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Abstract. We describe and analyze empirically an implementation of
some generalizations of Dijkstra’s algorithm for shortest paths in graphs.
The implementation formed a part of the TRANSIMS project at the Los
Alamos National Laboratory. Besides offering the first implementation of
the shortest path algorithm with regular language constraints, our code
also solves problems with time-dependent edge delays in a quite general
first-in-first-out model.

We describe some details of our implementation and then analyze the
behavior of the algorithm on real but extremely large transportation
networks. Even though the questions we consider in our experiments are
fundamental and natural, it appears that they have not been carefully
examined before. A methodological contribution of the present work is
the use of formal statistical methods to analyze the behaviour of our
algorithms. Although the statistical methods employed are simple, they
provide a possibly novel approach to the experimental analysis of algo-
rithms.

Our results provide evidence for our claims of efficiency of the algorithms
described in a very practical setting.

1 Introduction

TRANSIMS is a multi-year project at the Los Alamos National Laboratory
funded by the Department of Transportation and by the Environmental Pro-
tection Agency. Its purpose is to develop models and methods to answer plan-
ning questions, such as the economic and social impact of building new roads
in a large metropolitan area. We refer the reader to [TR+95a] and the web-
site http://transims.tsasa.lanl.gov for more extensive descriptions of the
TRANSIMS project.
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The basic purpose of the TRANSIMS module we describe (the route plan-
ner) is to use activity information generated earlier from demographic data to
determine the optimal mode choices and travel routes for each individual trav-
eler. The routes need to be computed for a large number of travelers (in the
Portland case study 5-10 million trips). After planning, the routes are executed
by a microsimulation that places the travelers (in vehicles and on foot) in the
network and simulates their behavior. In order to remove the forward causality
artificially introduced by this design, and with the goal of bringing the system
to a “relaxed” state, TRANSIMS uses a feedback mechanism: the link delays
observed in the microsimulation are used by the route planner to repeatedly
re-plan a fraction of the travelers.

Clearly, this requires high computational throughput. The high level of detail
in planning and the efficiency demand are both important design goals; methods
to achieve reasonable performance are well known if only one of the goals needs to
be satisfied. Here, we propose a framework that uses two independent extensions
of the basic shortest path problem to simultaneously cope with both.

1.1 Shortest Paths

In the first part of this paper, we describe our implementation of a general-
ized Dijkstra’s shortest path algorithm. The general problem we solve is that
of finding regular-language-constrained shortest paths [BJM98] in graphs with
time-dependent edge delays with a first-in-first-out assumption. Several authors
have studied special cases (such as traffic-light networks or special cases of the
regular language constraint), but these studies seem to be isolated and largely
independent of a larger real-life system or application. As far as we are aware,
ours is the first implementation scalable to problems with millions of vertices
and edges that can find shortest-path problems in the presence of both lan-
guage constraints and time dependence.

The various models and practical settings, especially in the context of
multi-modal urban transportation systems, are discussed in a companion pa-
per [BB-+02].

1.2 Formal Language Constraints

Consider a pedestrian bridge across a river or a highway. Suppose we are asked
to find a shortest path between some two points in the network. The bridge
can only be used by pedestrians, so we must take care not to route cars across
it. Similarly, we should not use highways as parts of the routes planned for
pedestrians or bicyclists. In order not to have to update the network for every
single routing question, we annotate the network with information needed to deal
with these problems. More precisely to each edge and/or vertex of the network,
we assign a label £ € Y. We also refer to the finite set Y as the alphabet. We
call such labels modes and say that a labeled network is multimodal.

By concatenation, the edge and/or vertex labeling extends to walks. The
resulting string of labels is called the label of the walk. This walk-label determines
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whether or not the walk is acceptable as a particular traveler’s itinerary. We
usually refer to walks in the network as paths; in other words, we allow our
paths to repeat edges and/or vertices and instead use the term simple path to
denote paths that do not repeat edges or vertices.

The problem of finding a shortest path subject to a formal-language con-
straint can be stated as follows: given a finite set (language) L C X* over the
alphabet Y| a source node s and a destination node d, find a shortest path p
from s to d whose label belongs to L. Our results in [BJM98] prove that this
problem can be solved in polynomial time.

