
Evaluating Non-Square Sparse Bilinear Forms on
Multiple Vector Pairs in the I/O-Model

Gero Greiner and Riko Jacob

Technische Universität München

Abstract. We consider evaluating one bilinear form defined by a sparse
Ny × Nx matrix A having h entries on w pairs of vectors The model
of computation is the semiring I/O-model with main memory size M
and block size B. For a range of low densities (small h), we determine
the I/O-complexity of this task for all meaningful choices of Nx, Ny, w,
M and B, as long as M ≥ B2 (tall cache assumption). To this end, we
present asymptotically optimal algorithms and matching lower bounds.
Moreover, we show that multiplying the matrix A with w vectors has the
same worst-case I/O-complexity.

1 Introduction

We consider the problem of computing w scalars z(i) = y(i)TAx(i), 0 ≤ i ≤ w,
where A is a sparse matrix with h non-zero entries, and all x(i) and y(i) are (dense)
vectors. This is highly related to the matrix vector products Ax(i), 0 ≤ i ≤ w,
and we show that both tasks actually have asymptotically the same complexity
in our model. While, from a traditional point of view, bilinear form and matrix
vector product are easily obtained with a number of multiplications equal to
the number of matrix entries, the sparseness sometimes induces irregular access
patterns that lead to situations where memory access becomes the bottleneck of
computation. Empirical studies show that for the naive algorithm, CPU-usage
can be as low as 10% [6,9].

One way of dealing with this problem is the construction of algorithms where,
instead of CPU-cycles, the movement of data between layers of the memory
hierarchy is optimized. In this paper, we use a slight modification of the I/O-
model [1], the semiring I/O-model with the parameters M and B, denoting the
memory size, and the size of a block, see Section 2 for details. In this model,
Bender, Brodal, Fagerberg, Jacob and Vicari [2] determined the I/O-complexity
of computing the sparse matrix vector product for square matrices. These results
are generalised here to the case of non-square matrices. Furthermore, we extend
the results to the evaluation of multiple products, i.e., the matrix vector products
of multiple vectors with the same matrix. Considering the evaluation of matrix
vector products on multiple vectors is a step towards closing the gap between
sparse matrix vector multiplication and sparse matrix dense matrix multiplication
since the set of w vectors x(i) constitutes a dense Nx × w matrix X.

1. INTRODUCTION

Related work Evaluating the matrix vector product Ax for an N × N ma-
trix A with kN entries has been investigated in [2]. They show that the I/O-
complexity of this task for matrices in the so called column major layout is
Θ
(

min
{
kN
B logM

B

N
max{M,k} , kN

})
1, and Θ

(
min

{
kN
B logM

B

N
Mk , kN

})
for a lay-

out chosen by the program.
The multiplication of two dense matrices has been examined by Hong and

Kung in [5], showing a bound of Θ
(

N3

B
√
M

)
on the number of I/Os. Very recently,

in [4] the multiplication of a sparse matrix with a dense matrix was considered.
For sparse N ×N matrices with kN entries, it is shown that for certain ranges of
k, the performance can be increased by finding denser than average submatrices.

The evaluation of bilinear forms in the I/O-model has been considered as an
optimisation problem in [7]. There it has been shown that an optimal program
for the evaluation of matrix vector products is NP-hard to find, even for B = 1.
In [8], the I/O-complexity of evaluating the bilinear form for a (non-square)
Ny ×Nx matrix with h entries that form a diagonal band, i.e., entries are only
placed near the diagonal, is determined to be Θ

(
h
BM + Nx+Ny

B

)
.

Our results In this work, we consider the case where the number of entries for
each submatrix in A is proportional to the number of rows and columns of the
submatrix. This is possible if the average number of entries per column in A is
some k ≤ Ny

M1−εNεx
with constant ε > 0. For such k, a modification of the proof

of [4] shows that the I/O-complexity of AX for any w ≥ B is Θ
(
wh
B

)
. As a lower

bound, this extends directly to the case of multiplying a sparse matrix with w
vectors, even if the program is allowed to choose the layout of the vectors.

