Dynamic Planar Convex Hull

Gerth Stglting Brodal Riko Jacob
BRICS! Department of Computer Science, University of Aarhus,
{gerth,rjacob @brics.dk

Abstract hull of S by |S| — 2 points, reporting the changes to the
convex hull is in many applications not desirable. Instead
In this paper we determine the computational complex- of reporting the changes one maintains a data structure that
ity of the dynamic convex hull problem in the planar case. allows queries for points on the convex hull. Typical exam-
We present a data structure that maintains a finite set of ples are the extreme pointin a given direction, the tangent(s)
points in the plane under insertion and deletion of points on the hull that passes through a given point, whether or not
in amortizedO(logn) time per operation. The space us- apointisinside the convex hull, the edges of the convex hull
age of the data structure i©(n). The data structure sup- intersected by a given line, the common tangent(s) between
ports extreme point queries in a given direction, tangent two different convex hulls. Furthermore we might want to
gueries through a given point, and queries for the neighbor- report (some consecutive subsequence of) the points on the
ing points on the convex hull i@ (logn) time. The extreme convex hull or count their cardinality. Overmars and van
point queries can be used to decide whether or not a givenLeeuwen [17] provide a solution that us@$log” n) time
line intersects the convex hull, and the tangent queries toper update operation and maintains a leaf-linked balanced
determine whether a given point is inside the convex hull. search tree of the vertices on the convex hull in clockwise
We give a lower bound on the amortized asymptotic time order. Such a tree allows all of the above mentioned queries
complexity that matches the performance of this data struc-in O(logn) time. Semidynamic variants of the problems
ture. have been considered. There updates are restricted to be
either insertions only or deletions only. For the insertion-
Keywords: Planar computational geometry, dynamic con- only problem Preparata [118] gives @&nlogn) worst-case
vex hull, lower bound, data structure, search trees, fingertime algorithm that maintains the convex hull in a search

searches tree. The deletion-only problem is solved by Hershberger
and Suri in [12], where initializing the data structure (build)
1 Introduction with n points and up to: deletions are accomplished in

overallO(nlogn) time. Hershberger and Suri inf13] con-
The convex hull of a set of points in the plane is one Sider the off-line variant of the problem, where both inser-

of the most prominent objects in computational geometry. tions and deletions are allowed, but the times (and by this
Computing the convex hull of a static set ofpoint set the order)_of all insertions anq delet.ions are known a pri.ori.
can be done in optimaD(nlogn) time, e.g., with Gra- The algorlthm_processes a list of insertions and deletions
ham'’s scan([9] or Andrew’s vertical sweep line variant [1] N O(nlogn) time and space, and produces a data struc-
of it. Optimal output sensitive algorithms are due to Kirk- ture that can answer extreme point queries for any time us-
patrick and Seidel[16] and also to Chan [5], they achieve iNg O(logn) time. Their data structure does not provide
O(nlog h) running time, wheré: denotes the number of ~@n explicit representation of the convex hull in terms of a
vertices on the convex hull. search tree with the points on the convex hull. The space

In the dynamic setting we consider a data structure: Usage can be reduced@n) if the queries are also part of

Given a sefS of points in the plane that is changed by inser- the off-line information.
tions and deletions, maintain the convex hull%fObserv-

ing that a single insertion or deletion can change the convex Chan [F] gives a construction for the fully dynamic

problem withO(log' ™ n) amortized time for updates (for
*Partially supported by the Future and Emerging Technologies pro- any constant: > O) and O(log n) time for extreme

gramme of the EU under contract number IST-1999-14186 (ALCOM-FT). : . . ' . oo _
tSupported by the Carlsberg Foundation (contract ANS-0257/20). p‘?"_“ queries. H_IS construction does not mamtam an ex
Basic Research in Computer Science, www.brics.dk, funded by the plicit representation of the convex hull. It is based on a

Danish National Research Foundation general dynamization technique attributed to Bentley and

Saxe [3]. Using the semidynamic deletions only data struc-
ture of Hershberger and Surif12], and a constant num-

a piecewise linear function. The graphsaf;, is called the
lower envelopof L. Alinel € L is on the lower envelop

ber of bootstrapping steps, the construction achieves up-of L if it defines one of the linear segmentsraf, .

date times ofO(log'** n) for any constant > 0. The

Lemma 2 LetS be a set of points in the plane. We have

construction uses an augmented variant of an interval treeUH(S) iff p* is on the lower envelop &8*. The order of

to store the convex hulls of the semidynamic deletion only
data structures. This achiev@glogn) time extreme point
queries. The authorsi[4] and independently Kaplan, Tar-
jan and TsioutsiouliklisI[10] improve the amortized update
time toO(log n log log n). The improved update time il [4]

is achieved by constructing a semidynamic data structure
that is adapted better to the particular use. More precisely
the semidynamic data structure supports buil@{m) time
under the assumption that the points are already lexico-
graphically sorted. Deletions coStlog n log log n) amor-
tized time. This together with a careful choice of the pa-
rameters for the interval tree and two bootstrapping steps
yields amortized (log n log log n) update times and worst-
caseO(logn) query time. All these data structures have
O(n) space usage.

The main result of this paper is fully dynamic planar con-
vex hull data structure that achieves amortizktbg n) up-
date and query time, as summarized in the following theo-
rem, which is proven i _Section 2.

Theorem1 There exists a data structure for the fully
dynamic planar convex hull problem supportingserT
and DELETE in amortizedO(logn) time, andEXTREME
POINT QUERY, TANGENT QUERY and NEIGHBORING-
POINT QUERYin O(logn) time, wheren denotes the size

points onUH(S) is the same as the order of the segments
of the lower envelop. The extreme-point queryd(.S) in
directiont is equivalent to evaluatingus-« ().

A (dynamic) planar lower envelop is frequently understood
as a parametric (or kinetic) heap, a generalization of a pri-
ority queue. We think of the linear functions as values that
change linearly over time. TheND-MIN operation of the
priority queue generalizes to evaluating- (¢), the update
operations can be implemented USINGERT andDELETE.