Regular languages as models for shortest-path problems were also suggested
independently by Romeuf [Rom88], Yannakakis [Ya90] and Mendelzon and Wood
[MW95]. For more details on the theoretical background, refer to [B.JM98].

1.3 Time Dependence

Finding optimal paths in time-dependent networks is an important problem
[Ch97a, ZM9I5]. Unless restrictive assumptions are made, time-dependence of
delays implies NP-hardness [OR90]. A natural assumption is that the traffic on
each link has the first-in-first-out property. Our model, using piecewise-linear
delay functions, is a natural implementation of this assumption. It has been
rediscovered independently at least once more —by Sung et al. [SB+00]—but
the full power of this model for various problems arising in transportation science
is not evident from their paper.

We argue that this model is (1) adequate for the rapidly changing conditions
on roadways and (2) flexible enough to describe more complicated scenarios
such as scheduled transit and time-window constraints but also (3) allows com-
putationally efficient algorithms. Several general versions of this problem can
be solved efficiently in our framework (more details in the companion paper on
models for transportation problems [BB-+02]).

1.4 Experimental Analysis

In the second part of this paper we describe experimental results. We ran our
algorithm on a set of shortest path instances similar to trips that typical urban
travelers take each day. Origin-destination pairs were placed in the street network
of Portland, Oregon, and a total of 280000 shortest paths found for several
categories of travelers and trip types. This allowed us to analyze the behavior of
the algorithm on a typical set of problem instances generated in the TRANSIMS
framework.

The TRANSIMS network for Portland has been divided into approximately
1200 traffic analysis zones (TAZs). From these a distance matrix was created
from the Euclidean distance between each pair of TAZs. Source and destination
TAZ pairs were selected from this matrix so that the distance between the source
and destination ranged from 1000 to 50000 meters (+10%) in increments of 500
meters, with 50 trips of each size selected. For each TAZ pair, starting and ending
points were randomly selected from within the given TAZ, producing 5000 trips.
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Through the experiments, we attempt to infer the scalability of our methods
and empirical improvements obtained by augmenting the basic algorithm with
heuristic methods.

For example, we show the power and limits of the Sedgewick-Vitter heuristic
when applied to a not strictly Euclidean graph. We see that the heuristic is only
effective up to a certain point, and study its running time in comparison with
ordinary Dijkstra’s algorithm. We find that the running time of the heuristic is
statistically linear in the number of edges of the solution path (thus, a constant
fraction of vertices examined ends up in the solution path). The exact algorithm,
on the other hand, seems to follow a logistic response function. We believe this
to be just an artifact of our experiment design (the correct answer having the
form klogk) and we will need to do more experiments to complete this study.

1.5 Discussion

Even though our questions are fundamental, it appears that they have not been
examined before. In order to experimentally analyze the behavior of the algo-
rithms in realistic settings we employ simple statistical techniques (e.g. ANOVA),
that have to our knowledge not been used earlier in the field of experimental
algorithmics. In our opinion, formal statistical techniques such as ANOVA and
experimental design may provide an excellent tool for empirical analysis of algo-
rithms. We have recently used similar tools in analyses of certain flow algorithms
and interaction of communication protocols [MM+02, BCF+01].

This research should be viewed as experimental analysis of a well-known
algorithm and its generalizations and variants in a realistic setting. No references
we have been able to locate cover more than a small part of our theoretical
framework, and the situation is similar with actual implementations. To the
best of our knowledge TRANSIMS contains the first unified implementation
of these results and it is both reasonably complete from a theoretician’s point
of view and useful in practice. Nevertheless, we argue that our algorithm and
conclusions on the implementation are not TRANSIMS-specific, but applicable
to a number of other realistic transportation problems.

2 Implementation of the TRANSIMS Router

2.1 Algorithm for Linear Regular Expressions

First, some (standard) notation: w" denotes one or more repetitions of a word
(string) w, « + y denotes either x or y, X typically denotes the alphabet, that is
the set of all available symbols.