The case of w ≤ B is examined here in detail, forming a bridge between the
results of [2] and [4]. For matrices of the described density (h/Nx ≤ Ny

M1−εNεx
),

we cover all dimensions of A, and products with an arbitrary number of vectors.
However, for all other choices of h, we present upper bounds in form of algorithms.
For certain cases where B/w is small the algorithms are indeed optimal for all
ranges of h. Furthermore, we show that evaluating the bilinear form has the same
I/O-complexity as multiplying vectors with the same matrix.

Theorem 1. Given a matrix A with fixed layout and fixed parameters M and
B. Evaluating w bilinear forms with A has the same semiring I/O-complexity as
evaluating the matrix vector product of A with w vectors if at least ` = Ω

(
hw
B

)
I/Os are required.

This result is explained in Section 3 and allows us to extend the results
from [2] to matrices in row major layout, i.e., where the entries are given in
external memory in a consecutive ordering by their row index, and their column
index to break ties. Moreover, our main results hold for bilinear forms and matrix
vector products, both, in column major and row major layout. Note that for
Theorem 2, the dimensions Nx and Ny have to be swapped if A is given in row
major layout.
1 logb(x) := max{logb(x), 1}

2

1. INTRODUCTION

For the complexity of the task, we are going to prove the following theorems
depending on the layout of the matrix A. Similar to [4], our bounds are only
asymptotically tight if we assume a tall cache, i.e., M ≥ B2. However, this is
only necessary to transpose X for some of the presented algorithms.

Our results for the case that the matrix A is stored in column major layout,
are given in the following theorem.

Theorem 2. Given an Ny×Nx matrix A with h entries in column major layout
and parameters B, M . Assume M ≥ 4B, h/Nx ≤ N ε

y, and logNx ≤ N ε
y for

some 0 < ε < 1. Then, evaluating w bilinear products with A has (worst-case)
complexity in the semiring I/O-model

Θ
(

min
{
h ,

h logNy
logNx

, hB logM
B

min
{
Ny
M ,

NxNy
h

}
+ hw

B logM
B

NxNy
hM

})
unless this term is asymptotically smaller than hw

B .

The terms are obtained by a modification of the proof in [2] for a single
matrix vector multiplication, also keeping track of the different matrix dimensions.
Additionally, the lower bounds of Theorem 3 apply which yields the second term
of the sum.

On the algorithmic side, for very asymmetric matrices A, where the number of
columns is much higher than the number of rows, building a table of tuples with
multiple dimensions of all y(i) vectors can be superior to the direct algorithm.
The direct algorithm simply scans over A and loads for each aij the corresponding
vector elements x(0)

j , . . . , x
(w)
j and y(0)

i , . . . , y
(w)
i to create products.

In [2], an algorithm is presented based on sorting the matrix entries to build
row sums. This sorting approach can be used to initially change the layout of A
to the best-case layout. Then, the sorting algorithm for best-case layout can be
applied for one vector pair after another.

For the best-case layout, i.e., if the algorithm is allowed to choose the layout
of the matrix, the following theorem holds.

Theorem 3. Given an Ny ×Nx matrix A with h entries in best-case layout and
parameters B, M . Assume M ≥ 4B, for Ny ≤ Nx, and h/Nx ≤ 6

√
Ny. Then,

evaluating w bilinear products with A has (worst-case) complexity in the semiring
I/O-model

Θ
(

min
{
hw
B logM

B

NxNy
hM , h , h log(wNxNy logNx

BhM)/ logNx
})

unless this term is asymptotically smaller than hw
B .

All our algorithms require at least hw/B I/Os. In contrast, we do not know
a corresponding lower bound that would hold for all choices of the parameters.
However, if the dimensions are polynomially bounded in each other (which is
expressed using a condition on the density in the lemma), the results of [4] can
be extended to obtain a lower bound of Ω (hw/B) by the following lemma.

3

2. MODEL OF COMPUTATION

Lemma 1. Let A be a sparse Ny × Nx matrix with h non-zero entries for
Nx ≥ Ny. For an average number of entries per column h/Nx ≤ Ny/(M1−εN ε

x)
with constant ε > 0, evaluating w bilinear products over a semiring requires
Ω
(
hw
B

)
I/Os.

