
Alcom-FT Technical Report Series
ALCOMFT-TR-02-53

Cache Oblivious Search Trees via Binary Trees of

Small Height

Gerth Stølting Brodal∗,† Rolf Fagerberg∗ Riko Jacob∗

Abstract

We propose a version of cache oblivious search trees which is simpler
than the previous proposal of Bender, Demaine and Farach-Colton and
has the same complexity bounds. In particular, our data structure avoids
the use of weight balanced B-trees, and can be implemented as just a
single array of data elements, without the use of pointers. The structure
also improves space utilization.

For storing n elements, our proposal uses (1 + ε)n times the element
size of memory, and performs searches in worst case O(log

B
n) memory

transfers, updates in amortized O((log2 n)/(εB)) memory transfers, and
range queries in worst case O(log

B
n + k/B) memory transfers, where k

is the size of the output.
The basic idea of our data structure is to maintain a dynamic binary

tree of height log n + O(1) using existing methods, embed this tree in
a static binary tree, which in turn is embedded in an array in a cache
oblivious fashion, using the van Emde Boas layout of Prokop.

We also investigate the practicality of cache obliviousness in the area
of search trees, by providing an empirical comparison of different methods
for laying out a search tree in memory.

1 Introduction

Modern computers contain a hierarchy of memory levels, with each level acting
as a cache for the next. Typical components of the memory hierarchy are:
registers, level 1 cache, level 2 cache, main memory, and disk. The time for
accessing a level in the memory hierarchy increases from one cycle for registers
and level 1 cache to figures around 10, 100, and 100,000 cycles for level 2 cache,

∗BRICS (Basic Research in Computer Science, www.brics.dk, funded by the Danish Na-
tional Research Foundation), Department of Computer Science, University of Aarhus, Ny
Munkegade, DK-8000 Århus C, Denmark. E-mail: {gerth,rolf,rjacob}@brics.dk. Par-
tially supported by the Future and Emerging Technologies programme of the EU under
contract number IST-1999-14186 (ALCOM-FT).

†Supported by the Carlsberg Foundation (contract number ANS-0257/20).

1

main memory, and disk, respectively [13, p. 471], making the cost of a memory
access depend highly on what is the current lowest memory level containing
the element accessed. The evolution in CPU speed and memory access time
indicates that these differences are likely to increase in the future [13, pp. 7
and 429].

As a consequence, the memory access pattern of an algorithm has become
a key component in determining its running time in practice. Since classic
asymptotical analysis of algorithms in the RAM model is unable to capture
this, a number of more elaborate models for analysis have been proposed.
The most widely used of these is the I/O model of Aggarwal and Vitter [1],
which assumes a memory hierarchy containing two levels, the lower level hav-
ing size M and the transfer between the two levels taking place in blocks of B
elements. This model is illustrated in Figure 1. The cost of the computation
in the I/O model is the number of blocks transferred. This model is adequate
when the memory transfer between two levels of the memory hierarchy dom-
inates the running time, which is often the case when the size of the data
significantly exceeds the size of main memory, as the access time is very large
for disks compared to the remaining levels of the memory hierarchy.

Block
Memory 1

CPU

Memory 2

Figure 1: The I/O model

Recently, the concept of cache oblivious algorithms has been introduced by
Frigo et al. [12]. In essence, this designates algorithms optimized in the I/O
model, except that one optimizes to a block size B and a memory size M which
are unknown. This seemingly simple change has significant consequences: since
the analysis holds for any block and memory size, it holds for all levels of the
memory hierarchy. In other words, by optimizing an algorithm to one unknown
level of the memory hierarchy, it is optimized to each level automatically.
Furthermore, the characteristics of the memory hierarchy do not need to be
known, and do not need to be hardwired into the algorithm for the analysis to
hold. This increases the portability of implementations of the algorithm, which
is important in many situations, including production of software libraries
and code delivered over the web. For further details on the concept of cache

2

obliviousness, see [12].
Frigo et al. [12] present optimal cache oblivious algorithms for matrix trans-

position, FFT, and sorting. Bender et al. [5], give a proposal for cache obliv-
ious search trees with search cost matching that of standard (cache aware)
B-trees [4]. While most of the results in [5, 12] are of theoretical nature, [12]
contains some preliminary empirical investigations indicating the competitive-
ness of cache oblivious algorithms. The authors declare the determination of
the range of practicality of cache oblivious algorithms an important avenue
for future research.

In this paper, we study further the subject of cache oblivious search trees.
In the first part, we propose a simplified version of the cache oblivious search
trees from [5], achieving the same complexity bounds. In particular, our data
structure avoids the use of weight balanced B-trees of Arge and Vitter [3],
and it can be implemented in a single array of data elements without the
use of pointers. Our structure also improves space utilization, implying that
for given n, a larger fraction of the structure can reside in lower levels of the
memory hierarchy. The lack of pointers also makes more elements fit in a block,
thereby increasing the parameter B. These effects tend to decrease running
time in practice. For storing n elements, our data structure uses (1+ε)n times
the element size of memory. Searches are performed in worst case O(logB n)
memory transfers, updates in amortized O((log2 n)/(εB)) memory transfers,
and range queries in worst case O(logB n + k/B) memory transfers, where k
is the size of the output. This matches the asymptotic complexities of [5]. We
note that as in [5], the amortized complexity of updates can be lowered by
the technique of substituting leaves with pointers to buckets each containing
Θ(log n) elements and maintaining the size bound of the buckets by splitting
(merging) overflowing (underflowing) buckets. The price to pay is that ranges
cannot be reported in the optimal number Θ(k/B) of memory transfers, since
the buckets can reside in arbitrary positions in memory.