The data structure 1 allows update and query
in amortizedO(log n) time. A kinetic heap is a parametric
heap with the restriction that the argument (time) of a query
may not decrease between the queries. This naturally leads
to the notion of ecurrent timefor queries. I Section 5 we
describe a data structure that can answer kinetic queries in
amortizedO(1) time.

Several geometric algorithms use a parametric (kinetic)
heap to store lines. In some cases the function-calls to this
data structure dominate the overall execution time. Then
our improved data structure immediately improves the algo-
rithm. One such example is thelevel problenin the plane.

As discussed by Chail [6] we can use two fully dynamic ki-
netic heaps to produce tlielevel of a set ofr lines. If we
havem segments on thie-level (the output size), the result-

of the stored set before the operation. The space usage isng algorithm completes i ((n + m)logn) time. This

O(n).

If we assume that theELETE operation provides as an
argument a pointer to the point in question, we can move
all of the deletion cost to the insertion, resulting in amor-
tized O(1) time deletions. From now on we consider only
the upper hull of the set of points, the lower hull is com-
pletely symmetric. Together they form the convex hull of
the set.

For a finite setd of points in the plane, let UF) C A
denote the points on the upper hull 4f Bd(A) the seg-
ments forming the upper hull (including two vertical lines
at the leftmost and rightmost point of), UC(A) the up-
per closure ofA, i.e., the region of the plane enclosed
by Bd(A), and UG (A4) its interior.

Related problems There is a close connection between

improves over the fastest deterministic algorithms, (Edels-
brunner and WelzI[[8], using Chan'’s data structure achiev-
ing O(nlogn + mlog'™ n) time). Itis faster than the ex-
pected running timé®((n + m)a(n) logn) of the random-
ized algorithm of Har-Peled and Sharir[11]. Herén) is

the slow growing inverse of Ackerman’s function.

Lower bounds For the static convex hull computation
there is a well known reduction to sorting, presented for ex-
ample in the textbook by Preparata and Sharas [19]. This
establishes together with Ben-Oris [2] resulfén logn)
lower bound on the real-RAM for computing the convex
hull. In the dynamic setting this implies that the sum of the
running times ofNSERTandQUERY has to b&(log n). In

we prove the stronger theorem stated below.

Theorem 3 Assume there is a data structure implement-

the upper hull of some points and the lower envelop of ing the SEMIDYNAMIC INSERTION-ONLY CONVEX HULL

some lines. We define (as is standard) the dual transform o
pointp = (a,b) € R? to be the lingy* (a-x—b=y).

For a set of points' the dualS* consists of the lines dual
to the points inS. Every non-vertical line in the plane is
the graph of a linear function. For a finite setof linear
functions the pointwise minimumu, (¢t) = miney, I(t) is

1problem on the real-RAM, that supports extreme point

queries in amortized(n) time, and INSERT in amor-
tizedI(n) time for size parametei. Then we have(n) =
Q(logn) andI(n) = Qlog(n/q(n))).

Similar lower bounds hold if the data structures allows
the other mentioned queries. We can use several small in-

stances of the data structures as describédin Thedrem 1 inMERGE(a, b) Creates a new merging data structure for the
stead of one big data structure. This asymptotically matches setC = A U B. The upper hull of the points stored
the trade-off formulated i Thearem 3. in C can be accessed in left to right order as they are

Structure of the paper In we give a proof stored_in a doubly linked list. The data structures_rep-

of TheoremTL. There we only state the function of the two reseqtmgA and B are from now on only accessible

main components, the geometric merging and the interval- _ [ToM inside the data structure far.

tree.[Section]4 and respectivély Sectibn 6 give more deta“SDELETE(r) Removes thg pomtreferenced to py from all .

of these constructiong._Sectioh 5 discusses the somewhat the sets it is stored |n..Determ|nes the b|ggest' merging

simpler kinetic case[_Section 3 focuses on the variant of structure that containgp. Itis as_sumed th_qt IS on

a search tree we use for the geometric merging, Section 7 the upper hull ofM. Returns the list. of points that

discusses the lower bound results. Due to the limited space replacesp on the upper hull of\/.

available in this extended abstract, several details of the con- |, we describe a data structure, its performance

struction and its analysis are omitted from this version of 5 summarized in the following theorem.

our work. The omitted details can be found in Riko Jacob’s

PhD-Thesis[[T15], and will appear in a journal version. Theorem 4 (Semidynamic Merging Structure)

There exists a data structure that implements the operations

as described i Definition 1. Let be the number of points

stored in the se€’ = A U B (not only the size dJH(A) U

)) _ _ UH(B)). The operationcREATE SET(p) takesO(1) time.
This section gives a proof 1. Using a dou- The operatioMERGE(a, b) takes amortized im@(n). The

bling technique we regularly rebuild the whole data struc- operationDELETE(r) takes amortized (1) time. This time

ture. This allows us to assume that we know in advance thegs, the peLETE operation does not include time spent in

numbern of points to be stored in the data 'structure (Up 10 the data structures storingl and B. The space usage of

a constant). We assume that= 2* for some integet > 2 the data structure iO(JUH(A) U UH(B)|). This space

such thatlogn > 2 andloglogn > 1. Throughout the ysage does not include the space used in the data structures
paperlog stands for the binary logarithm. storing A and B.

