
Multistage Methods for Freight Train Classification?

Riko Jacob1, Peter Márton2, Jens Maue3, and Marc Nunkesser3

1 Computer Science Department, TU München, Germany

jacob@in.tum.de

2 Faculty of Management and Computer Science, University of Žilina, Slovakia

peter.marton@fri.uniza.sk

3 Institute of Theoretical Computer Science, ETH Zürich, Switzerland

{jens.maue|marc.nunkesser}@inf.ethz.ch

Abstract. In this paper we study the train classification problem. Train classifi-

cation basically is the process of rearranging the cars of a train in a specified order,

which can be regarded as a special sorting problem. This sorting is done in a spe-

cial railway installation called a classification yard, and a classification process is

described by a classification schedule.

In this paper we develop a novel encoding of classification schedules, which allows

characterizing train classification methods simply as classes of schedules. Applying

this efficient encoding, we achieve a simpler, more precise analysis of well-known

classification methods. Furthermore, we elaborate a valuable optimality condition

inherent in our encoding, which we succesfully apply to obtain tight lower bounds for

the length of schedules in general and to develop new classification methods. Finally,

we present complexity results and algorithms to derive optimal schedules for several

real-world settings. Together, our theoretical results provide a solid foundation for

improving train classification in practice.

Keywords: rail cargo, shunting of rolling stock, sorting algorithms, train classification

1 Introduction

In real-world railways, a freight train consists of an engine and a number of railroad cars.

Such a train does usually not commute between some fixed destinations, and its composi-

tion does not exist for a long period of time. Rather, freight trains are flexibly assembled

from available cars on a daily basis according to customer demands, a process which is

called train classification. Freight trains may be very long, their cars can have particular

sorting requirements, or the trains may have to be assembled from cars originating from

different stations, which causes the classification process requiring too many resources to

? This work was partially supported by the Future and Emerging Technologies Unit of EC (IST

priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL). This work was par-

tially supported by the Slovak grant foundation under grant No. 1-4057-07 (project “Agent

oriented models of service systems”).

2 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

be performed in a local station area. For this reason, there are centralized installations of

railway tracks and switches, called classification yards, that exclusively serve the purpose

of collecting, sorting, and reassembling freight cars in trains.

Train classification often is the bottleneck in freight transportation, and classification

yards were designed decades ago to accommodate traffic requirements substantially dif-

ferent from those today. Expanding existing classification yards would require a lot of

space, but, usually, there is simply no space available in a yard’s periphery, particularly in

densely populated areas such as Middle Europe. Furthermore, a redesign would make it

necessary to reduce a yard’s throughput or even completely stop it for some time period,

which would impair the operation of a whole freight network since every yard represents

a node in a densely connected network of yards. An obvious way to improve the perfor-

mance of existing classification yards is to optimize the classification process itself. To this

end, we revisit the most common classification methods and develop a completely novel

encoding of train classification schedules. This encoding might be of general interest as it

yields a consistent presentation of schedules and allows an efficient analysis and compar-

ison of all existing—and any future—multistage classification methods. By means of our

new encoding, we characterize optimal classification schedules and analyze the underlying

algorithmic questions.

receiving
yard

classification
bowl

departure
yard

H

Fig. 1. A common classification yard with receiving yard, hump (H), classification bowl, and

departure yard.

The typical layout of a classification yard, shown in Figure 1, consists of a receiving yard

where incoming trains arrive, a classification bowl where they are sorted, and a departure

yard where outgoing trains are formed. Many yards feature a hump, a rise in the ground,

with a hump track. Cars are brought from the receiving yard to the hump track, on which

they are slowly pushed over the hump, so that the cars accelerate by gravity and roll in on

the tracks of the classification bowl. These yards are called hump yards in contrast to flat

yards that require cars to be hauled by shunting engines. A typical classification bowl is

shown in Figure 2(a), in which the classification tracks are connected to the departure yard

at the end opposite the hump. Not all yards have receiving and departure tracks, some

have single-ended classification bowls as in Figure 2(b), while others have a secondary

hump at their opposite end as in Figure 2(c). However, almost all yards have the layout

of Figure 2(b) as a substructure.

Multistage Methods for Freight Train Classification 3

hump
track

hump

to depar-
ture yard

classification tracks

(a) double-ended yard

hump
track

hump

classification tracks

(b) single-ended yard

secondary
hump

to departure
yard or rail
network

(c) advanced layout

Fig. 2. Some common classification bowl layouts.

1.1 General Process of Train Classification

In the following description of the overall classification procedure, we consider a hump yard:

inbound trains are collected in the receiving yard on a set of tracks called receiving tracks,

from where they are moved to the hump track. There, the cars of the train are disconnected

and the complete train is pushed over the hump by a shunting engine, sending the cars

through a series of switches, separately guiding each car on a preassigned classification

track of the classification bowl. This process is called a roll-in operation. Then, the actual

sorting process is performed to produce outbound trains as outlined in the following two

paragraphs. Finished trains are brought to the departure yard where they are finally picked

up by freight locomotives to leave the classification yard.

Regarding the actual classification procedure, there are essentially two modes of op-

eration for classification yards, which are typically performed in parallel or alternatingly:

single-stage and multistage sorting. In single-stage sorting, each classification track usu-

ally corresponds to a common destination, such as a remote classification yard. Departing

trains are built by collecting the cars from one or several tracks1 and coupling them into

trains that leave the bowl to the departure yard—if there is any. Single-stage sorting is

normally performed for large volume traffic, e.g., traffic between classification yards, and

the cars of the created trains are in arbitrary order.

For traffic directly going to its final destination, the order requirements for outgoing

trains are more complex. Such trains usually serve many destinations, so single-stage sort-

ing would require too many classification tracks. Furthermore, there may be only a few cars

for each destination, so the classification tracks would not even be fully occupied, yielding

a huge amount of idle track space. For both reasons, single-stage sorting is not applicable

here; instead, multistage sorting is applied. This method requires more movement of cars
1 In Europe it is common practice to collect each outbound train on a single track. In the U.S. the

lengths of many freight trains exceed the length of the classification bowl. Therefore, outbound

trains are collected from several tracks. The latter model is also assumed in [10].

4 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

but allows much more flexible and efficient use of the tracks than single-stage sorting. In

multistage sorting, after the incoming trains have been pushed over the hump (primary

sorting), a shunting engine repeatedly pulls back the cars from a given track (pull-out

operation) over the hump on the hump track. These cars are then pushed over the hump

again, so that again each car can be independently routed through the switches to any

classification track. This process is iterated until all outgoing trains have been formed.

This part of the sorting procedure is called secondary sorting. If a classification track is

used only for receiving cars of an outgoing train, but the cars on it are never pulled back

to the hump track, it is called train formation track.

1.2 Related Work

Multistage methods are presented from an engineering point of view in a number of pub-

lications from the 1950s and 1960s [2, 3, 13, 16, 21, 22, 25]. Krell [21, 22] compares the two

basic multistage methods sorting by train and the simultaneous method togwther with two

improvements of the latter, called triangular sorting and geometric sorting, respectively.

(We will describe these four important methods in further detail in Section 4 by means

of our representation of classification schedules introduced in Section 3.) Krell also in-

cludes an example showing how to deal with a restricted number of available classification

tracks, which anticipates our generalized method for this kind of restriction as introduced

in Section 5. Sorting by train and the simultaneous method had been described earlier in

a different fashion by Flandorffer [16] and by Pentinga [25]. Boot [3] describes the opera-

tional constraints when the simultaneous method was introduced in France, Belgium, and

The Netherlands. Other practical considerations regarding its real-world implementation,

such as required yard layouts or arrival and departure times of freight trains, can be found

in [22] and [13].

Some of these methods were again considered by Siddiqee [26] in 1972 and in a series of

publications in the 1980s by Daganzo, Dowling, and Hall [6–9]. Siddiqee summarizes the

main characteristics of the four methods mentioned above with regard to their applicability

under different conditions [26]. The author recommends which method is suitable under

which circumstances, taking into account the number and length of the tracks, the number

and sorting requirements of outgoing trains, and the finishing times of the ougoing trains.

In [9] the triangular method is analyzed with regard to the differences when applied in

hump and flat yards. Triangular sorting and sorting by train are compared in a practical

example in [6] including the concept of treating several outgoing trains as one, which the

authors call convoy formation [6]. [7] and [8] introduce a variant of these two methods,

called dynamic blocking, which reduces the number of required tracks for homogeneous [7]

and heterogeneous traffic [8], respectively.

Baumann [2] explains the design aspects concerning multistage train formation for the

example of the classification yard Zürich-Limmattal in Switzerland. The resulting layout

Multistage Methods for Freight Train Classification 5

features a secondary hump similar to Figure 2(c), which is, however, currently not used

due to cost and organizational reasons [19].

For single-stage sorting, more theoretical research has been done than for multistage

sorting in the last decade. An algorithmic single-stage sorting problem was studied by

Dahlhaus et al. [10, 11]. For their train classification model, they give a notion of presort-

edness of the incoming train which is used to improve the classification process. Several

degrees of freedom in the order requirement of the outbound train are regarded in [11],

while finding an optimal schedule is shown to be NP-hard in [10] for the output require-

ment in which cars of the same type must appear consecutively but the order of types is

free.

A systematic framework for classifying single- and also multistage classification meth-

ods is given by Hansmann and Zimmermann [18]. For the case of a limited number of

classification tracks and an extended output requirement which handles several cars of the

same type, they independently obtain the result we give in Section 5. Furthermore, the

authors show for a specific multistage method that finding an optimal schedule is NP-hard

for the output specification of [10] mentioned above.

The four methods mentioned in the first paragraph of this section are still the most

widely applied multistage methods today, and they have been studied quite thoroughly in

the engineering literature. We reconsider these methods from a theoretical point of view

in Section 4, including a simpler description and more precise analysis.

1.3 Our Contribution

The main contribution of this paper is a novel encoding scheme for train classification

schedules. This scheme offers an efficient and consistent representation of classification

schedules, which we apply to analyze and prove certain properties of existing train clas-

sification methods. Secondly, we introduce the number of pull-out steps as an accurate

yet very simple cost function for classification schedules, while we still take account of the

traditional cost measure of bounding the number of roll-ins for every car as our secondary

objective. Together with our encoding and a notion of presortedness for incoming trains,

we obtain optimal schedules for sufficiently large yards, which implies in particular that it

is impossible to outperform these schedules on real, restricted yards. We derive schedules

for a restricted number of classification tracks. For tracks of limited length, we show the

problem is NP-hard, give a 2-approximation and an exact algorithm for a special case.