The basic idea of our data structure is to maintain a dynamic binary tree
of height log n + O(1) using existing methods [2, 14], embed this tree in a
static binary tree, which in turn is embedded in an array in a cache oblivious
fashion, using the van Emde Boas layout [5, 19, 22]. The static structures are
maintained by global rebuilding, i.e. they are rebuilt each time the dynamic
tree has doubled or halved in size.

In the last part of this paper, we try to assess more systematically the
impact of the memory layout of search trees by comparing experimentally
the efficiency of the cache-oblivious van Emde Boas layout with a cache-aware
layout based on multiway trees, and with classical layouts such as Breath First
Search (BFS), Depth First Search (DFS), and inorder. Our results indicate
that the nice theoretical properties of cache oblivious search trees actually do
carry over into practice. We also implement our proposal, and confirm its

3

practicality.

1.1 Related work

One technique used by our data structure is a cache oblivious layout of static
binary search trees permitting searches in the asymptotically optimal num-
ber of memory transfers. This layout, the van Emde Boas layout, was pro-
posed by Prokop [19, Section 10.2], and is related to a data structure of
van Emde Boas [21, 22].

Another technique used is the maintenance of binary search trees of height
log n+O(1) using local rebuildings of subtrees. The small height of the tree al-
lows it to be embedded in a perfect binary tree (a tree with 2k−1 internal nodes
and optimal height) which has only a constant factor more nodes. Techniques
for maintaining small height in binary trees were proposed by Andersson and
Lai [2], who gave an algorithm for maintaining height dlog(n + 1)e + 1 using
amortized O(log2 n) work per update. By viewing the tree as a linear list,
this problem can be seen to be equivalent to the problem of maintaining n
elements in sorted order in an array of length O(n), using even redistribution
of the elements in a section of the array as the reorganization primitive during
insertions and deletions of elements. In this formulation, a similar solution
had previously been given by Itai et al. [14], also using amortized O(log2 n)
work per update. In [9], a matching Ω(log2 n) lower bound for algorithms
using this primitive was given.

Both the van Emde Boas layout and the technique of Itai et al. were used in
the previous proposal for cache oblivious search trees [5]. The difficulty of this
proposal originates mainly from the need to change the van Emde Boas layout
during updates, which in turn necessitates the use of the weight balanced B-
trees of Arge and Vitter [3]. By managing to use a static van Emde Boas
layout (except for occasional global rebuildings of the entire structure), we
avoid the use of weight balanced B-trees, and arrive at a significantly simpler
structure.

Another improvement in our data structure is to avoid the use of pointers.
The term implicit is often used for pointer-free implementations of trees and
other data structures which are normally pointer based. One early example
is the heap of Williams [23]. There is a large body of work dealing with
implicit data structures, see e.g. [7, 11, 18] and the references therein. In that
work, the term implicit is often defined as using only space for the n elements
stored, plus O(1) additional space. In the present paper, we will abuse the
terminology a little, taking implicit to mean a structure stored entirely in an
array of elements of length O(n).

We note that independently, a data structure very similar to ours has been
proposed by Bender et al. [6]. Essentially, their proposal is leaf-oriented, where

4

ours is node-oriented. The leaf-oriented version allows an easy implementa-
tion of optimal scanning from any given location (the node-oriented version
needs successor pointers for this), whereas the node-oriented version allows
an implicit implementation, with the associated increase in B and decrease in
memory usage.

The impact of different memory layouts for data structures has been stud-
ied before in different contexts. In connection with matrices, significant speed-
ups can be achieved by using layouts optimized for the memory hierarchy—see
e.g. the paper by Chatterjee et al. [8] and the references it contains. LaMarca
and Ladner consider the question in connection with heaps [16]. Among other
things, they repeat an experiment performed by Jones [15] ten years earlier,
and demonstrate that due to the increased gaps in access time between levels
in the memory hierarchy, the d-ary heap has increased competitiveness rel-
ative to the pointer-based priority queues. For search trees, B-trees are the
standard way to implement trees optimized for the memory hierarchy. In the
I/O-model, they use the worst case optimal number of memory transfers for
searches. For external memory, they are the structure of choice, and are widely
used for storing data base indexes. Also at the cache level, their memory op-
timality makes them very competitive to other search trees [17, p. 127].

Recently, Rahman and Raman [20] made an empirical study of the perfor-
mance of various search tree implementations, with focus on showing the signif-
icance of also minimizing translation look-aside buffer (TLB) misses. Based
on exponential search trees, they implemented a dynamization of the van
Emde Boas layout supporting searches and updates in O(logB(n) + log log n)
memory transfers. They compared it experimentally to standard B-trees and
three-level cache aware trees, and reported that the cache oblivious trees were
better than standard B-trees but worse than the cache aware structures.

1.2 Preliminaries

As usual when discussing search trees, a tree is rooted and ordered. The depth

d(v) of a node v in a tree T is the number of nodes on the simple path from
the node to the root. The height h(T) of T is the maximum depth of a node
in T , and the size |T | of T is the number of nodes in T . For a node v in a
tree, we let Tv denote the subtree rooted at v, i.e. the subtree consisting of v
and all its descendants, and we let the height h(v) of v be the height of Tv.
A complete tree T is a tree with 2h(T)−1 nodes.

A search tree will denote a tree where all nodes store an element from some
totally ordered universe, and where all elements stored in the left and right
subtrees of a node v are respectively smaller than and larger than the element
at v. We say that a tree T1 can be embedded in another tree T2, if T1 can be
obtained from T2 by pruning subtrees. In Figure 2 is shown the embedding of

5

6

4

1

3

5

8

7 11

10 13

Figure 2: The embedding of a search tree with height 4 and size 10 in a complete
tree with height 5

a search tree of size 10 in a complete tree of height 5.