We keep the points in semidynamic deletions-only data
structures, following the ideas from Bentley and S&xe [3]. Linear space Using the above merging data structure di-
Insertions create semidynamic sets of rank 1, contain-rectly yields a space usage 6f(nlogn). We reduce the
ing only the inserted point. As soon as we hdwen space usage 10(n) usingseparators A separator uses the
sets of identical rank: we merge them into one set of concept of (the first two) convex layers. The idea is that
rankr + 1. This achieves that every point participates in we can delete a point from the recursive data structure(s)
at mostO(log n/ loglogn) merge operations, and that we as soon as it is on the upper hull of the set we store. This
have at mos©(log” n/ log log n) semidynamic sets simul- ~ achieves that every point is stored in at most two semidy-
taneously. This basic approach for the data structure washamic data structures More precisely, a separator uses re-
introduced by Chan[7] (with a different merging degree), cursively one semidynamic merging data structure and is
and is the same as inl [4,110]. In contrast to the solutionsitself a semidynamic merging structure, followipg Defini-
in [8, 7, T0] we do not rebuild the semidynamic data struc- Hon-l:
ture from scratch after a merge. (IA [4] we already reuse o
the lexicographical ordering of the points.) Instead we use 'NIT(4) Initializes a new data structure that wraps up the
a data structure that maintains the convex hull of the union ~ €xisting semidynamic merging data structreLet 5
of two (merged) sets, provided that the sets themselves are ~ P€ the set of points stored ia. Then B has the in-
stored in semidynamic data structures. We simulate a de- terface of a semidynamic merging structure storing the

2 Outline of the main data structure

greelog n merging by merging along a balanced binary tree. setS. We delete points froml such that no point is
We assume that only points on the upper hull of a semi- stored simultaneously id and in B.

dynamic set get deleted. If we want to delete an inside point, PELETE(p) Delete the poinp € UH(S) from the set of

we delay its deletion until it becomes part of the upper hull. points S stored inB. Returns the list. of points that

This does not affect the amortized performance of the data 'ePlacep on the upper hull ob. Points ofL are deleted

structure. from A to guarantee that points are not stored twice.

Definition 1 (Semidynamic Merging Structure) Using a variant of the merging structure, the operations

is a data structure that supports the following operations ~ NIT andDELETE take amortized constant time per element.
We will not discuss separators further, details can be found

CREATE SET(p) Creates asetl := {p}, UH(A) := (p); in [I5].

Fast queries In order to achieve fast queries, we create be understood as finding the predecessor, but as identify-
an interval tree that allows simultaneous queries to all semi-ing a leaf with a certain property. Every search results in a
dynamic sets. We can think of the changes to the semidy-split operation, we should think of only having an operation
namic sets (given by the dynamization technique) as driving SEARCH AND SPLIT. This search is suspended whenever
the interval tree, which then provides fast queries. The inter-we have to decide how to narrow the interval of possible
val tree is easiest to explain in the dual setting, we changeoutcomes (split-points). To implement such a search the
our point of view and discuss it in the setting of a lower splitter has three pointers to elements, namelydaedi-
envelop data structure. As part of the interval tree we usedate theleft guard and theright guard The guards iden-
secondary structures, i.e., fully dynamic lower envelop datatify the current interval of possible split points. The can-
structures. The gain of the construction is that a secondarydidate defines two smaller intervals, and the next step of
set stores onlyogo(l) n lines. We require that insertions the search is to decide which of them is correct. If we can
and queries of the secondary structures already have théake this decision, wadvancehe search. This amounts to
aimed-at performance, only for the deletions we get a speedchanging the left or right guard to the candidate and deter-
up (by performing a lot of them lazily). mining a new candidate. If the current situation does not
yet allow to advance the search, we keep the sedath
Theorem 5 (Speed up construction)Let D be a nonde- gjing. If the situation changes and we now can decide the
creasing positive function. Assume there exists a dynamicgirection to take from the current candidate, we continue the

lower envelope data structure SUppOrtingsERT in amor- search (by advancing it). A search is finished by executing a
tized O(log n) time, DELETE in amortizedO(D(n)) time, gp|it operation, that has to split between the two guards. All
and VERTICAL LINE QUERY in O(logn) time, withO(n) operations we describe are destructive, the data structure is

space usage, whereis the total number of lines inserted. permanently changed by the execution of an operation. For
Then there exists a dynamic lower envelope data struc-all operations that deal with new elements, we assume that

ture problem supportingNSERT in amortized O(log n) the order of the new elements compared to the old elements
time, DELETE in amortizedO(D(log* n)? + logn) time, is consistent with the operation.

and VERTICAL LINE QUERY in O(logn) time, wheren is

the total number of lines inserted. The space usage of thisBUILD (e1, ..., ;) Returnsanew splitter containing the el-
data structure iO(n). ementse,, ..., e.

EXTEND(s,e) Extends the splitterS' that contains the
We give a proof of this theorem jTSectign 6. We use it twice elementse, ..., e, to the splittere,eq,...,ex OF
to prove[Theorem] 1. For a first bootstrapping step we use €1,y .., Ep, €.
Preparata’s data structure with(n) = O(n). Thisyieldsa sHRINK_LEFT/RIGHT(s) The splitter S is changed by

data structure with deletion tim®(n) = O(log®n). In . deleting its leftmost/rightmost element
a second booltgtrap4p|ng step we get a data structure WithNSTANTIATE _DANGLING_SEARCH(s) The guard pointers
D(n) = O(log "(log" n) +log n) = O(logn). are set to nil, the candidate pointer is set to an ele-

mentc stored at the root-node of the (2,4)-tree. (We
start a new search that is suspended at the first compar-
ison.) In particular we do not specify an element of the
universe to search for.