The proof of this lemma can be found in [3]. Hence, for a Ny×Nx matrix A with
h non-zero entries, for Nx ≥ Ny but N2ε

x ≤ Ny, and average number of entries
per column h/Nx ≤

√
Ny/M a lower bound of Ω (hw/B) is given.

1.1 Outline

The outline of the paper is as follows: In Section 2, the model of computation is
introduced along with the terminology used in this paper. The main results are
then proven by providing (optimal) algorithms for upper bounding the complexity
in Section 4 and up to constant factors matching lower bounds in Section 5. Due
to size limitations, not all proofs are presented in full detail here, but they can
be found the full version of the paper [3].

2 Model of Computation

We use a combination of the I/O-model described in [1] and the model used in [5],
the so called semiring I/O-model introduced in [2]. It models two layers of the
memory hierarchy, namely a fast memory of limited capacity M called internal
memory. Calculations, namely addition, multiplication, copying, and deletion,
can only be performed on the elements residing in internal memory, whereas the
program inputs and any (intermediate) results are stored on an external memory
(aka disk) of unbounded size which is organised in blocks (aka tracks) of size B.
The I/O cost of a program is the number of transfers of a block between internal
and external memory. Programs are assumed to work for an arbitrary semiring
defining addition and multiplication, i.e., subtraction and division may not be
used. Hence, all intermediate results have one of the following forms: ajkx

(i)
k ,

y
(i)
j ajk, x

(i)
k y

(i)
j and y(i)

j ajkx
(i)
k , for 1 ≤ i ≤ w, j ∈ [Nx], k ∈ [Ny], are referred

to as elementary products, using the notation [N] = {1, . . . , N}. Sums of the
form

∑
k∈S′ ajkx

(i)
k ,
∑
j∈S y

(i)
j ajk, and

∑
j∈S

∑
k∈S′ y

(i)
j ajkx

(i)
k , with 1 ≤ i ≤ w,

S ⊆ [Nx] and S′ ⊆ [Ny], are called partial sums. Altogether, the term canonical
partial result refers to any of these forms. The detailed definition and the argument
leading to this classification can be found in [3]. For the lower bounds we use the
non-uniform notion that an algorithm is a family of programs where the program
can be chosen according to the parameters underlying the problem. By `(A), we
denote the maximum number of I/Os induced by the algorithm A for all choices of
the parameters, unless otherwise noted. In particular, for matrix multiplications,
the parameters are the dimensions, the sparseness, the conformation of the
matrix A, i.e., the position of the non-zero entries in A, the memory size M and
the block size B.

Since we can assume that every program requires at least one I/O, when
writing complexity using O, Θ, or Ω at least 1 is meant.

4

3. TRANSFORMATIONS

3 Transformations

In this section, we discuss how a program that evaluates bilinear forms can be
transformed into one that computes matrix vector multiplications.

Lemma 2. In a normalised semiring I/O program evaluating a bilinear form on
multiple vector pairs, no elementary product is created twice.

For the proof of Theorem 1, we present transformations in both directions in
the following lemmas. Note that the layout of the matrix A is not of concern, it
just has to be the same for both tasks. We state the easy transformation without
a proof:

Lemma 3. If the matrix vector products Ax(i) for 1 ≤ i ≤ w can be computed
for an arbitrary semiring with ` I/Os, then the bilinear forms y(i)TAx(i) can be
evaluated with at most 3` I/Os.

Lemma 4. If the bilinear forms y(i)TAx(i), 1 ≤ i ≤ w can be evaluated in the
semiring I/O-model with internal memory size M and block size B using ` I/Os,
then the w products c(i) = Ax(i) can be computed using 2`+ 4wh/B I/Os with
internal memory size M +B and block size B.

Proof. Here, we will only give a short description of the transformation of a
program. A more detailed analysis can be found in [3].