2 Memory Layouts of Static Trees

In this section we discuss four memory layouts for static trees: DFS, inorder,
BFS, and van Emde Boas layouts. We assume that each node is represented
by a node record and that all node records for a tree are stored in one array.
We distinguish between pointer based and implicit layouts. In pointer based
layouts the navigation between a node and its children is done via pointers
stored in the node records. In implicit layouts no pointers are stored; the
navigation is based solely on address arithmetic. Whereas all layouts have
pointer based versions, implicit versions are only possible for layouts where the
address computation is feasible. In this paper we will only consider implicit
layouts of complete trees. A complete tree of size n is stored in an array of n
node records.

DFS layout The nodes of T are stored in the order they are visited by a
left-to-right depth first traversal of T (i.e. a preorder traversal).

Inorder layout The nodes of T are stored in the order that they are visited
by a left-to-right inorder traversal of T .

BFS layout The nodes of T are stored in the order they are visited by a
left-to-right breath first traversal of T .

van Emde Boas layout The layout is defined recursively: A tree with only
one node is a single node record. If a tree T has two or more nodes, let
H0 = dh(T)/2e, let T0 be the tree consisting of all nodes in T with depth
at most H0, and let T1, . . . , Tk be the subtrees of T rooted at nodes with
depth H0 + 1, numbered from left to right. We will denote T0 the top

tree and T1, . . . , Tk the bottom trees of the recursion. The van Emde
Boas layout of T consists of the van Emde Boas layout of T0 followed by
the van Emde Boas layouts of T1, . . . , Tk.

Figure 3 gives the implicit DFS, inorder, BFS, and van Emde Boas layouts for
a complete tree with height four.

We now discuss how to calculate the position of the children of a node v
at position i in the implicit layouts. For the BFS layout, the children are at

6

DFS

1
2

3

4 5

6

7 8

9

10

11 12

13

14 15

inorder

8
4

2

1 3

6

5 7

12

10

9 11

14

13 15

BFS

1
2

4

8 9

5

10 11

3

6

12 13

7

14 15

van Emde Boas

1
2

4

5 6

7

8 9

3

10

11 12

13

14 15

Figure 3: The DFS, inorder, BFS, and van Emde Boas layouts for a complete tree
with height 4. Numbers designate positions in the array of node records

position 2i and 2i + 1—a fact exploited already in the 1960s in the design of
the implicit binary heap [23]. For the DFS layout, the two children are at
positions i + 1 and i + 2h(v)−1, and in the inorder layout the two children are
at positions i − 2h(v)−2 and i + 2h(v)−2.

For the implicit van Emde Boas layout the computations are more involved.
Our solution is based on the fact that if we for a node in the tree unfold the
recursion in the van Emde Boas layout until this node is the root of a bottom
tree, then the unfolding will be the same for all nodes of the same depth. In a
precomputed table of size O(log n), we for each depth d store the size B[d] of
this bottom tree, the size T [d] of the corresponding top tree, and the depth D[d]
of the root of the corresponding top tree. When laying out a static tree, we
build this table in O(log n) time by a straightforward recursive algorithm.

During a search from the root, we keep track of the position i in a BFS
layout of the current node v of depth d. We also store the position Pos [j] in
the van Emde Boas layout of the node passed at depth j for j < d during the
current search. As the bits of the BFS number i represents the left and right
turns made during the search, the log(T [d] + 1) least significant bits of i gives
the index of the bottom tree with v as root among all the bottom trees of the
corresponding top tree. Since T [d] is of the form 2k−1, these bits can be found
as i and T [d]. It follows that for d > 1, we can calculate the position Pos [d]
of v by the expression

Pos [d] = Pos[D[d]] + T [d] + (i and T [d]) · B[d] .

At the root, we have i = 1, d = 1, and Pos [1] = 1. Navigating from a node
to a child is done by first calculating the new BFS position from the old, and
then finding the value of the expression above.

7

The worst case number of memory transfers during a top down traversal of
a path using the above layout schemes is as follows, assuming each block stores
B nodes. With the BFS layout, the topmost blog(B + 1)c levels of the tree
will be contained in at most two blocks, whereas each of the following blocks
read only contains one node from the path. The total number of memory
transfers is therefore Θ(log(n/B)). For the DFS and inorder layouts, we get
the same worst case bound when following the path to the rightmost leaf, since
the first dlog(n + 1)e − dlog Be nodes have distance at least B in memory,
whereas the last blog(B + 1)c nodes are stored in at most two blocks. As
Prokop [19, Section 10.2] observed, in the van Emde Boas layout there are at
most O(logB n) memory transfers. Note that only the van Emde Boas layout
has the asymptotically optimal bound achieved by B-trees [4].

We note that DFS, inorder, BFS, and van Emde Boas layouts all support
efficient range queries (i.e. the reporting of all elements with keys within a
given query interval), by the usual recursive inorder traversal of the relevant
part of the tree, starting at the root.

We argue below that the number of memory transfers for a range query in
each of the four layouts equals the number of memory transfers for two searches
plus O(k/B), where k is the number of elements reported. If a range report-
ing query visits a node that is not contained in one of the search paths to the
endpoints of the query interval, then all elements in the subtree rooted at the
node will be reported. As a subtree of height dlog(B + 1)e stores between B
and 2B− 1 elements, at most k/B nodes with height larger than dlog(B + 1)e
are visited which are not on the search paths to the two endpoints. Since sub-
trees are stored contiguously for both the inorder and DFS layouts, a subtree
of height dlog(B + 1)e is stored in at most three blocks. The claimed bound
follows for these layouts. For the van Emde Boas layout, consider a subtree T
of height dlog(B + 1)e. There exists a level in the recursive layout where the
topmost levels of T will be stored in a recursive top tree and the remaining
levels of T will be stored in a contiguous sequence of bottom trees. Since the
top tree and each bottom tree has size less than 2B − 1 and the bottom trees
are stored contiguously in memory, the bound for range reportings in the van
Emde Boas layout follows.