We use in several places level-linked-(2,4)-trees [14]. ADVANCE _DANGLING _SEARCH.LEFT/RIGHT(s) The left
They allow amortized constant extend operations and finger (or right) guard is changed to point to the element the
searches that are logarithmic in the distance to the finger. candidate pointer is currently pointing to. A new can-
We modify them by suspending the search operation. Wedo didate element is determined according to the finger-
not use arbitrary fingers, but only a finger to the leftmost and search procedure (starting from the leftmost or right-

3 Finger search trees

rightmost leaf of the tree. We call the resulting data struc- most leaf) in the (2,4)-tree. l.e., we disallow all ele-
ture a splitter. Suspending the search is especially useful ments to the right (or left) of the old candidate as pos-
when we search for a point with some geometric properties, sible outcomes of the dangling search.

and we are not sure to already have such a point. We carspLiT(s,w) The splitter S is split into two splittersS;
begin a search and suspend it as soon as we realize thatwe and S, according to the value oy, which is either

do not yet have a good splitting point. Reacting to changes left guard candidate or right guard.

in the geometric situation we can continue the search, notjoIN (sq, (e, ..., ex), s2) The splittersS; andS, become

wasting a single comparison. inaccessible and a new splittér is created. The
A splitter consists of elements drawn from a completely splitter S holds all elements front;, the new ele-

ordered universe, stored in a level-linked (2,4)-tree. In con- mentsey, ..., e; and the elements s in this order.

trast to the usual situation, searching in this tree should not It has an active dangling search, where the left guard

is on the rightmost element ¢f; and the right guard (following ideas from [1i7]). In the following we focus on
on the leftmost element ¢f,. The candidate is chosen the situation (between two equality points) wherg Bdlis
according to a (binary) search ower, . . ., ej. above BdA).
Because deletions are only allowed for points on the
Only the operationsDVANCE _DANGLING _SEARCHand merged upper hull, Bd3) gets closer to BE4) until it
SPLIT are allowed for a splitter with an active dangling eventually touches in (creating new equality points). Ad-
search, the operatioXTEND, SHRINK and (more impor- gitionally equality points can move to the left or right, or a
tantly) Joinare only allowed for splitters that currently have pajr of equality points can disappear. All of these cases have
no dangling search. We do not implement ttieN opera- o pe addressed, but the core problem is to detect if one or
tion as a join of the (2,4)-trees. We rather take it as a wrap- several new pairs of equality points come into existence. We
per for a delayed extension 6% andS;. Remember that sgmple both hulls, leading to an over-approximation of the
instantiating the dangling search in the situation of the join jnner hull and under-approximating of the outer hull. It is
has the promise built in that we will split at one of the ele- gyfficient to only refine the approximations, sampling more

mentse,,, e; before we perform anotheoin operation and more points. We never take any points out of the sam-
with this splitter. We place;, ..., e in an auxiliary bal- ﬂling. This monotonicity allows the use of splitters.
anced search tree and use this to guide the dangling searc

For every pointp € UH(A) we define the concept of a
valid pair of raysin the following way: Leth and/ be two
different tangent lines on Bdl) throughp, i.e. ANl = {p}
and all points ofA are on or below: and!. If h andi con-
tain the two adjacent segments of (B that are adjacent to

p we call this thecanonical pair of raygooted atp. Let H
and L be the intersection points &f(and respectively of)
with Bd(B). Then we have a certificate that there is no
equality point of BdA) and BdB) between the vertical
lines throughH and L. We maintain only some of these
certificates, we require that the maintained certificates are
vertically disjoint. A point for which we maintain the cer-
tificate is called aelected pointFor each selected point we
ddecide upon a particular valid pair of rays, #isong rays
Once we decided to select a pojnte A it stays selected
until Bd(B) drops belowp (and it is therefore no longer a
Proof: We use the version of a (2,4)-tree presented_in [14], certificate of BdB) being locally above (outside) Bd)).
with the modification that searches are suspended. We usd he strong rays of a selected point do not change. We main-
¢(n — Inn) as the potential of a splitter of size Split- tain the intersections of the strong rays with(BqJ explic-
ting such a splitter into two splitters of size respectively ~ itly. These intersections and the equality points are the only
and n, releasex(logmin{n;,n,}) potential, achieving points of the locally outer hull that are explicitly set in rela-
the amortized) (1) split operation, including the additional tion with the locally inner hull.
potential when advancing the search. O The data structure maintains an inclusion-maximal set
of selected points, such that the certificates of two selected
]) points do not overlap: the intersection of two strong rays
4 Geometric merging is outside (above) of U@). For a selected point <
UH(A) this requirement disallows the selection of several

The merging data structure is the core of the new ap- other points of UHA), a range in the left-to-right order-
proach. Here in particular we refer ta[15] for more (and ing of UH(A) aroundp, the shadowof p. The maximal
still important) details of the construction. independent set of selected points is characterized by the

Let A and B be two sets of points in the plane. Assume Selected points not being in the shadow of another selected
that we want to compute Ul U B) given that we already ~ point, and every point of UtH) being in the shadow of
have UH A) and UH B) and maintain this under deletion some selected point.
of points. We focus on the task of identifying (and maintain- Deletions of points on UHB) induce that some shadows
ing) the equality pointsof A and B, i.e. the intersections get smaller. We focus on two consecutive selected pgints
of Bd(A) and Bd B). This identifies the parts of UH1) andq where a shadow is changed. We maintain maximal-
that are inside UCB) and vice versa. What remains are ity by searching for a point of UHA) that is between the
several bridge finding tasks, which we can solve efficiently shadow ofy and the shadow af. If we find such a point we

(or in a list and perform a linear scan to guide the search).
Not until this search is settled withspLIT operation, we
EXTEND S; (and S2) with the elements left (and right) of
the split point. This meets the interface of theLIT opera-
tion.