The main results are summarized in the following list:

– concise encoding of classification schedules (Section 3)

– provably tight lower bound for length of schedules (Theorem 2)

– application of novel encoding yielding a simpler, more precise analysis of well-known

multistage methods (Section 4)

– polynomial-time algortihm to produce optimal schedules for yards with a limited num-

ber of tracks (Section 5)

6 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

– NP-hardness of general problem with tracks of bounded length (Section 6.1)

– polynomial-time 2-approximation for tracks of bounded length (Section 6.2)

– exact algorithm for tracks of bounded length if the incoming train is not assumed to

be presorted (Section 6.3)

1.4 Outline

In the following section we introduce the above described problem and concepts formally,

including our objective. In Section 3 we present our novel encoding for representing clas-

sification schedules, which allows us to concisely describe and analyze the above methods

in Section 4. We proceed with analyses of new problem variants in Section 5 (restricted

number of classification tracks) and Section 6 (tracks of restricted capacity). In Section 7

we briefly discuss secondary objectives and conclude with practical remarks and future

work in Section 8.

2 Model and Notation

In this section we introduce the terminology and notation used in our model. We assume

the common yard layout of a single- or double-ended classification bowl with a single hump

as shown in Figure 2(b) and Figure 2(a), where the classification tracks are denoted by

θ1, . . . , θW . We denote their number by W , the width of the yard. We further assume that

all tracks have the same length and denote by Cmax the capacity of the yard, i.e., the

maximum number of cars that fit on a track.

Any car τ will be represented by some positive integer τ ∈ N and a train T by an

(ordered) k-tuple T = (τ1, . . . , τk) of cars τi ∈ N, i = 1, . . . , k. Note that the engine,

depending on the situation, may be at either end of the train and is not included in

this definition. The number of cars k will also be called the length of T . In our model,

there is a set of ` incoming trains and m order specifications corresponding to m outgoing

trains, and our goal is to sort the incoming cars according to the given specifications to

obtain the outgoing trains. The sets of incoming and outgoing trains are together called

a classification task, for which we make the following assumptions: for the ` incoming

trains T k = (τk1 , . . . , τ
k
n′

k
), k = 1, . . . , `, where n′k denotes the length of the kth incoming

train and n :=
∑`
k=1 n

′
k the total number of cars, we assume τkj ∈ {1, . . . , n} and that all

cars are distinct. Without loss of generality (w.l.o.g.), we assume that concatenating the

outgoing trains in their given order yields the sequence (1, . . . , n)—otherwise, the incoming

cars can be renamed; in other words, if nk denotes the length of the kth outgoing train,

k = 1, . . . ,m, the kth outgoing train is given by (1 +
∑k−1
i=1 ni, . . . ,

∑k
i=1 ni). Hence, an

ordered set of m outgoing trains can be defined uniquely by an m-tuple n1, . . . , nm.

For any train T = (τ1, . . . , τk), car τ1 is called the head of T , and, for any pair of cars

τi, τj of T with i < j, we say τi is in front of τj . For a train T located on the hump track,

the head of T represents the car that is closest to the hump. For a train T located on some

Multistage Methods for Freight Train Classification 7

classification track, its head represents the car closest to the dead-end. Thus, the train in

Figure 3(b) is represented by (6, 1, 4, 2, 3, 5) and the train in Figure 3(j) by (1, 2, 3, 4, 5, 6).

Any multistage sorting method consists of a sequence of alternating roll-in and pull-out

steps. In order to specify a single pull-out step, it suffices to specify the classification track

from which to pull out all cars. Note that always all cars on a track are pulled out; still,

pulling only some cars can easily be achieved in this model by first pulling all cars and

directly rolling in some of them to the same track. To fully specify a roll-in operation,

however, a target track must be given for every car on the hump track. We call such a

pair of operations a sorting step or simply step. An initial roll-in followed by a sequence

of h sorting steps is called a classification schedule of length h. A classification schedule is

called valid for a classification task if it transforms the given set of incoming trains into

the set of outgoing trains. As mentioned before, our main objective will be the number of

sorting steps, while the traditional objective, the number of cars rolled in, is studied in

Section 7.

Definition 1 (Train Classification Problem). Given a classification task of ` incom-

ing trains T i = (τ i1, . . . , τ
i
n′

i
), i = 1, . . . , `, and the lengths (n1, . . . , nm) of the m outgoing

trains, the train classification problem is the problem of finding a valid classification sched-

ule of minimum length. We call such a classification schedule optimal.

Note that, according to the definitions above, the term length may refer either to the

number of sorting steps of a schedule or to the number of cars of a train. In the remainder

of this paper, the respective meaning will always be clear from the context. Moreover, we

will sometimes abbreviate statements referring to pull-out steps, such as abbreviating “the

cars of a track are pulled out” to “a track is pulled (out)”.

3 Encoding Classification Schedules

In this section we introduce an encoding of classification schedules by sets of bitstrings.

Conversely, we show how to interpret such a set as a schedule, which yields a bijective

relation between sets of bitstrings and classification schedules. Furthermore, a notion of

presortedness is introduced for incoming trains, which allows one to deduce optimal sched-

ules. We first consider the case of sorting a single incoming train into a single outgoing train

in Section 3.1, which is extended to the general case in Section 3.2. Both sections assume

classification yards without any restrictions on the number or capacities of the classfication

tracks. (Restricted settings are considered in later sections.) This section concludes with

practical notions on our concept of presortedness in Section 3.3.

3.1 Single train

We start by introducing a simplified view of the tracks. After a track has been emptied,

cars may be sent to it in subsequent steps, so one physical track might be filled and

8 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

emptied more than once during a classification procedure. We model this by introducing

logical tracks that we define such that pull-out i is performed on logical track i. This means

that the logical tracks are pulled out in the order (1, 2, . . . , h). For a classification schedule

of length h, the mapping from the h logical tracks to the W physical tracks is given by a

sequence (θi1 , . . . , θih) of physical track names, called the track sequence.

The course of a single car τ can now be represented by an h-bit binary string b = bh . . . b1,

bi ∈ {0, 1}, where bi = 1 if and only if τ visits the i-th (logical) track. (In the following,

these strings are interpreted as binary representations of non-negative integers with bh

being the most significant bit of b; in the usual depiction, this corresponds to using the

tracks from right to left.) This representation uniquely defines the course of car τ : τ is

pulled out in the i-th step if bi = 1 simply because it has been sent there in some earlier

step. Then, it is rolled in on the k-th track given by k := minj>i,bj=1 j, i.e., the lowest

bit bk = 1 left of i. If bj = 0 for all j > i, then τ is sent to the train formation track of

its target train. The track for the initial roll-in is given by the least significant bit bi with

bi = 1. The complete schedule for a train of n cars can now be represented by a binary

encoding of length h given by B = (b1, . . . , bn), a sequence of binary numbers (bitstrings),

such that bj = bjh . . . b
j
1 encodes the course of the jth car, j = 1, . . . , n. We will always

use superscripts to refer to the bitstring of a car, e.g., bj is the bitstring of the jth car of

some train. Subscripts will refer to a single bit of some bitstring, e.g., the ith bit of some

bitstring b is referred to by bi.

An example is given in Figure 3, which shows a classification procedure and the binary

representation of its schedule for a single incoming train of six cars. There are more

classification tracks than schedule steps, so the above mentioned mapping from logical to

physical tracks does not use any physical track more than once. Note that in our model

the classification process is not yet finished in situations (e) or (g); a valid outgoing train

is obtained only when the situation in (j) has been reached.

We will repeatedly use the following ordering of bitstrings in this section: let b =

bh−1 . . . b0 and b′ = b′h′−1 . . . b
′
0 be two bitstrings of lengths h and h′, respectively, and

let x =
∑h−1
i=0 2ibi and x′ =

∑h′−1
i=0 2ib′i be the integers corresponding to these bitstrings.

Then, if x < x′, we say that b is smaller than b′, denoted by b < b′. In other words, we

order bitstrings by the order of the integers they represent.

The following lemma shows how to read the binary representation of schedules: if two

cars have different bitstrings, the car with the smaller bitstring will be located in the target

train at a position closer to the head of the train. If two cars have the same bitstring, they

will not swap their relative order.

Lemma 1. Let B = {b1, . . . , bn} be the binary encoding of a classification schedule for an

incoming train T = (τ1, . . . , τn). Two cars τi and τj, i < j, swap their relative position if

and only if bi > bj.

Proof. If bj < bi, let k be the most significant index with bjk = 0 and bik = 1. Car τi is

sent to some track θnext in sorting step k. As bj` = bi` for all ` > k, car τj was already sent

Multistage Methods for Freight Train Classification 9

1 0 0

0 1 0

0 0 1

0 1 1

0 0 0

1 0 1

4

2

5

3

1

3

0

5

2

4

1

6

τ6

τ5

τ4

τ3

τ2

τ1

(a)

5

3

2

4

1

6

θ1θ2θ3θ6

(b)

θ1θ2θ3θ6

1 5 3 6

4

2

2

4

1

3

5

6

(c)

θ1θ2θ3θ6

2

4

6351

2

4

6

(d)

θ1θ2θ3θ6

351

6 42

6

4

2

(e)

θ1θ2θ3θ6

6

5

4

3

2

1

4

3

(f)

θ1θ2θ3θ6

6

5

2

1

4

4

3

3

(g)

θ1θ2θ3θ6

1

2

3

4

6

5

6

5

(h)

θ1θ2θ3θ6

1

2

3

4

6

6

5

5

(i)

θ1θ2θ3θ6

6

5

4

3

2

1

(j)

Fig. 3. A classification procedure for h = 3 and n = 6, using track θ6 for the output train. The

encoding is shown in (a), the input train in (b). (c)–(j) show the consecutive situations during

the procedure, always pulling out the cars of the rightmost occupied track.

to θnext in a previous step, so τj appears at a position in front of τi on θnext. For the same

reason, the two cars will not swap their relative order at any step later than k, so τj ends

up on the output track at a position in front of τi in the outgoing train.

Conversely, if bj > bi, swapping the roles of bi and bj in the above argument yields

that τi ends up in the outgoing train at a position in front of τi, so their order has not

swappped. Finally, if bi = bj the two cars will go exactly the same course and end up in

the same order as in T . 2

In the following theorem, we show that there is a bijection between valid classification

schedules and binary encodings with a special property.

Theorem 1. Let T = (τ1, . . . , τn) be an incoming train, and let B = (b1, . . . , bn) be the

binary encoding of a classification schedule with each bi being a bitstring of length h,

i = 1, . . . , n. In a classification yard of sufficient width and capacity, B represents a valid

10 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

schedule of length h for T if and only if the following properties are both satisfied:

For all i, j ∈ {1, . . . , n} if i < j ∧ τi > τj then bi > bj . (P1)

If bi > bj then τi ≥ τj . (P2)

Proof. Property (P1) states that if two cars need to be swapped (i < j and τi > τj) they

are swapped, which follows from Lemma 1. If bi > bj car τj ends up in front of car τi,

irrespective of their prior order. This is correct if τi ≥ τj . Therefore, by property (P1) cars

that need to change their relative positions do so. Together, these two properties imply

the validity of the schedule. 2

As a consequence of the above theorem, an optimal schedule corresponds to a binary

encoding B of minimum length h that satisfies properties (P1) and (P2). To construct an

optimal schedule, we must take the shortest possible bitstrings, so we need to use as few

different bitstrings as possible. Therefore, we want to know which cars of the incoming

train can get the same bitstring, which leads to the following notion of presortedness.

