such languages.

6.5. Algorithm for Acyclic Graphs. Another well know situation in which
shortest simple paths are feasible is for acyclic graphs. This stems from the fact that
all paths in an acyclic graph are simple and by this the shortest and the shortest
simple path always coincide. This together with the results of Section 5 yields the
following result:

COROLLARY 33. The problem CFG-SIP is solvable in polynomial time on directed
acyclic graphs.

Making use of the fact that the length of a simple path is bounded by the size of
the graph, we get the following:

COROLLARY 34. The problem of finding a shortest simple simple from source to
destination in an directed acyclic graph according to a formal language L is solvable in
polynomial time if there exists a polynomial time computable CFL R of size polynomial
in n with the following property:

z€X, || <n: (x €L+ ze L(R))

7. Extensions and Applications. In this section, we briefly discuss extensions
and applications of our results to problems in transportation science. For many of
these applications, it is possible to devise dynamic programming based methods to
solve the problems; our aim is to convey the applicability of the general methodology
proposed here.

7.1. Node Labels and Trip Chaining. Consider the problem, where instead
of the edges the nodes have labels, and the constraint is on the compound node label
of a path. Easy transformations of the input show, that all the results we develop for
the edge labeled case are also true for the node labeled case. We can transform this
kind of instance into an edge labeled one by the following steps: The network stays
the same, the edges get labeled with a new symbol. Every node gets an additional
loop attached. This loop gets the label(s) of the node. Then the language has to be
extended such that (i) exactly every second symbol has to be the new edge symbol
and (ii) the word without the edge symbols is in the original language. It is easy to see
that regular and context free languages are closed under this operation. This shows,
that easiness results for edge label constraints imply easiness results for node label
constraints. If we have an edge labeled graph, we split the edges and insert a node with
the edge label, and label all the old nodes with one new symbol. The language has
to be extended like above. This construction transfer edge label constrained hardness
results to node label constrained results.

The node label extensions turn out to be useful in modeling transportation related
problems. For example, in many transportation applications (e.g. TRANSIMS) one
needs to find paths for travelers, that need to visit a fixed sequence of location types.
For instance, we might want to find a shortest path from home to home that visits
some locations e.g. ATM-gas station—supermarket—post office in this particular order,
but with the freedom to choose one of the several ATM’s (gas stations,...) in the
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city. The problems of this type are referred to in the transportation literature as trip
chaining problems. The problem cannot be solved by direct application of Dijkstra’s
shortest path algorithm to find best paths between two consecutive subdestinations
and concatenating these paths. By treating each destination type as a node label and
constructing a simple regular expression, we can select places for the subdestinations
and find shortest path in networks that satisfy the precedence constraints using the
polynomial result discussed in this paper.

7.2. Finding Alternatives to Shortest Paths. There has been considerable
interest in algorithms for variations of shortest paths[AMO93]. For example, in a
recent paper, by Scott, Pabon-Jimenez and Bernstein [SJB97], the authors consider
the following problem — given a graph G, a shortest path SP in G and an integer
parameter, find the shortest path SP1 in G that has at most k£ links in common
with SP. Call this the BEST k-SIMILAR PATH. In [SJB97], the authors present an
integer linear program formulation of the problem and present a heuristics based on
Lagrangian relaxation. It can be verified that the heuristic takes exponential time in
the worst case. Quoting [SJB97], “The link overlap constraint thus makes finding the
best path much more difficult (i.e. shortest path problems with a single constraint are
NP-hard)” thus suggesting that BEST k-SIMILAR PATH is likely to be NP-hard. Here
we show that this problem is solvable in time T'(k|G|) where T'(n) denotes the time
taken to find a shortest path on a graph with n vertices. This substantially improves
on the exponential time algorithm given in [SJB97]. Our approach for solving the
problem is based on using our algorithm for regular expression based shortest paths.
The approach uses the fact that given a k, and symbol a € ¥, the language consisting
of all words w € ¥* with no more than k occurrences of the symbol a in them, is
regular. Given a graph G, a shortest path SP in G and an integer parameter k, we
perform the following steps:

1. Label the edges on the shortest paths by a and all the other edges in G by b.

2. Construct an NFA M that accepts all strings that have no more than k
occurrences of a. The corresponding automaton M is shown in Figure 10
(and happens to be deterministic).

3. Find a shortest path in G with the constraint that its label is in L(M).

(P Cp p p 3
aaaa@

F1G. 10. Automaton used to count shared links, accepting if less than 4

The proof of correctness is straightforward. We note that in this particular case,
we in fact always get a simple path, since we can always remove a loop from the path
without increasing its length or acceptability of the shorter string.

7.3. Handling Left Turn and U-Turn Penalties. Suppose, we are told that
in our road network there is additional cost incurred when we take certain left turns.
This is a common scenario in transportation science and is referred to as turn penalties.
This is not an unlikely scenario. In fact the current Dallas FT Worth Case study has
exactly this situation. Specifically, several left turns in the study area are prohibited
which amounts to saying that the cost of taking that edge if it is a left turn is oo.
Moreover, the infrastructure change that is proposed for the case study intends to
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make a series of left turns illegal near the area of Valley View Mall and the Galleria.