Theorem 6 The operations of the splitter incur the follow-
ing amortized execution times: The operatiensLb and
JOIN take amortized) (k) time wherek is the number of
the new elementsq,...,ex). The operationSNSTANTI-
ATE DANGLING SEARCH, EXTEND, SHRINK, and SPLIT
take amortized) (1) time. The operatiomDVANCE DAN -
GLING SEARCHtakes a hegative constant time in the amor-
tized sense, i.e., it can pay for analyzing a constant size
geometric situation.

select it (and perform the same maximality check betweenfurther point of UH A) can be selected. We store the points
the new point angh andgq). If we cannot find such a point of UH(A) between the last selected point and the equality
(the set of selected points is maximal), the shadows of pointin a splitter that does not have a dangling search.
andq overlap (or touch at least). A point in the intersection The certificates defined by selected points and candi-
of the two shadows is called(geometric) valid candidate dates form an over-approximation df that is entirely in-
(Geometrically it is easy to verify that a point is a candi- side of UQB). This situation is exemplified if Figuré 1.
date, whereas it seems to require a search to determine th&/e only maintain the intersections of Ba) with the strong

boundaries of the shadows.) rays explicitly, between two intersections we defirghart-
We use a splitter for this search for a selectable point. It cut We consider an appropriate half-plafeand replace
stores all the not-selected points of Ui betweerp andg. in our considerations U@) with UC(B) N H. This situ-

If the candidate of the dangling search is a geometrically ation is exemplified ifFigurg 2. We can have several such
valid candidate, we leave the search dangling. We found ashortcuts. We only have to make sure that the shortcuts do
new certificate that the set of selected points is maximal. If not create new equality points, and that they doawetrlap
another deletion of a point if8 changes the shadows fur- i.e., that any point oB3 is cut away by at most one shortcut.
ther, we do not start over the search, but merely advance it.This ensures that the shortcuts do not make the approxima-
This use of the splitter is of course the motivation for the tion more complicated than the hull itself. When selecting
otherwise somewhat unusual interface of the splitter. In this a point and establishing a new pair of strong rays, we find
way we manage to search for a next point to select, usingthe intersection with the simplified (shortcut) versionkf
overall constant time per point iA. The analysis of the running time of the data structure
For a candidate pointwe determine in which of the two follows the life-cycle of a point. Whepfirst appears as part
shadowsc is contained. This amounts to considering the of UH(B) (as a result of a deletion aB), it can be inside
canonical pair of ray#, [rooted atc. The raysh and! are of UC(A) and is not selected. Then it can become selected.
calledweak rays If the right (left) directed strong ray of It stays selected until it becomes outside of UG (because
(¢) intersectd (h) before it intersects Bd3), thenc is in of a deletion onA4). Once outside it can get cut away by
the shadow op (q). If ¢ is a geometrically valid candidate, a shortcut once and also be part of a bridge finding once.
this shows that we additionally have a certificate that there Finally it might get deleted.
is no equality point of Bfl4) and Bd B) betweerp andg. Every deletion requires us to consider only a constant
size part of the construction, the deletion can pay for revert-
ing the life-cycle of these constantly many points. Every
deletion and every selection of a point can cause the cre-
ation of constantly many shortcuts.

strong rays

Figure 1. A dangling search. Hull A is below
hull B (depicted as a curve, it is here not im-
portantthatitis a polygon). The points pand ¢
are selected, their strong rays are depicted as

a solid line. The point ¢ is the current candi-

Figure 2. A shortcut. The selected pointof A
defines two strong rays, depicted as dashed

lines.
date of the dangling (suspended) search, its) .)
weak rays are depicted as dashed lines. The Processing a deletion of € B has to handle different
resulting over-approximation of A is depicted cases: Each of the two deleted segments (i(FBcdjacent
as a light, dotted line. to r) intersects not, once or twice Bd). The correspond-

ing equality points change. We have to examine the position
Between an equality point and the first selected point we of the new points on the upper hull 8fand decide for each
maintain a certificate that no further point can be selected.of them whether it is inside, outside or on Bt). This is
In analogy to the dangling search, we call the situation a done by reestablishing the construction.
half open search Geometrically we merely consider the We use the splitters and dangling searches if we are look-
weak rayh originating from the segment defining the equal- ing at a situation where it is still possible thatis aboveA.
ity point. If h intersects the next strong ray inside(84, no If we find a stretch where we now have a stretch with

aboveB, we can afford to perform linear scans, both on the
new points on UKIB) and on the surfacing part of UA).

An additional problem is that a deletion can destroy a pair
of equality points, then we have to join two regions whére

is aboveB. We can afford to perform a linear scan to de-
tect the situation (the points of get outside UCB), on B

we have new points), and we can use fizeN operation

on splitters to join the regions. O# the shortcuts achieve
that we have to deal with only constantly many old points
of B. This situation is exemplified if_Figure 3. For a de-
tailed treatment of the different cases see [15].

r of

Figure 3. Joining two strips. The point
hull B gets deleted. The points p and ¢ of B
are selected, before the deletion they belong
to different regions of the construction. The

weak rays of the neighbors of r are depicted
as dashed lines. The range of UH(A) marked
by SC can be arbitrarily long; here shortcuts
achieve that we can regard all of the range
of UH(A) between X and Y as new points.

5 Kinetic Heaps

Using the semidynamic geometric merging data struc-
ture of[Theorem]4 we can design a kinetic heap:

Theorem 7 There exists a data structure for the fully dy-
namic kinetic heap problem supporting, for size parame-
tern, INSERTandDELETEin amortizedO(log n) time, and
KINETIC FIND MIN in amortizedO(1) time. The space us-
age of the data structure i9(n).

Again we could charge the cost of the deletion to the in-

Every linel that is part of the lower envelope of its semi-
dynamic structure defines attivity interval I; that con-
tains the query-values for whidhis the correcfFIND-MIN
answer.

Lemma 8 (Kinetic speed up) Let D be a nondecreasing
positive function. Assume there exists a fully dynamic
kinetic heap data structure supportingSERT in amor-
tized O(log n) time, DELETE in amortizedO(D(n)) time,
andKINETIC FIND MIN in O(1) amortized time, where is

the total number of lines inserted. Assume the space usage
of this data structure i®(n).

Then there exists a fully dynamic kinetic heap data struc-
ture supportingINSERT in amortizedO(logn) time and
DELETE in amortizedO(D(log” n) + logn) time, andki -
NETIC FIND MIN in amortizedO(1) time, wheren is the
total number of lines inserted. The space usage of this data
structure isO(n).

Proof: We use the already explained dynamization tech-
nigue with merging degrelbbgn. We use one secondary
structure with the assumed performance. This secondary
structure stores at moét(log® n) lines simultaneously, the
current answer from every (un-merged/top-level) semidy-
namic structure.