Definition 2 (Chains). Given an incoming train T = (τ1, . . . , τn), a pair of cars τj , τk
is called a break if j < k and τj = τk + 1; in other words, if two cars τj, τk appear

consecutively in the outgoing train but are in the wrong order in the incoming train, they

are called a break. The set of breaks of T uniquely decomposes each train into maximal

subsequences of cars in the correct order; such a subsequence is called a chain, and the set

of chains can be ordered ascendingly by their first elements.

For example, train T = (9, 4, 5, 7, 1, 2, 8, 6, 3) uniquely decomposes into the disjoint chains

c1 = (1, 2, 3), c2 = (4, 5, 6), c3 = (7, 8), and c4 = (9), which we call the chain decomposition

of T .

By Definition 2 all cars of a chain are in the correct relative order with respect to

the outgoing train, so, by Lemma 1, these cars can get the same bitstring. The following

lemma shows how to assign bitstrings to chains.

Lemma 2. Let T = (τ1, . . . , τn) be an incoming train and let B = (b1, . . . , bn) be a valid

schedule for T . If two cars τi < τj belong to different chains, then bi < bj.

Proof. If i > j, then τi and τj must swap their relative order since τi < τj , so bi < bj must

be satisfied by Lemma 1. If i < j, then there is a car τx with τi < τx < τj and either x < i

or x > j. (Otherwise, τi and τj would be in the same chain.) If x < i, then bi < bx and

bj ≥ bx by Lemma 1, so bi < bj . Similarly, if y > j, then bj > by and bi ≤ by by Lemma 1,

so bi < bj . 2

The above assignment of bitstrings to chains finally yields the main result of this

section, which is summarized in the following theorem.

Theorem 2 (optimal schedules). Let T = (τ1 . . . τn) be a train of length n and let c be

its number of chains. In a classification yard of sufficient width and capacity, the optimal

classification schedule B for T has length h = dlog2 ce.

Multistage Methods for Freight Train Classification 11

Proof. As shown above, in a valid schedule cars of the same chain can be assigned the same

bitstring. Hence, c bitstrings are sufficient for a valid assignment of bitstrings to cars, so

h ≤ dlog2 ce as there are 2h different bitstrings of length h. Conversely, by Lemma 2, cars

of different chains must be assigned different bitstrings. Thus, at least c different bitstrings

are required for a valid schedule, so the length of any valid schedule satisfies h ≥ dlog2 ce.
2

This result can be extended to more complex objective functions as explained in Sec-

tion 7.

3.2 Multiple Trains

Any real-world classification task involves multiple incoming and multiple outgoing trains.

Once the order of the incoming trains has been determined, such a classification task can

be solved by separately solving, for each outgoing train, one classification task of a single

incoming and single outgoing train. The individual solutions can then just be appended,

which is shown in the following section. In the subsequent section, we deal with choosing

an optimal order of multiple incoming trains.

Multiple Outgoing Trains In the following theorem, the sequence of incoming trains

in a fixed order is regarded as a single incoming train.

Theorem 3. For a classification yard of unrestricted width and capacity, let T = (τ1, . . . , τn)

be an incoming train, and let m outgoing trains be given by their lengths (n1, . . . , nm).

Furthermore, let Ti be the subsequence of T corresponding to the ith outgoing train,

i = 1, . . . ,m, and let Bi be the optimal schedule for the task of sorting Ti into the ith

outgoing train, i = 1, . . . ,m. The length |B| of an optimal schedule B for the sorting task

given by T and (n1, . . . , nm) is |B| = max
1≤i≤m

|Bi|.

Proof. Every outgoing train has a separate train formation track, so if two cars belong to

different chains with respect to different outgoing trains, their relative order is irrelevant

during the whole classification process. Hence, they can be assigned the same bitstring. In

the optimal schedule B, every car can thus be assigned to the bitstring it is assigned to in

its respective schedule Bi, artificially increasing the length of the bitstring to max
1≤i≤m

|Bi|
by adding leading zeros. 2

The theorem statement does not change for classification yards with a restricted number of

tracks as discussed in Section 5. For tracks of restricted capacity as discussed in Section 6,

however, the theorem does not hold.

Multiple Incoming Trains We have assumed a fixed order of the incoming trains so

far. This assumption is reasonable in most practical cases where the incoming trains arrive

distributed over time. Assuming a single outgoing train, changing the order of incoming

trains, however, may change the number of breaks in the resulting sequence of incoming

12 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

cars. Hence, if the order can be chosen freely, the problem of choosing an optimal order of

incoming trains arises.

Definition 3. Given ` incoming trains Ti = (τ i1, . . . , τ
i
n′

i
), i = 1, . . . , `, OPT-PERM is

defined as the problem of finding a permutation π that minimizes the number of breaks in

the concatenation Tπ(1) · · ·Tπ(`) of the incoming trains.

Below, Lemma 3 shows the problem OPT-PERM is equivalent to a special minimum

feedback arc set problem. The general minimum feedback arc set problem (MinFAS) is

defined in the following way: given a directed graph G = (V,E), find a linear arrangement

π(V) of V that minimizes the number of edges (u, v) ∈ E with π(u) > π(v). Put less

formally, find an arrangement of nodes that minimizes the number of backward edges. A

detailed survey of feedback arc set problems can be found in [15].

For multiple incoming trains, breaks may occur between two cars of the same incoming

train (which we will call internal breaks) or between two cars of different incoming trains

(external breaks). This is summarized in the following definition which is used in the proof

of Lemma 3 below.

Definition 4. Let T = (T 1 · · ·T `) be the concatenation of ` incoming trains T i = (τ i1, . . . , τ
i
n′

i
),

i = 1, . . . , `, and let p = (τ ix, τ
j
y), i, j ∈ {1, . . . , `}, be a break of T , i.e., τ ix = τ jy + 1 and

either i < j or i = j and x < y. If i < j, then p is called an external break between T i

and T j. If i = j, then p is called an internal break of T i.

The following lemma finally shows the equivalence between OPT-PERM and MinFAS in

a special class of graphs.

Lemma 3. There is a one-to-one correspondence between OPT-PERM and MinFAS for

directed multigraphs the edges of which form an Eulerian path.

Proof. We first show how to transform OPT-PERM from Definition 3 into a minimum

feedback arc set instance G = (V,E). Each incoming train T i is mapped to a node n(T i).

For each pair of cars τk ∈ Tα, τj = τk + 1 ∈ T β , we add a directed edge (n(Tα), n(T β))

to E. Traversing the sequence of cars in this way, we add exactly n− 1 edges, potentially

self-loops, to G, and these edges form an Eulerian path by the construction. We remove

the self-loops and still have an Eulerian path. If π is any permutation of incoming trains

and T denotes the resulting incoming sequence of cars, the number of external breaks of

T equals the number of arcs pointing backwards in the linear arrangement π(V). Since

the number of internal breaks of T does not change by altering the order of incoming

trains, a permutation of trains minimizing the total number of breaks corresponds to an

arrangement of nodes that minimizes the number of backward arcs.

For the other direction, the following construction obviously transforms any multigraph

with an Eulerian path into an instance of OPT-PERM with the same relation of the

objective functions: for each node n ∈ V , we introduce an incoming train T (n). Then, we

walk along the Eulerian path P = (ni1 , . . . , nim) and add for each nij ∈ P a car j to train

T (nij). 2

Multistage Methods for Freight Train Classification 13

To the best of our knowledge, the complexity status of MinFAS in such graphs is open.

By a lemma of Newman, Chen, and Lovász [24, Theorem 4], however, a polynomial al-

gorithm for OPT-PERM would lead to a 16
9 -approximation algorithm for MinFAS in

general graphs, substantially improving over the currently best known O(log n log log n)-

approximation [14].

3.3 Groups and Blocks

Another important practical complication concerns groups and blocks that occur in real-

world classification. These concepts are closely connected to presortedness of incoming

trains, to sorting specifications of outgoing trains, and thus to our notion of chains. We

will see that these aspects do not significantly change the results above.

A group is a set of cars with the same destination, typically the same customer. These

cars can come from different incoming trains but always go to the same outgoing train,

where they occur consecutively. The order of cars in a group is irrelevant. Still, the order

of the groups in the outbound trains is fixed. A block is a set of cars (or groups) that take

a common itinerary over potentially many classification yards. A block is not broken up at

intermediate classification yards. The associated blocking and makeup problems are out

of the scope of this paper; see [1, 5] for references. Blocking is particularly advantageous

in large countries like the U.S. and usually not applied in European freight systems [4].

Both concepts are related in the following way: before a block starts its itinerary over

several yards, it must be built at some origin classification yard. If the block is to be built

by multistage sorting, it can be regarded as a group of an outgoing train and can be formed

in the same way. If a block arrives at an intermediate destination, it is not broken up and

can be regarded as a weighted car for the classification task. Finally, a block arriving at

the final destination yard of its itinerary is broken up like an incoming train and has no

influence on the classification schedule. Thus, for our purposes, both groups and blocks

lead to exactly the same complication: some cars must be sorted in a sequence the order

of which is irrelevant. Therefore, w.l.o.g., we will only refer to groups below.

To adapt our model we simply drop the constraint that all cars (τ1, . . . , τn) of a train

must be distinct. It is easy to check that with this definition Lemma 1 and Theorem 1

still hold. Theorem 1 applied to trains with groups, however, leads to a different notion of

chains than the one in Definition 2.

As an analogue of Definition 2 and Lemma 2 we redefine chain decompositions with

our goal of extracting optimal binary encodings from them:

Definition 5. Given a train T = (τ1, . . . , τn) with not necessarily distinct τi, a chain de-

composition Ξ = (c1, . . . , ck) is a partition of T into subsequences, such that the following

resulting classification schedule is valid: Only the binary representations of i−1, 1 ≤ i ≤ k,

are used. All cars of chain ci are assigned the binary code i− 1, and this binary encoding

is called B(Ξ). We call Ξ optimal if B(Ξ) is optimal.

14 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

Observe that there is no longer a single optimal chain decomposition. For example, for

the train (3, 1, 4, 1, 2, 2, 3, 5, 4) both (1, 1, 2, 2), (3, 3, 4), (4, 5) and (1, 1, 2, 2, 3), (3, 4, 4), (5)

are optimal. The second chain decomposition in the example has been obtained in the

following greedy way: The first chain c1 contains all possible cars with τ· = 1. All cars

with τ· = 2 can get the same bitstring by Lemma 1. All occur after the last τ· = 1. They

are included in c1. Not all cars with τ· = 3 can get the same bitstring, because the first

3 needs to be swapped with the 1s and 2s. Still, the second 3 can get the bitstring of the

first chain because it does not need to be swapped with the 1s or the 2s. It follows that

(1, 1, 2, 2, 3) is the longest possible sequence of cars that can get the same bitstring and

contains the smallest car, here τ· = 1. The remaining chains can be obtained by iterating

this procedure on the remaining cars. Let us call the resulting chain decomposition the

greedy chain decomposition. We now show the analogue of Theorem 2 for groups.