Let P be a program to evaluate the w bilinear forms using ` I/Os. By Lemma 2,
there is a program P̂ for the same task which computes only canonical partial
results with at most ` I/Os. We can then use P̂ to construct a program for the
matrix vector products. This construction is based on the following idea. During
a simulation of P̂ , canonical partial results are extracted, and temporarily stored
on disk. In a second phase, P̂ is simulated time-reversed, as will be described later
on, and the movement of y(i)

j variables in P̂ can be used to lead the previously
extracted results to the corresponding position in y(i). In the end, the memory
cells, where y(i) is expected for P , constitute c(i).

Construction For the first phase, we create a program PF for the semiring
I/O-model with internal memory size M +B. We use the first M cells in memory
for a simulation of P̂ , and reserve the last B cells (mM+1, . . . ,mM+B) =: B for
further output operations. As soon as B is entirely full, i.e., no element in B is 0,
the block is moved to disk.

During the simulation of P̂ , the following additional operations are performed.
If a computation σ in P̂ performs a multiplication of an element ml = y

(i)
j or

ml = y
(i)
j x

(i)
k with an element ml′ then ml′ is copied into an empty position of B

immediately before σ is performed. Furthermore, whenever in P̂ a computation σ
involves an element ml = x

(i)
k , the result can only be of the form x

(i)
k ajk, x

(i)
k y

(i)
j ,

x
(i)
k (y(i)

j ajk), or x(i)
k (
∑
j∈S y

(i)
j ajk). For the latter two cases, x(i)

k is copied into an
empty cell of B before performing σ. We call these newly created copy operation
snapshot and σ its associated operation.

5

4. ALGORITHMS

The program PF is executed with input A and x(i) as given, but y(i) =
(1, . . . , 1) for all 1 ≤ i ≤ w. For each elementary product created in P̂ , there
are at most two elements copied to B (the corresponding x(i)

k and ajk). Recall
that in P̂ elementary products are only created once. Since there are at most wh
elementary products necessary, PF performs no more than `+

⌈
2wh
B

⌉
I/Os.

For the second phase, we have to time-reverse PF . In this phase, we consider
only the elements that consist of a polynomial containing a y(i)

j , all other elements
are ignored. When time is inverted, naturally an input becomes an output and
vice versa. Internal computation operations are mapped in the following way.
To this end, each copy operation of P̂ that sets mk := ml becomes a sum
operation ml := ml +mk in the time-reversed program PB . Each sum operation
mi := mj +mk in PF becomes a copy operation mj := mk := mi in PB . Delete
operations of PF are simply ignored in PB , i.e., nothing is created. The additional
snapshot operations introduced in PF are only made when an y(i)

j is involved in a
computation operation σ. Considering the different cases of associated operations,
the elements that were extracted in PF are now copied, multiplied, or added into
one of the cells that are accessed by σ.

Correctness Since every canonical partial result that includes some y(i)
j has

an input of the element y(i)
j as its predecessor in PF , in the time-reversed

PB, all created partial results can be transferred to the initial position of y(i)
j .

Furthermore, since all hw elementary products have to be created for the bilinear
product, and an y(i)

j is a predecessor for each, the created vectors c(i), 1 ≤ i ≤ w
are complete, i.e., the summation does not lack summands.

4 Algorithms

Note that all the presented algorithms can be used for both, evaluating matrix
vector products and bilinear forms, by Theorem 1.

4.1 Direct Algorithm

The computation of w ≤ B bilinear forms is possible with O (h) I/Os by con-
sidering the non-zero entries of A in an arbitrary order. For every entry ajk

the elementary products x(0)
k ajky

(0)
j , . . . , x

(w)
k ajky

(w)
j are added to the respective

current partial sums z(0), . . . , z(w). For this to occur only a constant number
of I/Os, the values x(0)

k , . . . , x
(w)
k need to be stored in one block (or at least

consecutively on disk), similarly to y(0)
j , . . . , y

(w)
j . This can be achieved by trans-

posing the matrices X =
[
x(0) . . . x(w)

]
and Y =

[
y(0) . . . y(w)

]
, which takes

O ((Nx +Ny)/B) = O (h) I/Os [1], given the tall cache assumption M ≥ B2.

6

4. ALGORITHMS

4.2 Sorting Based Algorithm

In [2] a sorting based approach for evaluating the product Ax for square matrices
is presented. These algorithms can be extended straightforwardly to the matrix
vector product of a non-square matrix A with one vector x. For column major
layout the vector c := Ax can be created with O

(
h
B logM/B min

{
NxNy
h ,

Ny
M

})
I/Os.