For the current time we store all thesIND-MIN answers
from the semidynamic sets in the secondary structure. Ad-
ditionally we keep a (2,4)-tree holding the right endpoints
of the corresponding activity intervals. We also keep the
smallest such endpoint explicitly, it tells how long the cur-
rent answer remains valid.

For aKINETIC-FIND-MIN query for timet we do the
following: We first check with the smallest right endpoint
whether the current secondary structure is up-to-date. If so,
there is no further change to the data structure. If this is
not the case we delete all endpoints from the (2,4)-tree that
are smaller than. We lazily delete the corresponding lines
from the secondary structure, i.e. we merely mark them as
deleted and remove them only when the data structure is re-
built because half of the lines stored are marked as deleted.
For all semidynamic sets that are no longer represented in
the secondary structure we perfornkETIC-FIND-MIN
query for timet. We insert the resulting lines into the sec-
ondary structure and insert the right endpoints of the seg-
ments into the (2,4)-tree. We update the smallest right end-
point when updating the (2,4)-tree. Now we perform the
guery on the secondary structure for time

sertion, thus achieving amortized constant time deletions. For aMERGE operation (stemming from the dynamiza-
We give some more details about this construction, as it il- tion technique) we remove the affected current endpoints
lustrates several technigues that we also use for the generdfom the (2,4)-tree and perform lazy deletions of the lines
construction of Theorem 1. The semidynamic data structurein the secondary structure. We query the new data structure
of allows kinetic find-min queries in amortized for the current time and insert the resulting line in the sec-
O(1) time. We perform a linear scan when answering a ondary structure, and the right endpoint of the segment into
query, this is charged to the insertion. the (2,4)-tree.

For aDELETE(!) operation we deletefrom the semidy- The tree structure of an interval tr@eis that of a search
namic data structure it is stored in, and if the deleted line tree storing at the leafs the endpoints of the intervals. For
is currently stored in the secondary structure we delete itevery intervall exists acanonical nodeof 7', defined as
from the secondary structure (not lazily). We call this sit- the nodev of 7 where both endpoints of are (would
uation aforceddeletion. We also delete the right endpoint be) leafs belowv, but none of the children of enjoys
from the (2,4)-tree. We query the changed semidynamicthis property. Like Chan we choose the underlying tree
data structure for the current time and insert the line into the structure to be that of an insertion-only B-tree. In con-
secondary structure and the right endpoint of the answeredrast to Chan we use degree parametelogf, indepen-
segment into the (2,4)-tree. dent of the bootstrapping. With this choice the heigh¥ of

The run-time analysis keeps accounts for the lines. Everyis bounded byO(logn/loglogn). Even if we allow sec-
line has to pay for one insertion and deletion into the (2,4)- ondary structures of sizeg®*) n, we achieve vertical line
tree and for one insertion, query, and lazy deletion in the queries inO(logn) time. Unlike Chan we allow the lines
secondary structure for the at mast ./ loglog n merging to be stored anywhere on the pathirfrom the root to the
levels. This totals ta(log n) amortized time, charged to canonical node. This does not compromise the correctness
the insertion of the line. A deletion pays for the deletion of the queries. Like infj4] this allows us to save time when
of one line in the secondary structure and for querying and determining for a line the appropriate nodeZoto store it.
reinserting one right endpoint in the (2,4)-tree and a line Additionally, this freedom allows us to perform the move-
into the secondary structure, thus reverting some other linesment of lines lazily (as a result of changed lower envelopes

life-cycle. o in the semidynamic sets, i.e., because of merge or delete
Using Preparata’s L8] semidynamic insertion only data OPerations). Chan's argument bounding the work spent in

structure, we achieve insertions@nlog n) time andO(1) node-split operation carries over.

kinetic heap queries. Th&(n) amortized deletions do Like in the kinetic case we can allow every line to be

not only rebuild the data structure, but also pay for ad- inserted into a secondary structure once as the result of
vancing the kinetic search over all segments, thus achiev-a merge operation of the dynamization technique. Here
ing amortizedO(1) queries. Using this data structure in we also have to determine appropriate node§ ofthere

(bootstrapping) we gél(logn) amortized in- ~ we should insert the lines. We address this problem by

sertions,0(1) amortized queries and amortizét{log® n) forming chunksof log n/ log log n consecutive segments on
deletions. Bootstrapping one more time reduces the amorthe lower envelope. Now we determine for the complete
tized deletion cost t®(log n), yielding[Theorem|7. chunk one interval and find the appropriate nod€ jrtak-

ing O(logn) time. This costs per segmeni(loglogn)
6 General queries: Interval Tree time, the same as for inserting the line into the secondary

structure. This chunk size is small enough to move the
chunk inO(logn) time, i.e. to insert all lines into a dif-

ferent secondary structure. This allows us to maintain the
main difference is that we need to maintain several sec-chunks under deletions of lines and also bounds the work

ondary structures, each of limited sizg®®) n. To orga- When we split nodes of the interval tree.

nize them we use the activity intervals of the segments. Ge- As part of moving a line from one secondary structure to
ometrically this construction is very similar to Chans [7], another, we also need to delete the line from the secondary
in particular the reasoning for the correctness of the queriesstructure it is currently stored in. We will perform these

is the same, our construction allows the same queries withdeletions lazily, delaying the insertion of the line into the
the same performance. new secondary structure as well. We call this concépra