For the BFS layout, we prove the bound under the assumption that the
memory size is Ω(B log B). Observe that the inorder traversal of the relevant
nodes consists of a left-to-right scan of each level of the tree. Since each level
is stored contiguously in memory, the bound follows under the assumption
above, as the memory can hold one block for each of the lowest dlog(B + 1)e
levels simultaneously.

8

3 Search Trees of Small Height

In the previous section, we considered how to lay out a static complete tree
in memory. In this section, we describe how the static layouts can be used
to store dynamic balanced trees. We first describe an insertions only scheme
and later show how this scheme can be extended to handle deletions and to
achieve space usage arbitrary close to optimal.

Our approach is to embed a dynamic tree in a static complete tree by
maintaining a height bound of log n + O(1) for the dynamic tree, where n
is its current size. It follows that the dynamic tree can be embedded in a
complete tree of height log n + O(1) and size O(n). Whenever n has doubled,
we create a new static tree. The following subsections are devoted to tree
rebalancing schemes achieving height log n + O(1).

Our scheme is very similar to the tree balancing scheme of Andersson [2]
and to the scheme of Itai et al. [14] for supporting insertions into the middle
of a file. Bender et al. [5] used a similar scheme in their cache oblivious search
trees, but used it to solve the “packed-memory problem”, rather than directly
to maintain balance in a tree. Note that the embedding of a dynamic tree
in a complete tree implies that we cannot use rebalancing schemes which are
based on rotations, or, more generally, schemes allowing subtrees to be moved
by just changing the pointer to the root of the subtree, as e.g. is the case in
the rebalancing scheme of Fagerberg [10] achieving height dlog n + o(1)e.

3.1 Insertions

Let T denote the dynamic binary search tree, and let H be the upper bound
on h(T) we want to guarantee, i.e. the height we will use for the complete
tree in which T is embedded. For a node v in T , we let s(v) = 2H−d(v)+1 − 1
denote the size of the subtree rooted at v in the complete tree. We define the
density of v to be the ratio ρ(v) = |Tv|/s(v), and define a sequence of evenly
distributed density thresholds 0 < τ1 < τ2 < · · · < τH = 1 by τi = τ1+(i−1)∆
for 1 ≤ i ≤ H and ∆ = (1 − τ1)/(H − 1). We maintain the invariant at the
root r of T that ρ(r) ≤ τ1. This implies the constraint n/(2H − 1) ≤ τ1, i.e.
H ≥ log(n/τ1 +1). If for some N the current complete tree should be valid for
all n ≤ N , we let H = dlog(N/τ1 + 1)e. In the following we assume τ1 ≥ 1/2
and N = O(n), such that H = log n + O(1).

The insertion of a new element into a tree T of n ≤ N−1 elements proceeds
as follows:

1. We locate the position in T of the new node v via a top down search,
and create v.

2. If d(v) = H + 1, we rebalance T as follows. First, we in a bottom-up
fashion find the nearest ancestor w of v with ρ(w) ≤ τd(w). This happens

9

at the root at the latest. We need not store the sizes of nodes explicitly,
as we can compute |Tw| by a traversal of Tw. Since the ancestors of v are
examined bottom-up one by one, we have already computed the size of
one child when examining a node, and it suffices to traverse the subtree
rooted at the other child in order to compute the total size. After having
located w, we rebalance Tw by evenly distributing the elements in Tw as
follows. We first create a sorted array of all elements in Tw by an inorder
traversal of Tw. The d|Tw|/2eth element becomes the element stored at
w, the smallest b(|Tw| − 1)/2c elements are recursively distributed in the
left subtree of w and the largest d(|Tw| − 1)/2e elements are recursively
distributed in the right subtree of w.

In the redistribution step, the use of an additional array can be avoided
by compacting the elements into the rightmost end of the complete subtree
rooted at v by a right-to-left inorder traversal, and then inserting the elements
at the positions described above in a left-to-right inorder traversal.

Lemma 1 A redistribution at v implies bρ(v) · s(w)c−1 ≤ |Tw| ≤ dρ(v) · s(w)e
for all descendants w of v.

Proof. We prove the bounds by induction on the depth of w. The bounds hold
for w = v, since by definition |Tv| = ρ(v)·s(v). Let u be a descendant of v, let w
and w′ be the children of u, and assume the bounds hold for u. Since ρ(v) ≤ 1,
we have |Tu| ≤ dρ(v) · s(u)e = dρ(v) · (1 + s(w) + s(w′))e ≤ 1+dρ(v) · s(w)e+
dρ(v) · s(w′)e. From s(w) = s(w′) we get d(|Tu| − 1)/2e ≤ dρ(v) · s(w)e. The
distribution algorithm guarantees that |Tw| ≤ d(|Tu| − 1)/2e, implying |Tw| ≤
dρ(v) · s(w)e.

We also have |Tu| ≥ bρ(v) · s(u)c − 1 ≥ bρ(v) · (s(w) + s(w′))c − 1 ≥
(bρ(v) · s(w)c − 1) + (bρ(v) · s(w′)c − 1) + 1. Because s(w) = s(w′), we get
b(|Tu| − 1)/2c ≥ bρ(v) · s(w)c−1. The distribution algorithm guarantees that
|Tw| ≥ b(|Tu| − 1)/2c, implying |Tw| ≥ bρ(v) · s(w)c − 1. 2

Theorem 1 Insertions require amortized O((log2 n)/(1−τ1)) time and amor-

tized O(logB n + (log2 n)/(B(1 − τ1))) memory transfers.