For the best-case layout the algorithm uses O
(
h
B logM/B

NxNy
Mh

)
I/Os. With

slight modifications, this algorithm can also be described for a broader class of
layouts. For this class of best-case layouts, the matrix A is given as a split-up
of its columns into meta-columns where each meta-column is written in row
major layout. Columns of a meta-column have to be continuous, each column is
assigned to only one meta-column, and each meta-columns consist of an arbitrary
number of columns, but at most M − B. Additionally, the number of meta-
columns is at most dNx/Be+ 2 dh/Nye. Since each meta-column consists of no
more than M −B continuous columns, for each meta-column, the corresponding
elements of x can all be loaded into internal memory, and the meta-column
is scanned to create elementary products which are then written back to A.
Afterwards, if Nx/B > h/Ny, meta-columns are merged together using Merge
sort until there are at most h/Ny runs. Since in this case there are no more than
3 dNx/Be meta-columns, O

(
h
B logM/B

NxNy
Bh

)
= O

(
h
B logM/B

NxNy
Mh

)
I/Os are

sufficient. Otherwise, if h/Ny ≥ Nx/B, there are at most 3 dh/Nye meta-columns.
Since meta-columns and runs are in row major layout, with one scan of each
meta-column / run, elements from the same row can be summed together, and
meta-columns / runs become a single column. All created columns can then be
summed into the first column with O

(
h
Ny
· NyB

)
I/Os. Hence, in all cases, the

matrix vector product for a matrix A given in a layout meeting the conditions
described can be determined with O

(
h
B logM/B

NxNy
Mh

)
I/Os.

Multiple Vectors For the evaluation of w matrix vector products, the algo-
rithms can simply be run for each single vector, which increases the running time
by a factor w. However, for column major layout, it can be faster to transform
the layout of A into one belonging to the class of generalized best-case layouts
described above, and then use that algorithm for each single vector.

The transformation of the layout has two cases, depending on the param-
eters. The first case handles situations with Nx ≤ h/(M − B), where the av-
erage column consists of more than M − B already sorted entries. Then the
Nx columns are bottom up merged using the M/B-way Merge sort, each time
reducing the number of meta-columns by a factor of M/B. This is contin-
ued as long as the resulting meta columns have width ≤ M − B, and the
number of meta columns is greater than h/Ny. Hence, the running time of
this merging is O

(
h
B logM/B min

{
M,

NxNy
h

})
I/Os, and there are at most

max {dNx/(M −B)e , dh/Nye} meta-columns that can contain less than Ny/2
entries, i.e., they form a generalised best case layout.

7

4. ALGORITHMS

The second case assumes h/(M −B) ≤ Nx, and mimics the creation of initial
runs of length M −B. The possibility of columns having vastly different number
of entries makes this slightly more involved. First, the columns of A are split
into 2h/Ny continuous groups such that each group contains at most Ny entries.
Then, each group that spans at most M − B columns is transformed into row
major layout using the classical M/B-way Merge sort in O

(
h
B logM/B

Ny
M

)
I/Os

Groups that span more than M − B columns are divided into subgroups that
span at most M −B. This can be achieved by greedily assigning the blocks of a
group to subgroups such that each subgroup spans no more than M −B columns.
Splitting blocks that belong to two columns is possible with O (Nx/M) I/Os.
The subgroups are then transformed into row major layout using Merge sort.
Since there are at most Ny/B blocks per group, this can be done with another
O
(
h
B logM/B

Ny
M

)
I/Os.

Because one block spans at most B columns, each of the subgroups, except at
most one per group, spans at least M − 2B columns. Since we assume M ≥ 4B
in this paper, for each group, there can be at most one meta-column with span
less than 2B. Hence, in the created layout, we have at most Nx/(2B) + 2h/Ny
meta-columns, each spanning at most M −B columns, and the algorithm for the
class of generalised best-case layouts can be applied.