Theorem 4. (greedy chain decomposition is optimal) Let T = (τ1, . . . , τn) be a train with

not necessarily distinct τi. The greedy chain decomposition Ξg = (c1, . . . , ck) of T leads to

an optimal classification schedule of length dlog2 ke encoded as B(Ξ) for a classification

yard of unrestricted width and capacity.

Proof. Assume for a contradiction that there is another chain decomposition with fewer

chains. We want to compare chains car by car and therefore distinguish the cars by in-

dices. The above example becomes (31, 11, 41, 12, 22, 23, 32, 5, 42). Select the optimal chain

decomposition Ξopt = (d1, . . . , dk′), with k′ < k that has the longest identical start se-

quence of chains (c1 = d1, c2 = d2, . . .) among all optimal chain decompositions. Again,

for the above example we have (11, 22) 6= (12, 22). Now consider the first pair of chains

(cx, dx), where Ξg and Ξopt differ. From the greedy construction and the fact that the two

decompositions agree up to cx and dx it follows that cx must be longer than dx. In fact,

dx ⊂ cx because all cars in dx can be included in cx independent of the cars in cx \ dx. We

modify Ξopt to Ξ ′opt by replacing dx by cx and removing the cars in cx \ dx from the rest

of the chains in Ξopt. Note that we cannot invalidate a chain by removing cars from it.

Now Ξ ′opt is a chain decomposition and agrees with Ξg on one more chain in contradiction

to the assumption. 2

4 Multistage Classification Methods

In this section we describe the multistage classification methods mentioned in Section 1.2

by means of the encoding introduced in Section 3. First, we explain how classification

methods can be regarded as classes of schedules. Then, sorting by train and the basic

version of simultaneous sorting are analyzed in Section 4.2, followed by two variants of the

latter called triangular and geometric sorting in Section 4.3.

Multistage Methods for Freight Train Classification 15

4.1 Classification Methods and Classes of Schedules

All schedules that follow a common classification method share common properties. For

the example of triangular sorting—an explanation of this method follows below—every

car is rolled in at most three times, so every schedule that accurately implements the tri-

angular method for some problem instance has this property. Every schedule can be repre-

sented by an encoding according to Section 3. Since this encoding contains the properties

of the schedule, it contains all properties of the classification method that the schedule

implements. Therefore, every classification method can simply be regarded as a class of

classification schedules with certain properties, so every classification method corresponds

to a class of encodings.

In the remainder of Section 4, we assume that we are given m outgoing trains by their

lengths n1, . . . , nm as explained in Section 2. Let g1, . . . , gm be the respective numbers of

groups in these trains. Define gmax = max
1≤i≤m

gi and gmin = min
1≤i≤m

gi.

4.2 Basic Multistage Methods

The multistage methods applied today can be categorized into two general classes: sorting

by train [6, 21, 26] and simultaneous sorting [16, 21, 25, 26], which have been extensively

described in the literature. Using our encoding, we achieve a more efficient description and

analysis of both methods in this section.

Sorting by Train Sorting by train comprises the following two stages. First, inbound

cars are separated according to their outgoing trains by sending all cars of a common

outgoing train to the same track. Second, the resulting unordered trains are processed

successively: a train is pulled back over the hump and rolled in again, sorting the cars

according to their groups by sending the cars of each group to the same track. Finally, the

groups of cars are moved from the tracks in the required order and coupled to form an

outgoing train. In double-ended yards this can be done from the opposite end of the yard.

The process continues with the next train. For the rest of this paper, the train formation

tracks will not appear in the encoding since they are implicitly given.

The corresponding class of encodings is given as follows: for the encoding bh . . . b1 of

any car in the `th group of the kth outgoing train, bi = 1 only for i = k +
∑k−1
j=1 gj

(corresponding to the initial roll-in) and i = k+
∑k−1
j=1 gj + ` (corresponding to the second

stage).

The length h of this schedule is given by h = m +
∑m
i=1 gi. This method occupies

exactly m classification tracks after the first stage, so the total number of tracks is at least

m+ gmin − 1, and at most m+ gmax − 1, while the latter number is tight if the first train

processed in the second stage has gmax groups.

Sorting by train is also called initial grouping according to outbound trains [26]. The

corresponding names used in the German literature are Ordnungsgruppenverfahren [21]

and Staffelverfahren.

16 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

Simultaneous Sorting Unlike sorting by train, the first stage of the two-stage method

simultaneous sorting sorts according to the cars’ groups in the outgoing train. In the

encoding of a schedule of this class, this step forces bi = 1 for every car of the ith group

of any train. In the second stage, the cars are sorted according to their target trains:

the tracks are successively pulled out in the order of the corresponding group index, and

each set of cars pulled out is directly rolled back in, always sending cars of a common

outgoing train to the same train formation track. As mentioned before, this last roll-in is

not explicitly given in our encoding.

Simultaneous sorting minimizes the number of cars rolled in, which must be paid for by

a number gmax of sorting steps as there is one pull-out for every group, a number which is

maximal among all variants of simultaneous sorting for an unrestricted classification yard.

Regarding the track requirement, exactly gmax tracks are used in the first stage. Thus,

at most gmax + m − 1 tracks are needed since up to m − 1 further tracks are needed for

train formation, and at least gmin + m − 1 tracks are required: Even after renaming the

groups such that all outgoing trains have a group gmax and use the small numbers as little

as possible, pulling the first of the last gmin tracks to be pulled in the second stage forces

starting the formation of all m outgoing trains (if not yet started), so exactly gmin +m−1

tracks are occupied at this point.

In contrast to sorting by train, the formation of all outgoing trains is performed si-

multaneously, which explains the method’s name. Simultaneous sorting is also called the

simultaneous method, simultaneous marshalling [25], sorting by block [6], or initial group-

ing according to subscript [26]. The corresponding German terms are Simultanverfahren

and furthermore Elementarsystem to explicitly refer to the basic version described in this

section [21].

Note that in the above description cars are never guided to a train formation track

during primary sorting. This may be desired for operational reasons and is even necessary

if the train formation tracks cannot be accessed from the primary hump such as for a

layout as shown on the right of Figure 2(c). If the train formation tracks can be accessed

from the primary hump, however, the schedule becomes one step shorter.

4.3 Variants of Simultaneous Sorting

In the basic form of simultaneous sorting, every car is pulled out once and rolled in twice,

once in either stage. For the following variants this restriction is dropped. Instead of stages,

these variants are specified by sequences of sorting steps.

Triangular Sorting Triangular sorting has been considered in [6, 9, 16, 21, 25, 26]. This

method is a superclass of simultaneous sorting that is given by allowing at most three

roll-in operations for each car (including the final roll-in of a car to its outgoing train). For

the schedule encoding, this yields a restriction of bi = 1 for at most two indices i = 1, . . . , h

in the bitstring of every car.

Multistage Methods for Freight Train Classification 17

For this method Krell [21] gives an upper bound of 1
2h(h+1) on the maximum number

of groups gmax of an outgoing train that can be sorted in h steps. This result can be

reformulated in terms of chains yielding a better bound in general. If c1, . . . , cm denote

the respective numbers of chains of the trains and cmax = max1≤i≤m ci, for a sufficiently

large classification yard, classifying by triangular sorting can be done within h sorting steps

if cmax ≤ 1
2h(h + 1). This follows immediately by our encoding: the number of distinct

bitstrings bh . . . b1 of length h and bi = 1 for at most two different indices i ∈ {1, . . . , h} is

given by
(
h
1

)
+
(
h
2

)
=
(
h+1

2

)
, and the required number of distinct bitstrings is not greater

than the maximum number of chains by Lemma 2. Conversely, if some outgoing train has a

number of chains cmax, we must choose a set of cmax bitstrings with bi = 1 for at most two

different i ∈ {1, . . . , h}, which yields a feasible schedule of length h = d√2cmax − 1
2e that

can be applied in a sufficiently large classification yard. The method can be generalized

to any restriction on the number of roll-ins for a car.

The triangular-like occupation of the classification tracks after the initial roll-in ac-

counts for the name of this variant. In [21], triangular sorting is called Vorwärtssortierung

bei höchstens zweimaligem Ablauf.

Geometric Sorting The method of geometric sorting [16, 21, 25, 26] is derived from

simultaneous sorting by dropping the restriction on the number of roll-ins completely,

which corresponds to bitstrings with no restriction at all. The performance of this method

is given in the literature by gmax ≤ 2h − 1 for h sorting steps [21]. Note that this number

differs from 2h by one as cars are not allowed to be sent to the train formation track in

the initial roll-in (for some practical reason), which corresponds to disallowing the all-zero

bitstring in our encoding. In combination with our notion of chains this exactly yields the

class of schedules of Theorem 2 with a bound of cmax ≤ 2h − 1, where cmax denotes the

maximum number of chains in any outgoing train.

Considering the special case of a single outgoing train of 2k−1 groups for some integer

k > 0, the initial roll-in sends 2k − i groups to the ith track, i = 1, . . . , k; the sum of these

numbers gives the geometric sum, which explains the method’s name. Geometric sorting

is called maximale Vorwärtssortierung in [21].

As mentioned before, geometric sorting minimizes the number of sorting steps, assum-

ing the number and capacities of tracks are sufficiently large. If this cannot be assumed,

the simultaneous sorting variants of the following sections should be considered.

5 Restricted Number of Classification Tracks

In this section we consider schedules for classification yards with a restricted number W

of classification tracks. In Section 3 we derived schedules of length h = dlog2 ce for a

single incoming train with c chains. These schedules generally require one classification

track for every sorting step, i.e., W ≥ dlog2 ce must hold. (Note that the train formation

track is not included in the number W .) However, such a schedule is not valid in general

18 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

RW (h− 1) 1

RW (h− 2) 1 0

RW (h− 3) 1 0 0

...
...

RW (h−W) 1 0 · · · 0 0

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

W rows

Fig. 4. Recursive procedure for deriving all valid bitstrings of length h for the round robin track

sequence in a yard of W tracks.

if W < dlog2 ce, which can easily be seen from the example in Figure 3: the illustrated

schedule has a length of h = 3 and uses W = 3 classification tracks. If there are only two

tracks, car τ6 = 5 cannot be sent to track Θ3 at the initial roll-in since that track does

not exist. Hence, this schedule is not valid for W = 2.

Still, there always exists a valid schedule for every W ≥ 2, which we will show be-

low. We consider a classification yard with a restricted number of W classification tracks

Θ1, . . . , ΘW of sufficient capacity. We further assume a single incoming and a single out-

going train since this implicitly solves the general case of multiple incoming and outgoing

trains as already described in Observation 3. In addition to the set of bitstrings B, the

order in which the classification tracks are pulled out must be specified in a schedule of

this setting as h > W . This is done by introducing a sequence of logical tracks Θi1 , . . . , Θih
which maps sorting steps to physical tracks, i.e., in the kth step we pull out track Θik .