Proof. Consider a redistribution at a node v, caused by an insertion below v.
By the rebalancing algorithm, we for a child w of v have |Tw| > τd(w) · s(w),
as the redistribution otherwise would have taken place at w. Immediately
after the last time there was a redistribution at v or at an ancestor of v,
we by Lemma 1 had |Tw| < τd(v) · s(w) + 1. It follows that the number of
insertions below w since the last redistribution at v or an ancestor of v is at
least τd(w) ·s(w)−(τd(v) ·s(w)+1) = ∆ ·s(w)−1. The redistribution at v takes
time O(s(v)), which can be covered by charging O(s(v)/max{1,∆·s(w)−1}) =

10

O(1/∆) to each of the mentioned insertions below w. Since each created node
has at most H ancestors and hence is charged at most H times, the amortized
redistribution time for an insertion is O(H/∆) = O(H 2/(1 − τ1)).

Since a top-down search requires O(logB N) memory transfers and the
redistribution is done solely by inorder traversals requiring O(max{1, s(v)/B})
memory transfers, the bound on memory transfers follows. 2

Example. Assume that τ1 = 0.9. This implies that we increase H by one
whenever an insertion causes n > τ1(2

H − 1). Since increasing H by one
doubles the size of the complete tree, this implies that we always have density
at least 0.45, i.e. the array used for the layout has size at most 1/0.45n = 2.2n.
Note that the space usage in the worst case is at least 2n, independently of
the choice of τ1. Since the size of the complete tree doubles each time H is
increased, the global rebuilding only increases the amortized update cost by
a constant additive term. By Lemma 1, all nodes v with depth H − 2 in the
complete tree, i.e. with s(v) = 7, are present in T , since b0.45 · 7c − 1 > 0.
The number of memory transfers for range searches is therefore guaranteed to
be asymptotically optimal.

3.2 Deletions

One standard approach to add deletions is to simply mark elements as deleted,
removing marked nodes by a global rebuilding when, say, half of the elements
have been deleted. The disadvantage of this scheme is that locally, elements
can end up being sparsely distributed in memory, such that no bound on the
number of memory transfers for a range search can be guaranteed.

To support range queries with a worst-case guarantee on the number of
memory transfers, the tree T must be rebalanced after deletions. The idea
is similar to the scheme used for insertions, except that we now also have
lower bound density thresholds 0 ≤ γH < · · · < γ2 < γ1 < τ1, where γi =
γ1 − (i− 1)∆′ for 1 ≤ i ≤ H and ∆′ = (γ1 − γH)/(H − 1). For the root r of T
we require the invariant γ1 ≤ ρ(r) ≤ τ1.

Deletion is done as described below. Insertions are handled as described
in Section 3.1, except that Step 2 is replaced by Step 2 below.

1. First, we locate the node v in T containing the element e to be deleted,
via a top down search in T . If v is not a leaf and v has a right subtree,
we then locate the node v′ containing the immediate successor to e (the
node reached by following left children in the right subtree of v), swap
the elements at v and v′, and let v = v′. We repeat this until v is a
leaf. If v is not a leaf but v has no right subtree, we symmetrically swap
v with the node containing the predecessor of e. Finally, we delete the
leaf v from T .

11

2. We rebalance the tree by rebuilding the subtree rooted at the lowest
ancestor w of v satisfying γd(w) ≤ ρ(w) ≤ τd(w).

Theorem 2 Insertions and deletions require amortized O((log2 n)/α) time

and amortized O(logB n+(log2 n)/(Bα)) memory transfers, where α is defined

as min{γ1 − γH , 1 − τ1}.

Proof. Consider a redistribution at a node v. If the redistribution is caused
by an update below a child w of v leading to |Tw| > τd(w) · s(w), then the
argument is exactly as in Theorem 1. Otherwise the redistribution is caused
by an update below a child w of v leading to |Tw| < γd(w) · s(w). Immediately
after the last time there was a redistribution at v or at an ancestor of v,
we by Lemma 1 had |Tw| > γd(v) · s(w) − 2. It follows that the number of
deletions since the last rebuild at v or an ancestor of v is at least (γd(v) ·s(w)−
2) − γd(w) · s(w) = ∆′ · s(w) − 2. By averaging the redistribution time over
the deletions, the amortized redistribution time of a deletion is seen to be
O(H/∆′) = O(H2/(γ1 − γH)). 2

Example. Assume τ1 = 0.9, γ1 = 0.35, and γH = 0.3. We increase H by
one whenever an insertion causes n > τ1(2

H − 1) and decrease H by one
whenever a deletion causes n < γ1(2

H − 1). With the parameters above, we
have that when H is changed, at least (τ1/2 − γ1)n = 0.1n updates must be
performed before H is changed again, so the global rebuilding only increases
the amortized update cost by a constant additive term. The array used for the
layout has size at most n/γ1 = 2.9n. By Lemma 1, all nodes with depth H−2
(and hence size 7) in the complete tree are present in T , as bγH · 7c − 1 > 0.
The number of memory transfers for range searches is therefore asymptotically
optimal.

3.3 Improved densities

The rebalancing schemes considered in the previous section require in the
worst case space at least 2n, due to the occasional doubling of the array. In
this section, we describe how to achieve space (1 + ε)n, for any ε > 0. As a
consequence, we achieve space usage close to optimal and reduce the number
of memory transfers for range searches.