4.3 Table Based Algorithm

For very asymmetric cases of A where Nx � Ny, the construction of tuples of
rows of Y, such that arbitrary dimensions of each vector can be loaded within one
I/O. We present the following algorithms in the setting of evaluating of bilinear
products.

Column Major Layout The bilinear forms y(i)Ax(i) for w vector pairs can
be evaluated with O

(
max

{
wh
B , h

logNy
logNx

})
I/Os as follows. The algorithm starts

by creating a table of all c-tuples of rows of Y in lexicographical order of the row
indices. To this end, define c := min

{⌊
B
w

⌋
− 1,

⌊
logNx
2 logNy

⌋}
such that a c-tuple of

rows of Y does not exceed one block. Since we assume that Y is in column major
layout, it first has to be transposed which is possible with O (wNy/B) I/Os (cf.
Section 4.1). Further, since we assume a tall cache, i.e. M ≥ B2, internal memory
can hold c blocks at a time and one for the output of a created tuple.

A table of all c-tuples has size wcN c
y ≤ wc

√
Nx ≤ wNx, where the last

inequality relies upon c ≤ 1
2 logNx

√
Nx, which is true for all Nx. The table can

easily be created in O (wNx/B) I/Os, a term dominated by the I/Os needed to
read X.

After creating a table of all c-tuples of rows of Y, the algorithm simultaneously
scans the entries of A and the corresponding elements of X. Since we have
M ≥ 4B, we use one block for the scanning of A, one for elements of X, one for
a c-tuple of Y, and the last block to sum elementary results together for each
of the w ≤ B vectors. Throughout the scanning of A, for each c ≤ B entries

8

5. LOWER BOUNDS

ai1,j1 , . . . , aic,jc , the c-tuple containing the corresponding rows i1, . . . ic of Y is
loaded, and elementary products for each pair of vectors are created. These can
be summed immediately into the block reserved for the results. Hence, O (h/c)
I/Os are sufficient to evaluate the w bilinear forms.

Best-case Layout If w < B and Nx ≥ N2
y , the table-based approach for column

major layout can be improved using a different layout of A. In the following, we
assume c ≤ B/w, otherwise the algorithm for column major layout is applied.
Similarly, the matrices X and Y are transposed in the beginning.

Again, we create a table of c-tuples of rows of Y, but for different c. This time,
the matrix A is read in tiles such that each tile contains on average (M −B)/w
entries, and the layout of A reflects these tiles. Using this, a tile can be loaded
and all elementary products can be created while still one free block is available
in internal memory. For a tile of height wc2

B
2NxNy
hM rows and width MB

2wc columns,
we get a performance of

O

h log
(
wNxNy
hBM logNx

)
logNx

 .

The details of the calculations can be found in the full version of the paper [3].

5 Lower bounds

For the lower bounds, we only consider matrix vector products. By Theorem 1
this also implies lower bounds for bilinear products.

5.1 Column Major Layout

The following lower bound is only for single matrix vector products. However,
together with the lower bound for the best-case layout, multiple evaluations are
covered too.

Lemma 5. Computing over an arbitrary semiring the bilinear product with an
Ny ×Nx matrix A with h entries, stored in column major layout has (worst-case)
I/O-complexity for B,M with M ≥ 4B

Ω

(
min

{
h

B
logM

B

Ny
M

,
h

B
logM

B

NxNy
h

, h , hmax
{

1
B
,

logNy
logNx

}})
.

To proof this lemma, the dimensions of A have to be simply replaced in the proof
in [2]. The calculations can be found in [3].

5.2 Best-case Layout

As described in Section 2, for the best-case layout it is up to the program to
choose the layout of A. The proof of Lemma 5 is based on the task of computing

9

5. LOWER BOUNDS

row sums. To obtain a lower bound for the best-case layout, we have to use a
different approach because producing row sums is trivial when using a row major
layout. Therefore, we consider the sequence of configurations of a program and
follow the movement of input variables of X and partial results of Y. Furthermore,
we allow accessing A for free. This can only weaken the lower bound.