TRANSIMS currently supports linear (or simple-path) regular expressions.
These are the expressions of the form ziz3 -+ -z, where 2, € Y U (¥ + X).

Algorithm 1 Input: A linear regular expression R (as the string R[0...|R|—1]),
a directed edge-labeled weighted graph G, vertices s and d € V(G). Output:
A minimum-weight path p* in G from s to d such that I(p*) € R.
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Conceptually, the algorithm consists of running Dijkstra’s algorithm on the di-
rect product of G and the finite automaton M (R) representing R.

For efficiency, we do not explicitly construct G x M (R), but concatenate the
identifier of each vertex of GG with the identifier of the appropriate vertex in
M(R). In other words, we run Dijkstra’s shortest-path algorithm on G' with the
following changes: each vertex is referred to by the pair consisting of its index
in G and an integer 0 < @ < |R| — 1 denoting the location within R.

In the first step, @ = 0 and the only “explored” vertex is (s,0). In each
subsequent exploration step of Dijkstra’s algorithm, consider only the edges e
leaving the current vertex (v,a) with I(e) = Rla] or l(e) = Rla + 1]. If an edge
e = vw with [(e) = R[a+1] is explored, then the vertex reached will be (w, a+1).
Otherwise the vertex reached is (w, a). The algorithm halts when it reaches the
vertex (d,|R| —1). O

Theorem 2. Algorithm 1 computes the shortest R-constrained path in G (with
nonnegative edge-weights) in time O(T(|R||G|)), where T'(n) denotes the running
time of a shortest-path algorithm on a graph with n nodes.

2.2 Time-Dependent Delays

To get a class of functions that is flexible enough to model various applications,
but computationally feasible, we use monotonic piecewise-linear (MPL)
functions. Among other properties, they allow fast lookup of values and this
is important, being a part of the innermost loop of the algorithm.

We represent MPL functions using a sorted set of pairs that can be searched
for both z and (linearly interpolated) y values. For functions that do not need
to be modified frequently (for example, a real TRANSIMS situation in which
the traversal functions are only modified after planning a substantial number of
travelers), an implementation using arrays and binary search performs very well.

For details, see our modeling paper [BB-+02].

2.3 Data Structures and Network Representation

The network used by the route planner is substantially different from the TRAN-
SIMS network used by the microsimulation and some other modules of the sys-
tem. The reason for extra work is the improved efficiency achieved by stream-
lining the description and removing the features ignored by the route planner
and reorganizing some others. A schematic drawing of the network used by the
planner is given in Figure 1.

Priority Queue. Dijkstra’s algorithm requires the implementation of a priority
queue in order to maintain the fringe vertices amongh which it chooses the next
vertex to explore. We used the simple binary heap. Due to a relatively regular
structure of graphs involved, the size of the heap never became too large to allow
significant improvements by using a more complex data structure.
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Fig. 1. The network as seen by the route planner. The underlying street network
is shown in the bottom of the figure, with nodes 1, 2, 3 and 4 and street segments
connecting them. Nodes P, Q and R represent parking locations (present on most
links). Associated with the links joining 1 with 2 and 3 with four are also bus
stops B1 and B2. The internal network constructed by the planner is shown
in the upper portion of the figure, with “layers” separated for clarity. Layers 0
and 1 describe the street network with links that can be traversed by drivers
(mode ¢) and pedestrians (mode w). Nodes in layer 0 are intersections, those in
layer 1 parking locations. Bus stops are located in layer 500 and each bus stop
is associated with a parking location (and only accessible from it). To actually
board a bus, however, a traveler must walk from a bus stop to a node associated
with a specific bus line (layer 500 + x for bus line z). This forces walking to
transfer between buses and helps avoid some modeling artifacts

Histogram of maximum heap size

Frequency
500 1000 1500 2000

0

r T T T T 1
0 2000 4000 6000 8000 10000

Maximum heap size

Fig. 2. The maximum heap size over 30000 car trips planned. The heap size
never exceeds 10000 vertices, so the standard binary heap is still quite efficient
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2.4 Some Low-Level Implementation Details

Software Design. We used the object oriented features as well as the template
mechanism of C++ to easily combine different implementations. As we did not
want to introduce any unnecessary runtime overhead, we avoided for example
the concept of virtual inheritance.