Our solution is the following. Let N be the space we are willing to use
(not necessarily a power of two), and let τ1 and γ1 be density thresholds such
that γ1 ≤ n/N ≤ τ1. Whenever the density threshold becomes violated, a
new N must be chosen. If N = 2k − 1 for some k, then we can apply the
previous schemes directly. Otherwise, assume N = 2b1 + 2b2 + · · · 2bk , where
b1, . . . , bk are non-negative integers satisfying bi > bi+1, i.e. the bi values are
the positions of 1s in the binary representation of N . For each bi, we will have a

12

tree Fi consisting of a root ri with no left child and a right subtree Ci which is a
complete tree of size 2bi−1. The elements will be distributed among F1, . . . , Fk

such that all elements stored in Fi are smaller than the elements in Fi+1. If Fi

stores at least one element, the minimum element in Fi is stored at ri and
the remaining elements are stored in a tree Ti which is embedded in Ci. The
trees are laid out in memory in the order r1, r2, . . . , rk, C1, C2, . . . , Ck, where
each Ci is laid out using the van Emde Boas layout.

A search for an element e proceeds by examining the elements at r1, . . . , rk

in increasing order until e is found or the subtree Ti is located that must
contain e, i.e. e is larger than the element at ri and smaller than the element
at ri+1. In the latter case, we perform a top-down search on Ti. The total time
for a search is O(i+ bi) = O(log N) using O(i/B +logB(2bi −1)) = O(logB N)
I/Os.

For the rebalancing, we view F1, . . . , Fk as being merged into one big tree F ,
where all leafs have the same depth and all internal nodes are binary, except for
the nodes on the rightmost path which may have degree three. The tree Ci+1

is considered a child of the rightmost node ui in Ci with h(ui) = bi+1 +1, and
with the element of ri+1 being a second element of ui. Note that the elements
of F satisfy inorder. For a node v in F , we define s(v) to be the subtree Tv

of F plus the number of nodes of degree three, i.e. the number of slots to store
elements in Tv, and |Tv| the number of elements stored in Tv. As in Section 3.1
and 3.2, we define ρ(v) = |Tv|/s(v). The rebalancing is done as in Sections 3.1
and 3.2, except that if we have to redistribute the content of v, we will explic-
itly ensure that the inequality bρ(v) · s(w)c − 1 ≤ |Tw| ≤ dρ(v) · s(w)e from
Lemma 1 is satisfied for all descendants w of v. That this is possible follows
from the inequalities below, where u is a descendant of v and w1, . . . , wk are
the children of u for k = 2 or 3:

dρ(v) · s(u)e =
⌈

ρ(v) ·
(

k − 1 +
∑k

i=1 s(wi)
)⌉

≤ k − 1 +
∑k

i=1 dρ(v) · s(wi)e ,

bρ(v) · s(u)c − 1 ≥
⌊

ρ(v) ·
∑k

i=1 s(wi)
⌋

− 1

≥ k − 1 +
∑k

i=1(bρ(v) · s(wi)c − 1) .

Because Lemma 1 still holds, Theorem 2 also holds. The only change in
the analysis of Theorem 2 is that for a node v on the rightmost path with a
child w, we now have s(v) ≤ 4s(w), i.e. the bound on the amortized time and
number of memory transfers increases by a factor two.

Example. Let ε > 0 be an arbitrary small constant such that when N is
chosen, N = (1 + ε)n. Valid density thresholds can then be τ1 = (δ + 1)/2,
γ1 = (3δ−1)/2, and γH = 2δ−1, where δ = 1/(1+ε) is the density immediately

13

after having chosen N . After choosing an N , at least N(1 − δ)/2 = O(N/ε)
updates must be performed before a new N is chosen. Hence, the amortized
cost of the global rebuildings is O(1/ε) time and O(1/(εB)) memory transfers
per update. The worst case space usage is n/γ1 = n(1 + ε)/(1 − ε/2) =
n(1 + O(ε)).

4 Experiments

In this section, we describe our empirical investigations of methods for laying
out a search tree in memory.

We implemented the four implicit memory layouts discussed in Section 2:
DFS, inorder, BFS, and van Emde Boas. We also implemented a cache aware
implicit layout based on a d-ary version of the BFS, where d is chosen such
that the size of a node equals a cache line. Our experiments thus compare
layouts which in term of optimization for the memory hierarchy cover three
categories: not optimized, cache oblivious, and cache aware.

We also implemented pointer based versions of the layouts, where each
node stored in the array contains the indices of its children. Compared to
implicit layouts, pointer based layouts have lower instruction count for nav-
igation, higher total memory usage, and lower number of nodes per memory
block. We implemented one further pointer based layout, namely the layout
which arises when building a binary tree by random insertions, placing nodes
in the array in order of allocation. We call this the random insertion layout.

Our experiments fall in two parts: one dealing with searches in static
layouts, and one dealing with the dynamization method from Section 3.1. In
Section 4.2, we report on the results. We tested several combinations and
variations of the memory layouts and algorithms, but for brevity we only
describe a subset representative of our general observations.

4.1 Methodology

The computer used to perform the experiments had two 1 GHz Pentium III
(Coppermine) processors, 256 KB of cache, and 1 GB of RAM. The programs
were written in C, compiled by the GNU gcc compiler version 2.95.2.1 with
full optimization (option -O3). The operating system was Linux with kernel
version 2.4.3-12smp.

The timing was based on wall clock time. For the search based experiments,
we used the getitimer and setitimer system calls to interrupt the program
every 10 seconds, giving us a relative timing precision of roughly 0.001 for
most experiments.

The elements were 32 bit in size, as was each of the two pointers per
node used in the pointer based layouts. We only report on integer keys—our

14

results with floating point keys did differ (probably due in parts to the different
costs of comparisons), but not significantly. We generated uniformly random
integers by casting double precision floats returned by drand48(). We only
searched for present keys.

Where possible, the programs shared source code, in order to minimize
coding inconsistencies. We also tried to avoid artifacts from the compilation
process by e.g. inlining function calls ourselves.