We always use a “round robin” track sequence, i.e., in the kth step we pull out track

Θ(k mod W), where Θ0 is treated as ΘW . We later show that this strategy is optimal.

Basically, some of the 2h bitstrings of length h are not valid due to the restricted

number of tracks, so they cannot be used in the assignment from cars to bitstrings. The

following lemma shows how many valid bitstrings of length h there are for the round robin

logical track sequence. This number implies a lower bound for the number of chains that

can be classified within h steps. Theorem 5 finally shows this number is optimal.

Lemma 4. For a classification yard with W classification tracks of sufficient capacity,

and additional dedicated train formation tracks for the outgoing trains, the number RW (h)

of valid bitstrings of length h for the round robin track sequence is given by the following

recurrence equation:

RW (h) :=


2h for h ≤W

1 +
h−1∑

i=h−W
RW (i) for h > W

Multistage Methods for Freight Train Classification 19

Proof. Let b = bh−1 . . . b0 be a bitstring of length h. Whenever a car is rolled in, it must be

sent to one of the W physical tracks. In the kth pull-out step of the round robin strategy,

these tracks always correspond to the W next pull-out steps, i.e., to the W next logical

tracks Θik+1 , . . . , Θi+k+W . (The inital roll-in can be regarded as following the 0th pull-out

step.) Therefore, if bk−1 = 1, bk−1+i = 1 must hold for at least one bit i = 1, . . . ,W ; in

other words, for b to be valid, there must not be a sequence of W consecutive bits all equal

to zero. However, since a car can always be sent to the train formation track, a leading

sequence of W or more zeros is still allowed. If h ≤W , a non-leading sequence of W zeros

cannot occur, so RW (h) = 2h in this case.

For longer bitstrings consider Figure 4: at the initial roll-in there are W choices for any

car, so bi = 1 must hold for some i = 0, . . . ,W − 1. Now, let i be the smallest such index

in b, corresponding to one of the W rows in Figure 4. After the pull-out corresponding to

bi = 1, there are again W choices of logical tracks to which to send a car assigned to b.

Additionally, there is the possibility to send the car directly to the dedicated track for the

outgoing train. The number of bitstrings starting with bi . . . b0 = 10 . . . 0 is RW (h− i− 1)

for this value of i. Summing over all W initial such sequences, corresponding to the rows

in Figure 4, we obtain RW (h) = 1 +
∑h−1
i=h−W RW (i). 2

The variation of the problem without dedicated tracks for the outgoing track has a

similar solution. The only difference is that leading zeros are forbidden as well, which

changes the recursion slightly:

Lemma 5. For a classification yard with W classification tracks of sufficient capacity,

where the outgoing train must be formed on the classification tracks, the number RW (h)

of valid bitstrings of length h for the round robin track sequence is given by the following

recurrence equation:

RW (h) :=


2h for h < W

h−1∑
i=h−W

RW (i) for h ≥W

Note that in this case the number RW (h) is a generalization of the Fibonacci numbers.

In particular, for W = 2, we get R2(h) = Fh+2 where Fh is the hth Fibonacci number.

The proof of Lemma 4 yields a recursive procedure to derive optimal schedules, which is

applied in the following theorem.

Theorem 5. Given a classification yard with W classification tracks of sufficient capacity,

an incoming train with c chains can be classified within h steps if and only if c ≤ RW (h).

The corresponding classification schedule can be constructed in linear time (in the size of

the schedule).

Proof. The forward implication of the first statement immediately follows from Lemma 4.

For the reverse implication, we show round robin is optimal by induction. For the base

case of h ≤ W , the statement obviously holds. Now, assume the maximum number of

20 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

bitstrings of length h (for the best possible track sequence) is RW (h′) for all h′ < h. Take

an optimal track sequence and set of bitstrings of length h. These bitstrings can be divided

into at most W classes by their second occurrence of a 1 (the positions depend on the

track sequence). If the classes are ordered according to this position, the first class contains

bitstrings of length at most h− 1, the second of length at most h− 2, and so on. Hence,

the number of bitstrings in the classes is bounded by RW (h− 1), RW (h− 2), and so on.

(This holds even if the different classes were allowed to have different track sequences.)

Therefore, at most RW (h) bitstrings are possible. Hence, the round robin logical track

sequence is optimal and no more than RW (h) chains can classified within h steps.

The proof of Lemma 4 yields a recursive procedure to construct a maximal set of valid

bitstrings of length h in time linear in the size of the set. The procedure can be applied

just partially in order to obtain an ordered set of c bitstrings of length h that present the

schedule in time linear in the size of the schedule. 2

As mentioned before, Hansmann and Zimmermann independently obtain the same

result in [18]. Moreover, a detailed example for this setting is already given in [21], though

the description is quite cumbersome as there is no efficient representation of classification

schedules. From the example, the maximum number of cars that can be sorted for a number

of given tracks is correctly deduced, but no proof is given.

6 Restricted Track Capacities

In Section 3 we derived optimal schedules for the simplified case of classification tracks

of unrestricted length. Real-world classification yards clearly have tracks whose length is

bounded. With this additional constraint, the problem of finding an optimal classification

schedule is NP-hard, which is shown in Section 6.1. For the same setting, we derive a factor-

two approximation algorithm in Section 6.2. In the special case that no assumptions about

the order of the cars in the incoming train is justified, an exact polynomial-time algorithm

is given in Section 6.3.

6.1 General Case

As mentioned above, assuming bounded track capacities for the classification tracks yields

an NP-hard problem. The bound on the track capacities is formalized as follows: All tracks

have a bounded capacity of C, i.e., they can accommodate at most C cars. This capacity

constraint is summarized in the following equation, where n is the number of cars, h the

length of the schedule, and bji denotes the i-th bit of the bitstring of the j-th car:

n∑
j=1

bji ≤ C, i = 0, . . . , h− 1. (1)

The constraint does not apply to the train formation tracks, from which we furthermore

do not allow any pull-outs.

Multistage Methods for Freight Train Classification 21

Multiple Outgoing Trains The following theorem shows that the problem variant with

multiple outgoing trains and an unrestricted number of classification tracks with restricted

capacities is NP-hard. As a consequence, the train classification problem is NP-hard in its

most general variant.

Theorem 6. For a classification yard with classification tracks of restricted capacities,

finding the optimal classification schedule for a single incoming and multiple outgoing

trains is an NP-hard problem.

Proof. By reduction from the NP complete problem “Not ALL Equal 3-SAT” (NAE3SAT)

[17, LO3]. The input of NAE3SAT consists of n variables and m clauses, each of length 3.

The problem is to decide whether there is a truth assignment such that each clause has

at least one true and at least one false literal. Given an instance of NAE3SAT, we first

construct an instance of 2n incoming trains that are to be sorted into 2n outgoing trains

without any interaction between the trains, i.e., the ith incoming train has cars only for

the ith outgoing train. Note that even though there are multiple incoming trains their

order is irrelevant, because there is a one-to-one correspondence of incoming to outgoing

trains (this is in contrast to the general situation discussed in Lemma 3). For this reason

the incoming trains can be concatenated in any order into a single incoming train. For

ease of exposition, we start the proof by making two assumptions, and show later that

these can be easily enforced. First, each car can be part of at most one additional roll-in.

Second, we can have individual capacity bounds for all logical tracks.

The main idea of the proof is to allow a given number M = 4n+ 2m of steps and thus

logical tracks and to let all incoming trains have exactly M − 1 chains. Observe that if

two chains of the same train end up on the same track they must be in the wrong order,

which necessitates an additional roll-in incontradiction to the first assumption. It follows

that at most one of the chains of each train can be split or a single logical track can be

left unused. The transformation enforces the latter possibility for all trains.

From this construction it follows that the “local decisions” we can encode are for each

train, which track should be left unused. With the help of additional start and end gadgets,

the transformation forces the trains to have this unused track on the first or last logical

track, which encodes true and false. These true and false settings for the variables are used

in a middle part of the logical tracks that represents the clauses. In this part, the capacity

restriction on the tracks leads to the not all equal constraint on the clauses.

We proceed to show how to use this idea in the transformation and give an example in

Figure 5. First, for the incoming trains it is enough4 to specify the length of each of their

chains, instead of giving the full sequence that leads to these chains. For example we will

define a train as [1, 4, 2] by its sequence of chains (chain sequence) and ignore whether

this comes from an incoming train (2, 6, 1, 3, 4, 7, 5) or (6, 2, 3, 1, 4, 5, 7). Chains and logical

tracks are tightly connected because cars are pulled only once. For example, if there is
4 All chain lengths will be polynomial in n and m. Therefore, this is only a matter of convenience

and does not change the result for a car by car input encoding.

22 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

precisely one chain more than there are tracks, the first chain goes directly to the output

track, the second on logical track one, and so forth. By the convention of numbering logical

tracks from right to left (because of the relation to binary numbers), it is convenient to

reverse the order in the chain sequence and to omit the first chain that is rolled-in directly.

Hence, we write a compact chain sequence as 〈2, 5, 3〉 to mean the chain sequence [1, 3, 5, 2]

and an incoming train like (10, 11, 5, 6, 7, 8, 9, 2, 3, 4, 1).

(x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄3)

x1 x̄1 x2 x̄2 x3 x̄3 C
+
1 C−1 C+

2 C−2 x1 x̄1 x2 x̄2 x3 x̄3

x1 k 1 1 1 1 1 k 1 1 1 k 1 1 1 1

x̄1 k 1 1 1 1 1 1 1 k 1 k 1 1 1 1

x2 1 1 k 1 1 1 1 1 k 1 1 1 k 1 1

x̄2 1 1 k 1 1 1 k 1 1 1 1 1 k 1 1

x3 1 1 1 1 k 1 k 1 1 1 1 1 1 1 k

x̄3 1 1 1 1 k 1 1 1 k 1 1 1 1 1 k

Fig. 5. Sketch of the transformation for an example with two clauses on three variables.

Each compact chain sequence has 4n + 2m − 1 chains, which correspond to a start

variable part of length 2n, followed by a clause part of length 2m and an end variable part

of length 2n− 1. There are 2n chain sequences, one for each literal. All chains have either

length k (ON) or length 1 (OFF). The purpose of the start and end part of the chain

sequences is to force the gap into these parts. This is achieved by defining the start and

end parts of both xi and x̄i as follows:

〈
start part︷ ︸︸ ︷

1, 1︸︷︷︸
one pair/variable

, . . . , k, 1︸︷︷︸
pair i

, 1, 1, . . .,

clause part︷︸︸︷
. . . ,

end part︷ ︸︸ ︷
1, 1, . . . , k, 1︸︷︷︸

pair i

, 1, 1, . . . , 1, 1〉

Both sequences have length M − 1 together with the clause part that remains to be

specified.