For example, using templates, we implemented different versions of Dijkstra’s
algorithm for some frequently used mode strings (such as “wcw” for simple car
plans and “t” for transit plans) in order to avoid all overhead associated with
checking whether certain links may be used by the traveler and most of the
overhead of the regular-language Dijkstra. This is somewhat ironic, considering
our claim of a unified algorithm.

Compile-Time Optimization. A simpler algorithm suffices for some types of
plans. For example, all-car or all-walk plans should not require the overhead
of examining the finite automaton that specifies the constraint language, and
may be planned more efficiently if only a part of the network is examined. In
addition to the network modification trick to be described, for such cases we use
a separately optimized and compiled procedure implemented using the C++
template mechanism.

Thus in fact we are able to implement several variants of the algorithm and
transparently vary the underlying network independently so that the appropri-
ate algorithm and network can be chosen and run on a traveler-by-traveler basis
with no overhead, we just disguise them as one using C++ templates. In the
case where a simple mode is used by a large proportion of travelers, the imple-
mentation and program size overhead is small compared to the savings.

Implicit vs. Explicit Network Modification. As described earlier, the net-
work consists of layers representing car, walk and transit links, with walk links
also crossing between car and transit layers. It is possible to order the creation of
edges in the network so that edges with a fixed label form a consecutive interval
in the adjacency list of each vertex. Thus for example, edges numbered 0 to iy
will be car links, those from i1 + 1 to i3 transit links and those from i3 + 1 to i3
transit links. Then if the traveler is only allowed to use walk and transit links,
we ask Dijkstra’s algorithm to only examine the end of each adjacency list and
ignore car links completely, at the cost of a single extra table lookup per vertex
examined. This trick can be extended to modifying the adjacency list in more
general ways as long as the links are added to the network in a sensible order.

Hardware and Software Support. Most of the experiments were performed
on an MPP Linux cluster utilizing either 46 or 62 nodes with Dual 500 Mhz
Pentium II processors in each node. Each node had 1 Gb of main memory.
Many of the experiments were done by executing independent shortest paths
runs at each node. For this we had to create copies of the network. Fortunately
the network fits in just under 1 Gb of memory and thus did not cause problems.
On each node, the route planner was run using 2 routing threads and 1 output
thread.

Parallelization. The implementation may use multiple threads running in par-
allel and it may also be distributed across multiple machines using MPI. Threads
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enable the parallel execution of several copies of the path-finding algorithm on
a shared-memory machine. Each thread uses the same copy of the network. Be-
cause separate threads are used for reading, writing and planning, improvements
in the running time may be observed even with a single-processor machine.

3 The Sedgewick-Vitter Heuristic

One of the additional optimizations we’ve used for all-car plans is the Sedgewick-
Vitter [SV&6] heuristic for Euclidean shortest paths that biases the search in the
direction of the source-destination vector.

We can modify the basic Dijkstra’s algorithm by giving an appropriate weight
to the distance from x to ¢t. By choosing an appropriate multiplicative factor, we
can increase the contribution of the second component in calculating the label
of a vertex. From a intuitive standpoint this corresponds to giving the destina-
tion a high potential, in effect biasing the search towards the destination. This
modification will in general not yield shortest paths, nevertheless our experi-
mental results suggest that the errors produced can be kept reasonably small.
This multiplicative factor is called the overdo parameter.

4 A First Look at the Data

As mentioned, the experiments were carried out on a multi-modal transportation
network spanning the city of Portland. The network representation is very de-
tailed and contains all the streets in Portland. In fact, the data also specifies the
lanes, grade, pocket/turn lanes, etc. Much of this was not required in the route
planner module, but most of it was used by at least some parts of TRANSIMS
(usually the microsimulation or the emissions analyzer).