We count the number of different matrix conformations that can be handled
by programs for matrix vector multiplication with ` I/Os. For a given program,
the conformation of a matrix can be identified by considering multiplication
operations including input variables, and their results: When there is an input
variable x(i)

j loaded, and it is used to form an elementary product that is a
predecessor of c(i)k , this describes the existence of a non-zero entry aik in A.
Hence, by tracking all copies of input variables x(i)

j and all elements that are
predecessors of a unique result c(i)k (this can be elementary products or partial
sums), and by choosing the positions in a program where multiplications involving
such elements are performed, the conformation of a matrix is uniquely determined.
To do this, it suffices to consider the tracking of elements only for one of the w
matrix vectors multiplication. All these information will be called trace in the
following.

In order to describe the trace, we normalise programs which changes the
number of I/Os only by constant factors. The following normalisation is a variation
of [5, Theorem 3.1].

Lemma 6. Assume there is an I/O program A performing ` I/Os for parame-
ters M and B. Then there is an I/O program B computing the same function
performing at most 3` + M/B I/Os for parameters 2M and B, that works in
rounds: Each round consists of 2M/B input operations, an arbitrary number of
computation operations followed by 2M/B output operations such that after each
round internal memory is empty.

In the following, we consider programs in rounds according to the above
lemma. To determine the traces of input variables and result predecessors in a
round-based program, we consider the transfer of blocks between rounds, i.e. a
block that is output by one round and input by another.

The movements of input variables can be described as follows. For a vector
x(k), we consider the subset TV ,i ⊆ [Nx] of indices of elements x(k)

i in a block i
and trace the copying and deletion of variables in each round. For the trace of
a predecessor of a unique result c(k)j , we abstract from the element itself, and
consider only the index of the result j. Hence, we have the subset TR,i ⊆ [Ny] of
indices of unique result predecessors transferred by block i.

As written before, it suffices to consider the traces for one pair of input and
result vector only. Every block of an I/O can be separated into values belonging
to the w different tasks implied by the different pairs of vectors. Hence, for the
l-th I/O, we have the number u(k)

l of elements belonging to vector pair k. By
averaging we have

∑
0≤l≤` u

(k)
l ≤ B`/w for some k, and we determine the traces

for this pair of vectors in the following.

10

5. LOWER BOUNDS

Describing the traces Because we will describe the traces of programs by
blocks transferred between rounds, we view the input variables as output of
rounds with no cost. Further, we are only interested in lower bounds below h
such that we can assume ` ≤ h. Let R be the total number of rounds. For each
block that is an output of a round, and input of another round there are R2 ≤ h2

possibilities to choose the origin and destination of the block. Because there are
`/2 blocks transferred, h` is an upper bound on the total number of possible
macroscopic structures of how blocks travel between rounds.

Further, the values of u(k)
l can be chosen which yields at most B` possibilities.

Every traced element that is transferred by a block can terminate at the destina-
tion, i.e., it is not copied further. Hence, there are 2`B/w choices of terminating
elements. Each of the si non-terminal incoming elements of round i can appear
up to M/B times in the outgoing blocks, namely once per outgoing block. Hence,
there are

(
siM/B
ti

)
possibilities to choose the ti outgoing elements of round i, for

some ti ≥ si. Since we have
∑

1≤i≤R ti ≤ B`/w, the total number of possibilities
for this is bounded by

(
M`/w
B`/w

)
.

Finally, we have to specify the subset of possible multiplications that are
actually performed. To this end, letWi be the number of partial results output by
round i. Together with the number of vector variables Ui loaded in round i, there
are

∑
i≤` BM

UiWi possible multiplications with matrix entries during the program.
Additionally, we have the conditions Ui ≤M , Wi ≤M , and

∑
i≤` BM

(Ui +Wi) ≤
`B
w . The term

∑
i≤` BM

UiWi is hence maximised for Ui = Wi = M , for some
indices i ∈ I, I ⊆ [` BM] with |I| = `B

2Mw , and the size of the set of possible
multiplications is at most `B

2Mw ·M
2 = `MB

2w . From this, we select a subset of
size h, yielding no more than

(
`MB/(2w)

h

)
possibilities.

Calculations With the above discussion, we get(
NxNy
h

)
≤ h` ·B` · 2`B/w ·

(
`M/w

`B/w

)
·
(`MB

2w

h

)
.