We performed experiments for n = 2k, 2k−1, 2k +1, and 0.7∗2k for a range
of k. For n not a power of two, the assumption from Section 2 of dealing with
complete trees is not fulfilled. We adapted to this situation by cutting the
tree at the boundary of the array: If the address of both children of node v is
outside the array, i.e. larger than n, then v is a leaf, if only the right child is
outside, it is a degree one node. This works because the addresses of children
are higher than that of their parent (which does not hold for the inorder layout,
but there, we simply used binary search).

Due to the small difference between the 1 GB RAM size and 2 GB address
space, experiments beyond main memory required a different setup. This we
achieved by booting the machine such that only 32 MB of RAM was available.
However, the bulk of our experiments covered trees contained in cache and
RAM.

The source code of the programs, our scripts and tools, and the data we
present here are available online under

ftp://ftp.brics.dk/RS/01/36/Experiments/.

4.2 Results

For all graphs, the y-axis is logarithmic, and depicts the average time for one
search for (or insertion of) a randomly chosen key, measured in seconds. All
the x-axes depicts log2 n, where n is the number of keys stored in the search
tree. Note that this translates to different memory usage for implicit and
pointer based layouts.

Figure 4 compares the time for random searches in pointer based layouts.
Pointer based layouts all have the same instruction count per level during a
search. This is reflected in the range n = 210, . . . , 214 (for which the tree fits
entirely in cache), where the three layouts of optimal height behave identically,
while the random insertion layout (which has larger average height) is worse.
As n gets bigger, the differences in memory access pattern starts showing. For
random searches, we can expect the top levels of the trees to reside in cache.
For the remaining levels, a cache fault should happen at every level for the BFS
layout, approximately at every second level for the DFS layout (most nodes
reside in the same cache line as their left child), and every Θ(logB n) levels for
the van Emde Boas layout. This analysis is consistent with the graphs.

15

2e-07

4e-07

1e-06

2e-06

4e-06

6e-06

12 14 16 18 20 22 24 26

veb:pointer
bfs:pointer
dfs:pointer
rin:pointer

2e-07

4e-07

1e-06

2e-06

4e-06

6e-06

12 14 16 18 20 22 24 26

veb:implicit
bfs:implicit

high008:implicit
high016:implicit
inorder:implicit

Figure 4: Searches for pointer based
layouts

Figure 5: Searches for implicit layouts

Figure 5 compares the time for random searches in implicit layouts. For
sizes up to cache size (n = 216), it appears that the higher instruction count
for navigating in an implicit layout dominates the running times: most graphs
are slightly higher than corresponding graphs in Figure 4, and the van Emde
Boas layout (most complicated address arithmetic) is the slowest while the
BFS layout (simplest address arithmetic) is fastest. For larger n, the memory
access pattern shows its effect. The high arity layouts (d = 8 and 16) are
the fastest, as expected—they are cache-optimized and have simple address
arithmetic. The van Emde Boas layout is quite competitive, eventually beating
BFS and only being 50% slower than the cache aware layouts.

The inorder layout has bad performance, probably because no nodes in the
top part of the tree share cache lines. It is worst when n is a power of two. We
believe this as an effect of the limited associativity of the cache: For these n,
the nodes of the top of the tree are large powers of two apart in memory, and
are mapped to the same few lines in cache.

In Figure 6, we compare the search times for the pointer based and the
implicit versions of the BFS and the van Emde Boas layout. The aim is to
see how the effect of a smaller size and a more expensive navigation compete
against each other. For the BFS, the implicit version wins for all sizes, indi-
cating that its address arithmetic is not slower than following pointers. This
is not the case for the van Emde Boas layout—however, outside of cache, the
implicit version wins, most likely due to the higher value of B resulting from
the absence of pointers.

In Figure 7, we compare the performance of the dynamic versions of some
of the data structures. The inorder and the van Emde Boas layout is made

16

semi-dynamic by the method from Section 3.1. For the inorder layout, the
redistribution during rebalancing can be implemented particularly simple, just
by scans of contiguous segments of the array. We use this implementation here.
The random insertion layout is semi-dynamic by definition.

2e-07

4e-07

1e-06

2e-06

4e-06

6e-06

12 14 16 18 20 22 24 26

veb:implicit
veb:pointer
bfs:implicit
bfs:pointer

2e-07

4e-07

1e-06

2e-06

4e-06

6e-06

12 14 16 18 20 22 24 26

rin:pointer:do_ins:insert
inorder:do_ins:insert

veb:do_ins:insert

Figure 6: Search time for pointer based
and implicit BFS and van Emde Boas
layouts

Figure 7: Insert time per element

Starting with a bulk of 10,000 randomly chosen elements, we insert bulks
of sizes increasing by a factor of 1.5. We time the insertion of one block and
calculate the average time for inserting one element. The amortization in
the bounds of the method from Section 3.1 is apparent in the instability of
the graphs. In contrast, the unbalanced pointer based search tree has a rela-
tively smooth graph. We remark that the dynamization method of Section 3.1
seems quite competitive, eventually winning over the unbalanced pointer based
tree, which for random insertions is known to compete well against stan-
dard rebalancing schemes for binary search trees, such as red-black trees (see
e.g. [17, p. 127]). The inorder layout is somewhat faster than the van Emde
Boas layout, which we think is due to the simpler redistribution algorithm.

In Figure 8, we compare in more detail the performance of the random
insertion layout with the implicit, semi-dynamic van Emde Boas layout, show-
ing the time for random insertions as well as for random searches. If the data
structure is to be used mainly for searches and only occasionally for updates,
the cache oblivious version is preferable already at roughly 216 elements. But
even if updates dominate, it becomes advantageous around 223 elements.

In Figure 9, we look at the performance of the layouts as our memory
requirement exceeds main memory. As said, for this experiment we booted
the machine in such a way that only 32 MB of RAM was available. We

17

compare the van Emde Boas layout, the usual BFS layout, and a 1024-ary
version version of it, optimized for the page size of the virtual memory. The
keys of a 1024-ary nodes are stored in sorted order, and a node is searched by
a fixed, inlined decision tree. We measure the time for random searches on a
static tree.