A well known reduction from the original problem to the problem of finding a
shortest path in a modified network (see [AMO93] for details) can be used to solve
this problem. (The basic idea is to replace each intersection by a clique of size 4.
A slightly more complicated subgraph is required for directed graphs.) Instead of
giving a penalty to a turn, suppose we wish to find a path in which we do not take
more than say k-left turns. This variant of the problem cannot be solved by a direct
application of Dijkstra’s algorithm, but is amenable to an efficient solution using the
formal language approach. To do this we again replace each intersection by a clique
of size four and then add appropriate labels to each of these edges. We then construct
an automaton, which accepts strings that contain at most k-labels corresponding to
left turns. This can be constructed along the lines of k-similar path problem. The
rest of the details are straightforward. Now consider a more complicated query in
which we wish to find a path such that the number of left turns are a small fraction
of the total number of edges. It is easy to see that this can be written as a context
free grammar and thus again can be solved efficiently.

7.4. Time dependent Networks and Multi-Criteria Shortest Paths. In
several transportation applications, it is desirable to solve shortest path problems on
networks in which the edge weights are a function of time. In [OR90] Orda and Rom
consider this type of problem for various waiting policies and function classes. One
of their basic algorithms is a dynamic programming on functions. Combining this
with our results, we obtain a polynomial time algorithm for CFL-constrained shortest
paths in time depending networks.

As a final application, consider bicriteria and in general multi-criteria shortest
path problems. For instance, we might have two different weight functions on each
edge a function ¢(e) that captures the cost of using that edge and a function ¢(e) that
captures the time it takes to traverse the edge. The aim of the bicriteria shortest
path problem aims at finding a minimum cost path from a source s to a destination
d, that obeys a given budget bound B on the time taken to go from s to d. This
problem has been studied extensively in the literature (see [MRS+95] and the refer-
ences therein). Given that the cross product construction simply constructs multiple
copies of the basic graph, it is easy to design polynomial time approximation scheme
for the bicriteria shortest path problem subject to labeling constraints. The idea is
a straightforward combination of the ones outlined here and those used for designing
approximation scheme for the basic bicriteria problem.

7.5. Other Formal Languages. As expected, attempts to extend the polyno-
mial time algorithms to more general grammars such as the context sensitive gram-
mars fail to yield polynomial time results. Intuitively, the hardness of the problems is
due to the fact that emptiness and recognition problems for context sensitive grammars
are undecidable and PSPACE-complete respectively.

Consider the problem for context sensitive grammars. It is easy to show that
the problem (CSG-SHP) is undecidable even for a fixed log-space decidable context
sensitive language. It is easy to see, that the language

L= { w#® | w € {0,1}*, TM(w) halts on an empty input using space logi }

is context sensitive. It is in fact log-space computable. It is also straightforward to
see that

L'={w|3iw# €L}
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is another way of stating the halting problem and is thus undecidable.

Showing that we can use CSG-SHP to decide L’ establishes that CSG-SHP is
itself undecidable. For w € {0,1}* we construct a directed chain labeled according
to w with start s and end d. We additionally put a loop from d to d labeled with #.
The fixed constraining language is L. Now w € L' is equivalent to the existence of a
(in general not simple) path from s to d in this graph. Note that this graph is nearly
a tree.

In contrast, the CSG-SIP is PSPACE-complete. Membership in PSPACE
follows by observing that a simple path in a graph G(V,E) can have at most |V|
nodes. Thus a space bounded NDTM can guess a simple path p and then verify that
I(p) € L(M), where M is the CSG. The hardness is shown by reducing the problem
of deciding if w € L(M) to finding a simple path in a directed chain that is labeled
according to w. Let s and ¢ denote the two end points of this chain. Then there is a
path from s to ¢t whose labels are in L(R) if and only if w € L(R). Similar extensions
hold for other formal languages. Note that for this argument the context sensitive
language can be fixed to represent an arbitrary PSPACE-complete problem.

8. Conclusions. In this paper, we have presented a general approach for mod-
eling and solving a number of problems that seek to find paths subject to certain
labeling constraints. The model was shown to be particularly useful in understand-
ing and solving transportation science problems. The results in this paper provide a
fairly tight characterization of the complexity of these problems, varying the type of
considered path, the underlying grammar and allowed graph classes. For a number of
non-trivial cases this completely characterizes the boundary between easy and hard
cases. Our results can also be seen investigating tradeoffs between (i) economy of
descriptions of languages used to describe labeling constraints and the (ii) efficient
solvability of the corresponding problems.

In [BK+99, JBM99, JMNO98|, we have obtained a number of additional theo-
retical as well as empirical results on related topics. Specifically in [JBM99], we
show how to apply our results on finding REG-SHP in time dependent networks can
be used to solve a number of additional problems arising in transportation science.
In [BK+99, JMNO98], we have carried out a detailed experimental analysis to validate
the suitability of extensions of the algorithm suggested here on realistic transportation
networks. We refer the reader to the web-site http://transims.tsasa.lanl.gov for
comprehensive information about TRANSIMS and related documents.

The results presented here raise a number of questions for further investigation.
First, it would be of interest to characterize the class of fixed regular (context free)
languages for which the regular expression constrained simple path problems are solv-
able in polynomial time. It would also be of interest to provide natural formulation
of other label constrained subgraph problems. For example, what is a natural way to
specify labeling constraints for spanning trees of a graph? A number of possible ways
present themselves; the aim is find ways that are both natural and useful in modeling
practical problems.
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