W.l.o.g. we assume Nx ≥ Ny. Define k = h/Nx, i.e., the average number of

entries per column. Rearranging terms yields ` ≥ h log
Ny
k −log e`MB

wh

log h+logB+B
w (1+log eM

B)
. In the

following, we can assume h ≥M ≥ B, and thus `
h ≥

log
“
Ny
k ·

wh
e`MB

”
2 log h+B

w (log 6M
B)

. Otherwise,

if h ≤M , the task is trivial and a scanning bound of Ω
(
h
B

)
for reading A suffices.

Applying Lemma B.2 in [2] (x = `/h, t = 2 log h+ B
w (log 6M

B), s = wNy
ekMB), and

estimating t ≥ logNx + 3Bw , we get 2`
h ≥

log
“
wNy
ekMB ·(3B

w +logNx)
”

2 log h+B
w (log 6M

B)
. Now, it remains

to distinguish according to the leading term in the denominator.

Case 1 (2 log h ≤ B
w (log 6M

B)): `
h ≥

log
Ny
kM

4Bw (log 6M
B)

Using M > 4B yields ` ≥
hw
B

log
Ny
kM

4· 32 log M
B

= hw
6B logM

B

Ny
kM which matches the sorting based bound.

11

6. ACKNOWLEDGEMENT

Case 2 (2 log h > B
w (log 6M

B)): 2`
h ≥

log
“
wNy
BekM logNx

”
4 log h matches the table based

bound. Recall that the table based upper bound requires Nx ≥ N2
y .

However, for Nx ≤ N2
y , a linear lower bound is obtained as follows. Assuming

k ≤ 6
√
Ny, B ≥ 16w, and Nx ≥ 230 implies Ny

BkeM ≥
8
√
Nx (for details see [3]),

such that 2`
h ≥

log
wNy
BekM

2 log h ≥ log 8
√
Ny

4(1+1/2) logNy
≥ 1

48 .
Otherwise, if Ny ≤ Nx < 230, also h is bounded from above, and thus, the

task is trivially possible in O (1). Together with the presented algorithms and
the lower bound from Lemma 1, this discussion yields Theorem 3. Furthermore,
together with the lower bounds for column major layout, the proof of Theorem 2
is completed.

6 Acknowledgement

Thanks to Dan Roche and Clement Pernet for asking the question about multi-
plying many vector pairs. Many thanks to an anonymous referee for suggestions
on an earlier draft of this article.

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

2. M. A. Bender, G. S. Brodal, R. Fagerberg, R. Jacob, and E. Vicari. Optimal sparse
matrix dense vector multiplication in the I/O-model. In Proceedings of SPAA ’07,
pages 61–70, New York, NY, USA, 2007. ACM.

3. G. Greiner and R. Jacob. Evaluating non-square sparse bilinear forms on multiple
vector pairs in the I/O-model. Technical report, Technische Universität München,
June 2010.

4. G. Greiner and R. Jacob. The I/O complexity of sparse matrix dense matrix
multiplication. In Proceedings of LATIN’10, volume 6034 of Lecture Notes in
Computer Science, pages 143–156. Springer, 2010.

5. Hong, Jia-Wei and H. T. Kung. I/O complexity: The red-blue pebble game. In
Proceedings of STOC ’81, pages 326–333, New York, NY, USA, 1981. ACM.

6. R. Jacob and M. Schnupp. Experimental performance of I/O-optimal sparse matrix
dense vector multiplication algorithms within main memory. Technical report,
Technische Universität München, June 2010.

7. T. Lieber. Combinatorial approaches to optimizing sparse matrix dense vector
multiplication in the I/O-model. Master’s thesis, Informatik Technische Universität
München, 2009.

8. F. F. Roos, R. Jacob, J. Grossmann, B. Fischer, J. M. Buhmann, W. Gruissem,
S. Baginsky, and P. Widmayer. Pepsplice: cache-efficient search algorithms for
comprehensive identification of tandem mass spectra. Bioinformatics, 23(22):3016–
3023, 2007.

9. R. W. Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels. PhD thesis,
University of California, Berkeley, Fall 2003.

12