2e-07

4e-07

1e-06

2e-06

4e-06

6e-06

12 14 16 18 20 22 24 26

rin:pointer:search
rin:pointer:insert

veb:search
veb:insert 1e-06

1e-05

0.0001

0.001

0.01

0.1

20 21 22 23 24 25 26 27 28 29

bfs
veb

high1024

Figure 8: Insert and Search for implicit
veb and unbalanced search trees

Figure 9: Beyond main memory

Inside main memory, the BFS is best, but looses by a factor of five outside.
The tree optimized for page size is the best outside main memory, but looses
by a factor of two inside. Remarkably, the van Emde Boas layout is on par
with the best throughout the range.

4.3 Conclusion

From the experiments reported in this paper, it is apparent that the effects
of the memory hierarchy in todays computers play a dominant role for the
running time of tree search algorithms, already for sizes of trees well within
main memory.

It also appears that in the area of search trees, the nice theoretical prop-
erties of cache obliviousness seems to carry over into practice: in our experi-
ments, the van Emde Boas layout was competitive with cache aware structures,
was better than structures not optimized for memory access for all but the
smallest n, and behaved robustly over several levels of the memory hierarchy.

One further observation is that the effects from the space saving and in-
crease in fanout caused by implicit layouts are notable.

Finally, the method for dynamic cache oblivious search tree suggested in
this paper seems practical, not only in terms of implementation effort but also
in terms of running time.

18

References

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting
and related problems. Communications of the ACM, 31(9):1116–1127,
Sept. 1988.

[2] A. Andersson and T. W. Lai. Fast updating of well-balanced trees. In
SWAT 90, 2nd Scandinavian Workshop on Algorithm Theory, volume 447
of Lecture Notes in Computer Science, pages 111–121. Springer, 1990.

[3] L. Arge and J. S. Vitter. Optimal dynamic interval management in ex-
ternal memory. In Proc. 37th Ann. Symp. on Foundations of Computer

Science, pages 560–569. IEEE Computer Society Press, 1996.

[4] R. Bayer and E. McCreight. Organization and maintenance of large or-
dered indexes. Acta Informatica, 1:173–189, 1972.

[5] M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious B-
trees. In Proc. 41st Ann. Symp. on Foundations of Computer Science,
pages 399–409. IEEE Computer Society Press, 2000.

[6] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-
oblivious dynamic dictionary. In Proc. 13th Ann. ACM-SIAM Symp. on

Discrete Algorithms, 2002.

[7] S. Carlsson, P. V. Poblete, and J. I. Munro. An implicit binomial queue
with constant insertion time. In Proc. 1st Scandinavian Workshop on

Algorithm Theory, volume 318 of Lecture Notes in Computer Science,
pages 1–13. Springer Verlag, Berlin, 1988.

[8] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi.
Nonlinear array layouts for hierarchical memory systems. In Proceedings

of the 1999 Conference on Supercomputing, ACM SIGARCH, pages 444–
453. ACM Press, 1999.

[9] P. F. Dietz and J. Zhang. Lower bounds for monotonic list labeling. In
J. R. Gilbert and R. G. Karlsson, editors, SWAT 90, 2nd Scandinavian

Workshop on Algorithm Theory, volume 447 of Lecture Notes in Computer

Science, pages 173–180. Springer, 1990.

[10] R. Fagerberg. The complexity of rebalancing a binary search tree.
FSTTCS: Foundations of Software Technology and Theoretical Computer

Science, 19, 1999.

[11] A. Fiat, J. I. Munro, M. Naor, A. A. Schäffer, J. P. Schmidt, and A. Siegel.
An implicit data structure for searching a multikey table in logarithmic
time. Journal of Computer and System Sciences, 43(3):406–424, 1991.

19

[12] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In 40th Annual Symposium on Foundations of Com-

puter Science, pages 285–297. IEEE Computer Society Press, 1999.

[13] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quanti-

tative Approach. Morgan Kaufmann, second edition, 1996.

[14] A. Itai, A. G. Konheim, and M. Rodeh. A sparse table implementation
of priority queues. In Automata, Languages and Programming, 8th Collo-

quium, volume 115 of Lecture Notes in Computer Science, pages 417–431.
Springer-Verlag, 1981.

[15] D. W. Jones. An Empirical Comparison of Priority-Queue and Event-Set
Implementations. Communications of the ACM, 29(4):300–311, 1986.

[16] A. LaMarca and R. E. Ladner. The influence of caches on the performance
of heaps. ACM Journal of Experimental Algorithms, 1:4, 1996.

[17] K. Mehlhorn and S. Näher. LEDA: A Platform of Combinatorial and

Geometric Computing. Cambridge University Press, 1999.

[18] J. I. Munro. An implicit data structure supporting insertion, deletion,
and search in O(log2 n) time. Journal of Computer and System Sciences,
33(1):66–74, 1986.

[19] H. Prokop. Cache-oblivious algorithms. Master’s thesis, Massachusetts
Institute of Technology, June 1999.

[20] N. Rahman, R. Cole, and R. Raman. Optimized predecessor data struc-
tures for internal memory. In WAE 2001, 5th Int. Workshop on Algorithm

Engineering, volume 2141 of LNCS, pages 67–78. Springer, 2001.

[21] P. van Emde Boas. Preserving order in a forest in less than logarithmic
time and linear space. Inf. Process. Lett., 6:80–82, 1977.

[22] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation
of an efficient priority queue. Mathematical Systems Theory, 10:99–127,
1977.

[23] J. W. J. Williams. Algorithm 232: Heapsort. Communications of the

ACM, 7(6):347–348, 1964.

20