The first 2n logical tracks and the last 2n logical tracks have all capacity 2n + k − 1,

except for the first and the last track which have both capacity n+k−1. The total capacity

of the first 2n positions of all chain sequences exceeds the total available capacity for the

start part by n, and the same holds for the end part. This situation forces at least n gaps

in the start part and at least n gaps in the end part, thus exactly n gaps in both parts.

Having these identical subsequences for a variable and its negation enforces, together with

the capacity bound, that for each variable either there is a gap in the start part of the

chain sequence for xi and in the end part of the one for x̄i or vice versa. Thus, we can

think of the chain sequences for variable xi as either being left (xi = TRUE) or right

(xi = FALSE).

The clause part has 2m logical tracks, 2 for each clause. Precisely the trains corre-

sponding to literals occurring in this clause have a position in the chain sequence turned

Multistage Methods for Freight Train Classification 23

on, namely in a way that the chain is placed on one of the two tracks. The first track of

clause j stands for a literal making this clause true (contributing to set C+
j), the second

for one making it false (contributing to set C−j). From above it follows that there can be

no gaps in the clause parts. We indicate the occurrences of literals in clauses by turning on

the corresponding position in the chain sequence, as exemplified in Figure 5. The chains

for each literal can be either left or right and therefore contribute either to C+
j or C−j for

each clause j. By setting the capacity constraint to 2n + 2k − 2 for each logical track in

the clause part we enforce the not all equal constraint. This follows because this capacity

limit is exceeded if and only if three literals contribute to the same of the sets C+
j and

C−j . Therefore, under the assumptions above the transformed instance is a yes-instance for

NAE3SAT if and only if there is a classification schedule that respects the given capacity

bound.

It remains to specify how to enforce the two assumed properties. First, we want to

replace the individual capacity constraints by a uniform one. To this end, we add one

chain sequence of full length M . As every car is only allowed to be pulled once, the

classification schedule for this chain sequence is unique. By adjusting the lengths of the

chains of this chain sequence, the differences in the capacity constraints can be adjusted.

To enforce that every car is pulled at most once, we add one chain sequence with one

chain of length 1 and one long chain. The length of the latter chain is exactly the excess

capacity of the logical tracks w.r.t. all chain sequences constructed before. Now, if any car

were pulled twice another car could not be pulled at all, which is impossible in a correct

classification schedule. 2

Single Outgoing Train The considerations so far depend on multiple outgoing trains.

Here, we show the complexity result holds even for a single outgoing train.

Theorem 7. For a single incoming and single outgoing train, with tracks of bounded

capacity, the problem of finding an optimal classification schedule is NP-hard.

Proof. We reduce the problem with multiple outgoing trains to this one. Let T1, . . . , Tk

denote the compact chain sequences of the k outgoing trains, and denote by |Ti| the total

number of cars in train i, not counting the first chain of length one that is not pulled

because it goes directly to the outgoing train. Let h be the limit on the number of sorting

steps, and C the capacity limit. Further, assume
∑
i |Ti| = h · C so that the cars must be

pulled exactly once. This is the kind of instance described in the proof of Theorem 6.

We define an instance with a single outgoing train where the original cars are pulled

precisely twice and there are additional long chains that are pulled precisely once. Let M =

max |Ti| + 1 so that all original chains are smaller than M . Define the new capacity to

be D = 2M and the new number of logical tracks H = k+ h. Define further di = D− |Ti|
and e = D − C, and observe that di > M and e > M . Now, the single outgoing train has

24 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

the compact chain sequence

T = 〈T1, d1, T2, d2, . . . , Tk, dk, e, . . . , e︸ ︷︷ ︸
×h

〉

The enforced utilization of the tracks is schematically depicted in Figure 6.

Space for original codes

h

C

k

e

T3

hC

D

H

d3

Fig. 6. Track utilization scheme for the transformation into a single outgoing train.

It remains to show that T can be sorted in H steps on a capacity D yard if and only

if the Ti can be sorted simultaneously in h steps on a capacity C yard. Assume the latter,

and let Bi be the bitstrings for train i (having a single 1 by assumption). We precede

the bitstrings of Bi by 0s, only at position i we place a one. Further, the first chain gets

bitstring 0, the chain di the bitstring with a single 1 at position i, and the chains of length e

get the remaining bitstrings with a single 1, namely at positions k + 1, . . . ,H. This set of

bitstrings gives the correct order and uses capacity D on every position: On the first k

positions because of di + |Ti| = D, and on the remaining positions because the original

bitstrings used precisely capacity C. Hence, the train T can be sorted as claimed.

Now, conversely, assume that T can be sorted. Because di > M and e > M , the minimal

number of ones (car pulls) is given by a set of bitstrings that uses singleton bitstrings for

the di and e chains and bitstrings with two 1s for the chains of the Ti. Such a set of

bitstrings uses precisely D · H ones, and hence every correct set of bitstrings must have

this structure. Because of the ordering of T , the bitstring of di must have the 1 at position i

and the bitstrings of Ti must have their first 1 at position i. The singleton bitstrings for

the e chains leave precisely a capacity C on the h tracks k+1, . . . ,H. Hence, the second 1s

of the bitstrings for the Ti can be interpreted as bitstrings for the multiple train instance

because they are all in the last h positions. They meet the length and capacity requirement

and achieve the required ordering because the set of bitstrings was correct for the single

train instance. 2

Multistage Methods for Freight Train Classification 25

6.2 Approximation

In the previous section the train classification problem with restricted track capacities has

been shown to be NP-hard. In the following a 2-approximation is derived, which basically

consists of two consecutive steps: the procedure starts with a schedule not necessarily

satisfying the capacity constraints (1) but the relaxed constraint (2) given below. This

schedule is derived according to the proof of Lemma 6. Secondly, in this schedule every

column violating (1) is distributed over several newly introduced columns which meet the

capacity constraint as shown in Theorem 8 and Figure 7.

Consider the following constraint on the number of cars rolled in by a schedule B of

length h, i.e., on the number of bits bji in B with bji = 1:

h∑
i=1

n∑
j=1

bji ≤ Ch (2)

Every schedule B of length h that satisfies (1) also satisfies (2), whereas the converse

implication does not hold in general.

Lemma 6. Given a train T of length n, a minimum-length schedule satisfying (2) can be

obtained in polynomial time in the size of the schedule encoding.

Proof. Observe that there is no loss of generality in assuming that the schedule uses the

same code for all cars of one chain: If this should not be the case for a chain, choose the

code in the chain with the fewest 1s and use it for all cars of the chain. This schedule is

still valid and does not use more roll-ins than the original one.

For a fixed number h, let Bh denote a valid schedule of length h that minimizes the

number of cars rolled in. As detailed below, Bh can be obtained in polynomial time by a

dynamic programming approach, which shows the statement of the lemma.

To describe the approach, it is useful to consider the following alternative descrip-

tion of a schedule: Double the code length and change a code bh . . . b1 into the code

bh1bh−11 . . . b11, i.e., on every other position there are only ones. The corresponding tracks,

so called virtual tracks, contain all cars of the train, and the ordering of the cars sum-

marizes the effect of the already performed shunting steps. More precisely, we see fewer

chains, for example with the complete binary code, every shunting steps reduces the num-

ber of chains by a factor of two. In general, the difference in the sequence achieved by

one shunting step is that some chains get united, namely consecutive pairs of chains. The

chain c′c′′ is created from the higher numbered chain c′′ that has a 1 and the chain c′ tat

has a 0 at the position. Because the set of cars of disjoint resulting chains are disjoint,

there is no interaction between creating c′ and c′′.

The dynamic program has a table of the form D(i, c), where c is any intermediate

chain, i.e., an interval of cars in the outgoing train, and D(i, c) gives the fewest possible

roll-ins to create c with i shunting steps (on the ith virtual track). Clearly, D(0, c) = 0

precisely for the original chains; for all other chains D(0, c′) = ∞. For i > 0, the above

26 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

discussion justifies the formula

D(i, c) = min
c′c′′=c

(D(i− 1, c′) +D(i− 1, c′′) + |c′′|)

In this formula, c′c′′ denotes the concatenation of c′ and c′′ and |c′′| the length of c′′, which

gives precisely the number of roll-ins necessary to place c′′ (with 1 at the position) behind

c′ (with 0 at the position). Note that we allow c′′ to be the empty chain, i.e., it does not

get more expensive to create a chain at a later stage.

The interesting entry of the table is D(h, 1 . . . n) which should be compared with the

constraint (2). The schedule can be reconstructed in the usual manner by keeping track

of the split that achieved the minimum. The validity and total number of roll-ins of the

schedule follows from the chains appearing on the virtual tracks as claimed by the dynamic

programming table.

A single entry D(i, c) can be calculated in time O(|c|), so the total running time for the

dynamic programming part of the algorithm is O(hn3) since the number of chains, i.e.,

the width of the table, is given by
(
n
2

) ∈ O(n2). The reconstruction time for the schedule

B is linear in the size of B, which is O(hn). 2

Increasing the length of a valid schedule allows reducing the number of cars rolled in.

Thus, if B′ is the shortest valid schedule that satisfies (2) and h′ denotes its length, the

length h∗ of the optimal schedule B∗ meeting (1) satisfies h∗ ≥ h′. This fact will be used

in the following theorem which finally states the 2-approximation. Its proof directly yields

an iterative algorithm to derive the corresponding schedule.

bi bi−1

v1

v2

v3

vd

bi+1

(a)

d− 1

bi bi−1

v1

v2

v3

vd

bi+1

(b)

d− 1

bi bi−1

v1

v2

v3

vd

bi+1

(c)

Fig. 7. One iteration step of the approximation algorithm for bounded capacities, applied to a

column bi that violates the capacity constraints (1).

Theorem 8. For any instance of the train classification problem with restricted track

capacities that has an optimal solution of length h∗, a valid schedule of length of at most

2h∗ can be obtained in polynomial time.

Multistage Methods for Freight Train Classification 27

Proof. Let B be a schedule of minimum length h that is valid w.r.t. the unrestricted

problem and further satisfies (2). (B can be obtained according to Lemma 6.) This schedule

is transformed iteratively, performing one iteration step for every column of B that violates

(1). The steps can be performed in an arbitrary order. Figure 7 depicts a single iteration

step.

For any column vector bi of B, let the load `i of bi be defined by `i :=
∑n
j=1 b

j
i . Now,

let bi be a column vector with `i > C. Define d := d `iC e and divide bi into d consecutive

subvectors v1, . . . , vd such that each vk with k < d has a load of exactly C and the load of

vd is at most C (Figure 7(a)). Then, shift all columns bj with j > i exactly d− 1 positions

to the left by inserting d − 1 additional all-zero columns (Figure 7(b)). Finally, every vk

is moved to the left by k− 1 positions, and the corresponding entries in bi are set to zero,

which finishes the iteration step (Figure 7(c)).

After each step, the respective fixed column satisfies (1), which also holds for every

newly introduced column, so the resulting schedule satisfies (1).