A traditional interval tree is a data structure that stores movementWhen half of a secondary structure consists of
intervals in a way that allows efficient containment queries. lazily moved lines, we rebuild it from scratch. Only then
More precisely for a sef of intervals, the query consists We execute lazy movements, i.e., we insert the lines in the
of 2 € R and the answer consists of all intervdlse J secondary structure they belong.
such thatz € I. The central idea is to store the intervals If a line [is part of the merging of semidynamic sets, its
at the nodes of a search tree, such that only intervals storednterval shrinks because the liiés now competing with
on a standard search-path fothave to be considered for more lines for a place on the lower envelope. This means
the containment query. We create a secondary structure fothat the canonical node of the interval of a line will in gen-
every node off . If we store the lines of the lower envelopes eral be closer to the leafs. We do not really need to move the
of the semidynamic sets at appropriate nodeg adis given line, it is still stored on the path from the root to its canonical
by their activity interval, we can correctly answeKD-MIN node. Even if the liné is no longer on the lower envelope
queries. (but is still not deleted front) we can storé at any node

The overall approach to proye_Theorem 5 is similar to
the use of a secondary structure in the kinetic solution. The

in the interval tree without compromising the correctness of computation is the algebraic real-RAM. The lower bounds
the queries. on the decision problems hold for algebraic computation
In contrast to this, a deletion of lirec S can extend ac- trees. A real-RAM algorithm can be understood as generat-
tivity intervals, first of all the two segments that are neigh- ing a family of decision trees, the height of the tree corre-
bors ofl on the lower envelope of the semidynamic set.of sponds to the worst-case execution time of the algorithm.
But also a lineh that becomes part of the lower envelope This is the model used in the seminal paper by Ben-Or,
and is still stored somewhere ih get a new activity in- from where we take the main theorem [2, Theorem 3] that
terval. This can be bigger (not a subset) than the last non-bounds the depth of a computation tree in terms of the num-
empty activity intervall;, (the one justifying the position ber of connected components of the decided set. We con-
of h in 7)), only if I;, was defined by an intersection point sider the following decision problem, a variant of element-
of h and!. This happens for at most two lines per merging distinctness.
participated in. When the activity interval of a line extends,
we might have to immediately move it to a different sec-
ondary structure. As we do not allow multiple copies of one
line, we have to delete the line from a secondary structure¥! = ¥2 <

using the (slowpELETE operation, we say that we perform | emma 9 For 8 < k < n the depthh of an algebraic
aforced move It is essential for our analysis to bound the computation tree (the running time of a real-RAM algo-

number of forced moves. rithm) deciding the seDISIOINTSET , is lower bounded
We distinguish two cases depending on the performancepy j, > ¢ - nlog k for somec > 0. '

of the deletions of the secondary structure. The size of a sec- o

ondary structure is bounded By(log n - 1%£". log? n), Proof: (sketch) There ardk + 1)™ ways of distribut-

. X loglogn loglogn H g i .
the terms stemming respectively from the degre&@ pthe ing the valuesz; into the_ intervals formed Dby they;,
no two of them can be in the same connected compo-

chunk size, and the number of semidynamic sets. We sim- f T) 2 Th
plify this bound toO(log"). nents of DSJOINTSET, ,. Using [2, Theorem 3] we

AssumeD(log*n) = Q(logn) (e.g. D(n) = O(n) 9et2"3"+***" > (k 4 1) implying the claimed lower
in the first bootstrapping step). Every line participates bound.]
in at mostO(log n/loglogn) merge operations, this also The running time functions in the following theorems
bounds the number of forced moves a deletion can causegre assumed to be non-decreasing with the size of the data

This term is by assumption bounded I6}(D(log" n)), structure. As these functions are used as upper bounds on

resulting in a total amortized cost @(D(log"n)?) a5 rynning times, this is no loss of generality.
claimed infTheorem 5. o
Otherwise we hav@®(log* n) — O(logn) (e.g. D(n) — Definition 3 SEMIDYNAMIC KINETIC MEMBERSHIP asks

O(log® n) in the second bootstrapping step). In this situ- for a data structure that maintains a sétof real numbers
ation we move some of the costs for forced moves to the under insertions, and allows for a valuethe queryz < S,
insertions without changing their asymptotic performance. Provided thatz is not smaller than any previously per-
To do so, we introducbkarrier levelsof the merging in the ~ formed query.

dynamization technique. At a barrier level, all lines in the Thaorem 10 Let A be a data structure that implements
created semidynamic set get paid a forced move. ChoOS—¢yviipyNAMIC KINETIC MEMBERSHIP. For size param-

ing the paramete(n) = logn/D(log"), we charge(n) eter n assume that the amortized running time of tke
forced moves to every insertion. Now a deletion has only SERTOperation ofA be bounded by(n) and the amortized
to pay for forced moves back to the last barrier level, leav- running time for the<INETIC-FIND-MIN query be bounded
ing us with less thaibg n/b(n) forced moves to be paid by n

the deletion. This chargea(b(n) - D(log' n)) — Ologn) . BYa(n)- Then we havé(n) = © (log 7725).

time to the insertion, thus not changing the asymptotic per-
formance. The forced moves a single deletion has to pay
is O(D(log" n)logn/b(n)) = O(D(log* n)?). This yields
Cheoremb.

Definition 2 For a vectorz = (x1,...,Zn,Y1,..-,Yk) €
R"** we have: € DISJOINTSET, , C R™** if and only if
-+ <y, and for all: and j we haver; # y;.

Proof: By reduction from DSJOINTSET:;,C. We choose
the parametetk = |[n/q(n)]. Let the vectorz =
(a1,as...,a,,b1,bs...,by) € R*"F be some input to
DISJOINTSET, . We check in linear time whether we
haveb; < by << bi. If this is not the case, we re-
7 Lower bounds ject. We insert all the values; into A. Then we perform
queries for all theb; (in the natural order). If one of the

In this section we derive lower bounds on running times queries return$; < S, i.e., b; = q; for somed and j,
that asymptotically matches the quality of the data struc- we reject. Otherwise we accept. This correctly solves the
tures we presented in the previous sections. The model OiDISJOINTSET:;k problem.