For every column in B, this procedure yields at most one “underfull” column (load

less than C), and the total number of “tight” columns (load equal to C) will not exceed

h, so the resulting length is at most 2h. Since h ≤ h∗, where h∗ denotes the length of an

optimal schedule satisfying (1), the resulting valid schedule has a length of at most 2h∗.

2

The algorithm of this section can easily extended to multiple outgoing trains S1, . . . , Sm:

in the proof of Lemma 6, one table must be maintained for each outgoing train Sk,

k = 1, . . . ,m. In each step i, one row D(i, ·) is constructed in each table, which is repeated

until
∑m
k=1D(h, Sk) ≤ hC after some step h. A single table entry is still derived only from

entries in the same table, and also the reconstruction can be done independently for every

train. Finally, the proof of Theroem 8 can be applied to the resulting schedule without

any changes, just as for a single outgoing train.

6.3 Chains of Unit Length

As shown in Section 6.1, the train classification problem with tracks of bounded length

is NP-hard. In the following, however, we show that, if all chains consist of single cars,

optimal schedules can be constructed efficiently (in the size of the resulting encoding).

These schedules also work for situations with longer chains, the schedules are just not

optimal any more. This corresponds to a planning situation where the ordering of the cars

in the incoming train is not known and the proposed schedule must work for any ordering

that the train actually has.

Once again, classification schedules that are valid for tracks of bounded capacity C

have binary encodings B that satisfy constraint (1). In other words, for every column the

total number of 1s is bounded by C.

28 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

Algorithm to produce an optimal set of bitstrings Note that the maximal set of

bitstrings for h positions uses 2h−1 ones at each position. If this exceeds the capacity (track

length) only by one, we can omit the single bitstring that has a 1 in every position. In the

other extreme, if the capacity is one, the largest set of bitstrings consists of the h bitstrings

with a single 1. We analyze this situation more deeply in the following example. Assume

that for the given capacity c, one can use all bitstrings with a single 1 (singletons), all

bitstrings with two 1s (pairs), and as many bitstrings with three 1s (triples) as possible.

Assume this can be done in a way such that all but at most two positions are at the capacity

limit c, and the remaining (≤ 2) positions have c − 1 1s. Then, this set of bitstrings is

clearly optimal, since any other way of choosing this many bitstrings will use at least the

same number of 1s in total. Using all bitstrings with a certain number of 1s per bitstring

will use the same capacity on all tracks.

The following lemma and its constructive proof show how to produce optimal sets of

bitstrings for all capacities. In our example from above, let c be the capacity left after all

singletons and pairs are assigned. In the above example, we can choose i = 3, n = b c·h3 c in

the following lemma to complete the set of bitstrings. Note that the order of the positions

is arbitrary.

Lemma 7. Let h, n, i be positive integers with h ≥ i, and n ≤ (hi). Then, there is a set

of n bitstrings of length h with precisely i 1s in each bitstring, such that the total number

of 1s at two positions differs by at most one. That is, there are numbers
←−
h +

−→
h = h and

c = dnih e such that in
←−
h positions the total number of 1s is c, and in

−→
h positions the total

number of 1s is c− 1.

Proof. The proof is by induction on h. The base case is h = i. Then n ≤ (hi) yields n = 1.

Now the bitstring consisting of i = h 1s (and no 0s) shows the statement of the lemma.

Now assume h > i and inductively assume that the lemma holds for all i and all h′ < h.

In one inductive step a set S1 of c bitstrings with 1s in the first position is created. In

the example of Figure 8, S1 = {a, b, c, d}. The remaining (i − 1)|S1| 1s of the bitstrings

in S1 are equally distributed over all remaining positions by an inductive application of the

lemma. In the example, this is the pseudo-box in the lower right corner. Again inductively,

the remaining bitstrings S2 have a 0 in the first position; in the example S2 = {e, f, g, h}.
Because the positions are arbitrary, we can arrange the inductive results in a way that

distributes the used capacity evenly. More precisely, we can assume that the bitstrings

for S1 have all higher capacity positions to the right, whereas the bitstrings for S2 have

the higher capacity positions to the left. Now all positions but a middle segment have the

same capacity (one higher plus one lower). The middle segment deviates from this capacity

by at most one.

To complete the proof of the lemma, we only have to show that for both inductive

applications the two assumed inequalities are met. We define some abbreviations with

the following naming conventions: Subscripted values are associated with the respective

invocation of the lemma. Hence, the first invocation of the lemma is with h1 = h − 1 as

Multistage Methods for Freight Train Classification 29

a

b

c

d ab

b

a

c c

d d

e

f

g

e

f feg

gh h h

Fig. 8. Illustration of the recursive bitstring generation with three 1s per bitstring, 6 tracks of

length 4, yielding 8 bitstrings. The recursion uses all remaining 1s of a position (the vertical box),

and recursively adds the remaining positions of the bitstrings (the flat pseudo-box). Importantly,

the flat pseudo-boxes are chosen in a way that the remaining space is almost equal in the different

positions.

the bitstring length, i1 = i − 1 the number of 1s per bitstring, and n1 = c the number

of bitstrings, resulting in S1, where the positions with more 1s are higher numbered (to

the right). We invoke it another time with h2 = h − 1 as the bitstring length, i2 = i 1s

per bitstring, and n2 = n − c bitstrings, resulting in the set of bitstrings S2, where the

positions with more 1s are lower numbered (to the left).

Here h1 ≥ i1 and h2 ≥ i2 hold because we are not in the base case. To show the

inequalities involving the binomial coefficient, it is convenient to combine the two “fill-

heights” (or deviation from the maximal possible fill height), c and c−1, into an averaged

value ĉ = ni
h . We mark all such average values by a hat. The average height resulting

from S1 on the remaining positions is necessarily ĉ1 = c(i− 1)/(h− 1).

The bound on n implies ĉ ≤ (h−1
i−1

)
(an alternative way to describe the assumption of

the lemma) because ni ≤ i · (hi) = h
i · i ·

(
h−1
i−1

)
which yields ĉ = ni

h ≤
(
h−1
i−1

)
. This gives the

required n1 = c ≤ (h−1
i−1

)
by integrality of the binomial coefficient. Hence, the assumptions

for the first recursive invocation of the lemma are met.

Now, let us define e =
(
h−1
i−1

)−c, the deviation from the maximal possible capacity. For

the recursive applications of the lemma we are only interested in the last h− 1 positions.

We define the average total height for both recursive applications for these positions only:

ĉ1+2 =
←−
h−1
h c +

−→
h
h (c − 1) = ni−c

h−1 ≤ c, and the corresponding ê1+2 =
(
h−1
i−1

) − ĉ1+2.

Observe that e ≤ ê1+2(≤ e + 1). For the second invocation of the lemma we should

check ĉ2 ≤
(
h2−1
i2−1

)
=
(
h−2
i−1

)
, where ĉ2 = ĉ1+2 − ĉ1. Observe h−1

i−1 ĉ1 = c =
(
h−1
i−1

) − e

such that we can express ĉ1 = i−1
h−1

(
h−1
i−1

) − i−1
h−1e =

(
h−2
i−2

) − i−1
h−1e. So, ĉ2 = ĉ1+2 − ĉ1 =(

h−1
i−1

) − ê1+2 −
(
h−2
i−2

)
+ i−1

h−1e =
(
h−2
i−1

)
+ i−1

h−1e − ê1+2 ≤
(
h−2
i−1

)
, where the last inequality

relies upon h ≥ i making the coefficient of e smaller than one, hence the statement follows

by the already observed e ≤ ê1+2. 2

30 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

The recursive procedure implied by the proof of Lemma 7 is efficient: The initial task

of using h · i 1s in bitstrings is split into two subtasks. Hence, the number of leaves in the

recursion tree is O(h · i), and the total running time is polynomial.

Theorem 9. For positive integers h and C a set B of bitstrings of length h that obey

capacity constraint (1) of maximal cardinality can be constructed in time polynomial in |B|.

Proof. For some i, it is possible to use all bitstrings of length h with precisely j 1s for

j = 1, . . . , i− 1. The remaining bitstrings are constructed according to Lemma 7 (actually

its constructive proof) by taking the largest n (binary search) for which the resulting set

of bitstrings leaves at most i− 1 positions at capacity C − 1, and all other positions with

capacity C. The binary search can be avoided by formulating two procedures, one that

takes a parameter n, and another one that produces as many bitstrings as possible given

the constraints. 2

7 Secondary Objectives

The quality of a classification schedule is mainly determined by the time it takes to execute

the complete schedule. So far, we have estimated this time by the number of required

sorting steps. On the other hand, it is also practice to consider the total number of cars

rolled in as the main objective. (At some classification yards, this objective is used for

pricing classification requests of customers.) Clearly, both objectives contribute to the

total required time, and, in [23], their relation is summarized as follows: if the constants

cpull, croll, and cpush denote the time required for pulling out one track, the time the last car

needs to roll from the hump to a track, and the time for decoupling and pushing one car,

respectively, then a classification process of h steps and a total of r cars rolled in roughly

requires a time of h(cpull + croll) + rcpush. As mentioned before, the term h(cpull + croll)

dominates rcpush, hence the choice of h as our primary objective. A detailed example

supporting this idea with actual numbers for the constants and experimental results for h

and r is also given in [23].

Still, the total number of cars that are pushed over the hump and rolled into the

classification tracks also influences the total execution time. This secondary objective, the

number of roll-ins, equals the number of 1’s in an encoding. It can be incorporated into

the objective function in various ways. First, one could ask for the optimal solution with

respect to sorting steps that minimizes the number r of car roll-ins. We call such a solution

a slim h-optimal solution. A more general approach is to charge a cost of α for a pull-out of

a train (e.g., α = cpull +croll from above) and β for a roll-in of a single car (e.g., β = cpush).

We call a solution that is optimal w.r.t. this objective (h, r)-optimal. In the following, we

briefly discuss the consequences of the two new objective functions.

Until now we could safely assume without loss of generality that in each step a complete

track is pulled out. This situation is also common practice in real-world classification

yards. The following lemma shows that, in case of unrestricted capacity and width, it is

Multistage Methods for Freight Train Classification 31

not advantageous to only partially pull-out a track, i.e., to leave some cars on the track

and to pull-out the rest.

Lemma 8 (partial pull-outs). If we assume an unbounded number of tracks in a model

with or without track capacity, there is both a slim h-optimal and a (h, r)-optimal solution

without partial pull-outs. For the case of bounded width W it can be necessary to use partial

pull-outs to get a solution that is slim h- or (h, r)-optimal.