The reduction takes linear time. By Lemma 9 the run- References

ning time of this algorithm is bounded ¥ (n) + d) - n +
q(n) -k > ¢-n-logk for some constants andd. Us-
ing our choice ofk we get(I(n) +d) - n+mn > c-n-
log |n/q(n)]. Dividing by n and rearranging terms yields
I(n) > c-log(|n/q(n)]) — 1 - d. O

Note that forq(n) = O(n'~¢), [Theorem 10 implies
I(n) = Q(ogn). Another example is thaf(n)
O(loglogn) yieldsq(n) = Q(n/(logn)°M).

Theorem 11 Consider a data structure implementing the
SEMIDYNAMIC MEMBERSHIP problem on the real-RAM
that supportsMEMBER queries in amortizeg(n) time, for
size parameten. Then we have(n) = Q(logn).

Proof: Reduction from DsJoINTSET!,. Let I(k) be an
upper bound on the amortized insertion time for one ele-
ment when creating a data structure holdinglements.
We choose the parameter = k - (1 + I(k)). Let the
vector z = (ay,...,an,b1,...,b,) € R be an in-
put to DISJOINTSET, . We check in timek whether we
haveb; < by < --- g’bk. If this is not the case, we reject.
We insert the values,, . . ., b, into the data structure. Now
we perform queries for the values, . . ., a,,. By CEmMmMa®
we get for sufficiently largé: and some constamntthe in-
equalityk - (14 I(k)) +n-q(k) > c¢-nlogk. O

Corollary 12 Consider a kinetic heap data structure. As-
sume that for size parametarthe amortized running time
of theINSERT operation is bounded b¥(n) and the amor-
tized running time for theKINETIC-FIND-MIN query is

bounded by;(n). Then we havé(n) = © (1og

n

q(n))'
Proof: We use the data structure to solve §#MIDYNAMIC
KINETIC MEMBERSHIP. For an insertion ofi; we insert
the tangent oy = —x2/2 at the point(a;, —a?/2). For
a member query; we performkKINETIC-FIND-MIN (b;). If
the query returns the tangent line, we answere' S”. The
corollary follows from[Theorem 10. O

Finally we can also conclude the main theorem:
Proof: (of Theorem B) A semidynamic insertion-only

convex-hull data-structure can be used as a kinetic heap (du-

ality), provides the bound on the insertions.
The bound on the queries relies 11, with the
same geometric reduction as[in Corollary 12.

8 Open problems

It remains open whether a data structure achieving worst-

caseO(logn) update times exists. It is also unclear if other

[1] A. M. Andrew. Another efficient algorithm for convex
hulls in two dimensions. Information Processing Letters
9(5):216-219, 1979.

M. Ben-Or. Lower bounds for algebraic computation trees.

In Proc. 15th Annual ACM Symposium on Theory of Com-

puting, 80 — 861983.

J. L. Bentley and J. B. Saxe. Decomposable searching prob-

lems. |. Static-to-dynamic transformation]. Algorithms

1(4):301-358, 1980.

G. S. Brodal and R. Jacob. Dynamic planar convex hull with

optimal query time and(logn - loglogn) update time.

In Proc. 7th Scandinavian Workshop on Algorithm Theory

volume 1851 ofLecture Notes in Computer Sciengages

57-70. Springer, 2000.

T. M. Chan. Optimal output-sensitive convex hull algo-

rithms in two and three dimensions.Discrete Comput.

Geom, 16(4):361-368, 1996. Eleventh Annual Symposium

on Computational Geometry (Vancouver, BC, 1995).

T. M. Chan. Remarks ok-Level algorithms in the plane,

1999. Manuscript.

T. M. Chan. Dynamic planar convex hull operations in near-

logarithmic amortized timeJournal of the ACM48(1):1—

12, January 2001.

H. Edelsbrunner and E. Welzl. Constructing belts in two-

dimensional arrangements with applicatio8$AM J. Com-

put, 15(1):271-284, 1986.

R. L. Graham. An efficient algorithm for determining the

convex hull of a finite planar setinformation Processing

Letters 1(4):132-133, 1972.

K. H., R. Tarjan, and T. K. Faster kinetic heaps and their use

in broadcast scheduling. Froc. 12th ACM-SIAM Sympo-

sium on Discrete Algorithmpages 836-844, 2001.

[11] S. Har-Peled and M. Sharir. On-line point location in planar
arrangements and its applications Pimc. 12th ACM-SIAM
Sympos. Discrete Algorithmgages 57—-66, 2001.

[12] J. Hershberger and S. Suri. Applications of a semi-dynamic
convex hull algorithmBIT, 32(2):249-267, 1992.

[13] J. Hershberger and S. Suri. Off-line maintenance of planar

configurations.J. Algorithms 21(3):453—-475, 1996.

K. Hoffmann, K. Mehlhorn, P. Rosenstiehl, and R. E. Tarjan.

Sorting Jordan sequences in linear time using level-linked

search treednformation and Control (now Information and

Computation)68(1-3):170-184, 1986.

R. Jacob. Dynamic Planar Convex Hull PhD thesis,

BRICS, Dept. Comput. Sci., University of Aarhus, 2002.

http://iwww.brics.dk/ rjacob/Diss.

D. G. Kirkpatrick and R. Seidel. The ultimate planar convex

hull algorithm? SIAM J. Compuf.15(1):287—-299, 1986.

[17] M. H. Overmars and J. van Leeuwen. Maintenance of con-
figurations in the planel. Comput. System Sc23(2):166—
204, 1981.

[18] F. P. Preparata. An optimal real-time algorithm for planar
convex hulls.Comm. ACM22(7):402—-405, 1979.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(14]

(15]

(16]

queries (like the segment of the convex hull intersected by a[19] F. P. Preparata and M. |. Sham@omputational geometry,

line) can also be achieved M(logn) time. Furthermore it
would be desirable to come up with a simpler data structure
achieving the same running times.

An introduction Springer-Verlag, New York, 1985.

http://www.brics.dk/~rjacob/Diss

	Introduction
	Outline of the main data structure
	Finger search trees
	Geometric merging
	Kinetic Heaps
	General queries: Interval Tree
	Lower bounds
	Open problems