Proof. For the first statement, observe that any solution in which a track is partially

pulled out can be transformed into a solution on one more track in which the two parts

are rolled into different tracks. For the second statement, consider an example with W = 2

and n = 4 and assume unit chain length for simplicity. From Section 5 we know that since

n is between the fourth and the fifth Fibonacci number any feasible encoding scheme needs

at least five bit bitstrings that start and end with a one. A solution with minimum number

of ones without leading and trailing ones is 010, 011, 101, 110. Without partial pull-outs

the cost of this solution is 7 plus the initial and final roll-in and cannot be improved. This

solution, however, can keep the chain of bitstring 101 in its track, as it is the bottommost

chain in the step where it is rolled into the same track again. Thus one roll-in can be

saved by a partial pull-out, the slim h-optimal solution must use pull-outs, analogously

for (h, r)-optimal solutions. 2

We already know that it is NP-hard to find the optimal classification schedule for

capacity-bounded tracks. Therefore, we cannot hope for a polynomial algorithm for the

new objectives in this case. The basic version of the problem remains polynomial, however,

as shown in the following lemma.

Lemma 9. A slim h-optimal solution can be computed in polynomial time for the case of

unbounded number of tracks and unbounded track capacity.

Proof. For a given incoming train we can compute all chain lengths. The remaining prob-

lem is to select n bitstrings from the 2dlogne candidate bitstrings that make the solution

slim. The best subset of the n bitstrings has a minimum scalar product of the vector of

chain lengths and the vector of number of ones in the selected bitstrings. This subset can

be found in the obvious way by a dynamic program5 that computes a table of numbers

C(i, j) that represent the minimum cost of a solution for the first i chains that uses the

first j bitstrings. 2

The partial pull-outs do not invalidate the encoding scheme. For a given encoding it

is possible to read off the number of roll-ins with partial pull-outs. This is stated in the

following observation that directly follows from Lemma 1.

5 Unlike stated in the conference version of this article [20], the set of bitstrings with the minimum

number of ones is not necessarily an optimal solution. This statement only holds for chains of

unit length.

32 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

Observation 1 A car τj of bitstring c = X

pos i︷︸︸︷
1 Y ∈ {0, 1}h in an encoding for train

T is the front element in step i if for all τk ∈ T \ τj of bitstring Xk1Y ′k it holds that

Y < Yk ∨ (Y = Yk ∧ j < k).

We have focussed on slim h-optimal solutions here. The extension to (h, r)-optimal

solutions is straightforward in the sense that one can always search through the possible

values for h with dlog ne ≤ h ≤ n.

8 Concluding Remarks

We have developed an efficient encoding of freight train classification schedules that allows

us to present, analyze, and develop train classification methods for real-world classification

yards. This surprisingly simple yet powerful encoding can be used to analyze the efficiency

of commonly used multistage methods. We proved the optimality of the simultaneous

variant geometric sorting in terms of sorting steps, considering presorted input.

Practical Considerations Dealing with single and multiple incoming and outgoing

trains, with yards of restricted capacity and number of tracks, and with presorted in-

put, the results of this paper cover the core of the sorting task at real-world classification

yards. We have shown that the constraint on the capacities leads to an algorithmically

more difficult problem than the constraint on the number of tracks. Fortunately, in prac-

tice, the number of classification tracks presents the more restrictive constraint in modern

classification yards.

Railway practitioners may notice that some aspects and exceptions of real-world clas-

sification tasks are not covered here. Many of these aspects, however, can be incorporated

in our encoding scheme by a simple restriction on the bitstrings in an encoding. In [23],

we present an integer programming approach for the train classification problem in which

we indeed incorporate the following three restrictions:

First, in many classification yards, multistage sorting is performed for local freight

trains while the rest of the traffic is sorted by single-stage sorting. Primary sorting (as the

first step of multistage sorting) and single-stage sorting are performed at the same time

here. Secondary sorting is usually started after all trains from single-stage sorting have

left the yard, so more tracks are available for secondary sorting. In [23], we incorporate

this requirement in a way similar to the considerations of Section 5.

Second, there are classification yards featuring two parallel humps, such as the yard

of Lausanne Triage considered in [23]. In this case, two independent multistage sorting

processes can be performed: each hump is assigned a (disjoint) fixed set of classification

tracks and a subset of the outgoing trains. Incoming cars are assigned to the humps

according to their outgoing train and remain in the system of that hump during all primary

and secondary sorting.

Multistage Methods for Freight Train Classification 33

Third, some outgoing trains may have to leave before the complete multistage process

finishes. As each sorting step roughly requires a constant amount of time, the required

departure times can be assigned to the sorting steps. Hence, for every car, the latest

possible step can be calculated after which this car must be on the train formation track.

This is the last restriction incorporated in [23], and further practical restrictions may be

possible to incorporate too.

Furthermore, there are yards with a secondary hump at their opposite ends like in

Figure 2(c). As secondary sorting can be performed via this hump without blocking the

primary hump, it can be started without retarding the single-stage sorting process. As

mentioned in Section 1, secondary humps are not always used due to cost and operational

reasons.

Future Work Some interesting questions arise in the interplay between primary and

secondary sorting. It is not always a priori clear which traffic should go into secondary

sorting. This decision depends on the available capacity of the classification yard, the

distribution of work between different classification yards, and on the connected routing

of blocks through a network of yards.

Furthermore, it would be interesting to apply some of the theoretical results of this

article to improve the actual classification procedures applied in real-world classification

yards. To this end, we are currently conducting a computer simulation for the Swiss

classification yard of Lausanne Triage with real-world traffic data. In [23], using the integer

programming model mentioned above, we successfully derived a schedule for the traffic

data of a whole day that is one step shorter and requires one track less than the currently

applied method. We are going to verify the applicability of this schedule in the mentioned

computer simulation, the results of which we are going to publish in a follow-up paper.

Finally, much time is lost in the classification process by the practice of starting sec-

ondary sorting not before all single-stage sorting is finished. This may be overcome by

performing both methods at the same time, which requires considering the arrival and

departure times of trains. As mentioned above, a first step to this direction is made in [23]

with incorporating train departures for the multistage method. A full generalization of

the train classification problem to time-dependent input may allow combining the strictly

separated methods of single- and multistage sorting into an integrated process that flexi-

bly alternates between both methods to reduce dwell times, improve departure times, and

increase the traffic throughput of classification yards.

Acknowledgments

We would like to thank M. Mihalak for his valuable comments on a previous version of this

article. Thank you very much also to N. S. Narayanaswamy for the inspiring discussions

on the relation of OPT-PERM to minimum feedback arc set problems. Last but not least,

we would like to thank the anonymous reviewers for their detailed and useful reviews.

34 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

References

1. R.K. Ahuja, K.C. Jha, and J. Liu, Solving real-life railroad blocking problems, Interfaces 37

(2007), 404–419.

2. O. Baumann, Die Planung der Simultanformation von Nahgüterzügen für den Rangierbahnhof

Zürich-Limmattal, ETR RT 19 (1959), 25–35.

3. B.C.M. Boot, Zugbildung in Holland, ETR RT 17 (1957), 28–32.

4. M. Campetella, G. Lulli, U. Pietropaoli, and N. Ricciardi, Freight service de-

sign for the italian railways company, ATMOS 2006 - 6th Workshop Algorithmic

Methods Models Optim Railways, IBFI, Schloss Dagstuhl, Germany, 2006, pp. ,

<http://drops.dagstuhl.de/opus/volltexte/2006/685>.

5. J.F. Cordeau, P. Toth, and D. Vigo, A survey of optimization models for train routing and

scheduling, Transportation Sci 32 (1998), 380–404.

6. C.F. Daganzo, Static blocking at railyards: Sorting implications and track requirements,

Transportation Sci 20 (1986), 189–199.

7. C.F. Daganzo, Dynamic blocking for railyards: Part I. homogeneous traffic, Transportation

Res 21B (1987), 1–27.

8. C.F. Daganzo, Dynamic blocking for railyards: Part II. heterogeneous traffic, Transportation

Res 21B (1987), 29–40.

9. C.F. Daganzo, R.G. Dowling, and R.W. Hall, Railroad classification yard throughput: The

case of multistage triangular sorting, Transportation Res, Part A 17 (1983), 95–106.

10. E. Dahlhaus, P. Horák, M. Miller, and J.F. Ryan, The train marshalling problem, Discr Appl

Math 103 (2000), 41–54.

11. E. Dahlhaus, F. Manne, M. Miller, and J. Ryan, Algorithms for combinatorial problems

related to train marshalling, Proc. 11th Australasian Workshop Combinatorial Algorithms

(AWOCA-00), 2000, pp. 7–16.

12. G. Di Stefano, J. Maue, M. Modelski, A. Navarra, M. Nunkesser, and J. van den Broek,

Models for rearranging train cars, Technical report TR-0089, ARRIVAL, 2007.

13. K. Endmann, Untersuchungen über die Simultanzugbildung bei der Deutschen Bundesbahn,

Bundesbahn 37 (1963), 593–600.

14. G. Even, J. Naor, B. Schieber, and M. Sudan, Approximating minimum feedback sets and

multi-cuts in directed graphs, Proc 4th Int Conference Integer Program Combinatorial Optim,

Vol. 920 of LNCS, 1995, pp. 14–28.

15. P. Festa, P.M. Pardalos, and M.G.C. Resende, Handbook of Combinatorial Optimization Vol. 4

chapter Feedback set problems, pp. 209–258, Kluwer Academic Publishers 1999.

16. H. Flandorffer, Vereinfachte Güterzugbildung, ETR RT 13 (1953), 114–118.

17. M.R. Garey and D.S. Johnson, Computers and intractability, Freeman, 1979.

18. R.S. Hansmann and U.T. Zimmermann, “Optimal sorting of rolling stock at hump yards,”

Mathematics - key technology for the future: Joint projects between universities and industry,

Springer, 2007, pp. 189–203.

19. H.P. Holliger, Rangierbahnhof Limmattal, webpage. Personal communication.

20. R. Jacob, P. Marton, J. Maue, and M. Nunkesser, Multistage methods for freight train clas-

sification, Proc. 7th Workshop Algorithmic Methods Models Optim Railways (ATMOS-07),

Wadern, Germany, IBFI Schloss Dagstuhl, 2007, pp. 158–174.

21. K. Krell, Grundgedanken des Simultanverfahrens, ETR RT 22 (1962), 15–23.

Multistage Methods for Freight Train Classification 35

22. K. Krell, Ein Beitrag zur gemeinsamen Nutzung von Nahgüterzügen, ETR RT 23 (1963),

16–25.

23. J. Maue and M. Nunkesser, Evaluation of computational methods for freight train classifica-

tion schedules, Technical report TR-0184, ARRIVAL, 2009.

24. A. Newman, The maximum acyclic subgraph problem and degree-3 graphs, Proc 4th Int

Workshop Approximation Algorithms Combinatorial Optim Prob, APPROX, Vol. 2129 of

LNCS, 2001, pp. 147–158.

25. K.J. Pentinga, Teaching simultaneous marshalling, Railway Gazette (1959), 590–593.

26. M.W. Siddiqee, Investigation of sorting and train formation schemes for a railroad hump

yard, Proc. 5th Int. Symp Theory Traffic Flow Transportation, 1972, pp. 377–387.