Types Street Parking Activity Bus+Rail Route
Vertices 100511 121503 243423 9771456 30874
Edges 249222 722745 2285594 55676 30249

In the basic TRANSIMS network, there are a total of 475 264 external nodes

and 650 994 external links. The internal network thus grows to over three million
edges (see Section 2.3).
Measured Quantities. We base our results on measurements and counts of
the following quantities: cpu: running time used for finding the shortest path
(no i/0), nodes: number of nodes on the path found by the algorithm, hadd:
number of nodes added to the heap during the execution, max: maximum size of
the heap during the execution, touched: total number of nodes touched (a node
may be counted multiple times here), unique: number of unique nodes touched,
edist: Euclidean (straight line) distance between the origin and destination,
time: time to traverse the path found by the algorithm,

In addition, each observation can be categorized according to its mode (walk,
auto, transit, light rail, park-and-ride, bus), overdo factor (strength of bias
when/if using the Sedgewick-Vitter heuristic—0 (none), 0.15, 0.25, 0.5), delay
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Fig. 3. Plots of Euclidean origin-destination distance, trip duration, running
time and total number of nodes added to the heap. The linear relation between
the running time and the number of nodes added to the heap during the execu-
tion is obvious from the plot and also very clear from the algorithm statement
(as long as the time for individual heap operations does not vary too much). We
do not consider the Euclidean distance further in this extended abstract

(for car trips— free-speed link delays, or those produced by feedback from the
microsimulation after 7 or 24 iterations).

Figure 3 illustrates the relationships between some parameters that are easy
to understand. In the later sections, we focus on a few that are not completely ob-
vious. Due to lack of space, our discussion focuses on car trips and on free-speed
link delays. We will have more to say (most importantly about the distinctions
between various modes and about the adjustments to link delays produced by
the microsimulation feedback) in the full version of the paper.

4.1 Varying the Sedgewick-Vitter Bias

We now take a look at the results obtained by setting different values of the bias
parameter (overdo) in the Sedgewick-Vitter heuristic. To summarize briefly,
it appears that a value of more than 0.15 is not very useful, as it gives only
a marginal improvement in the running time, whereas the path quality continues
to decrease. However, as we increase the overdo parameter from 0 to 0.15 the
running time improves quite substantially.

Estimate Std. Error ¢ value P[> [t]]
Intercept 0.8247292 0.0043564 189.32 < 2-10716
Slope  0.0002389 0.0000197 12.13 <2-10716
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Fig. 4. Running time and path delay against the number of nodes on the path
for four different values of overdo (0 0.15,0.25,0.5). The figures correspond to
increasing overdo parameters and are to be read row wise and bottom up. Note
the steep decrease in running time as we go from overdo = 0 to overdo = .15;
the improvement is small after that. We will take a closer look at the horn-shape
with overdo= 0, but note that the running time appears linear in the other
three plots. In fact, it seems constant, but a linear fit shows a very low slope, as
is to be expected. However, the quality of the paths output continues to decay
with increased overdo

The quality of paths found continues to worsen as the bias parameter is
increased, without a corresponding improvement in the running time. Thus we
must conclude that it is not useful to push overdo beyond 0.15. We still need
to investigate the values between 0 and 0.15 to find the best tradeoff.

The reason why the running time can be expected to be linear in the length
of the path produced when running the Sedgewick-Vitter heuristic is precisely
because of the bias: instead of performing the depth-first-search and expanding
equally in all directions (where the number of nodes examined for example in
a grid would be proportional to the square of the path length), the search expands
primarily in the single direction towards the destination. Note that this is even
a stronger claim than the theoretical result applicable to graphs with Euclidean
distance functions, which says that the running time is linear in the size of the
graph. However, there are some caveats we should be aware of. By studying
the plot for overdo= 0.15 (bottom right in Figure 4), we see that only the
lower envelope of the data set is a straight line. The upper envelope is not.
These points correspond to the cases where the bias led the algorithm astray,
for example where the direct geometric route led to the river bank, hoping to
get across but not finding a bridge in the vicinity.

An interesting phenomenon is the similarity of running times with the overdo
set to 0.15, 0.25 and 0.5. The average running times are practically equal, and
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Fig. 5. Delay (quality) of paths produced for various values of the bias param-
eter. The color scheme for the points and the fitted lines is as follows: red /pink:
0, blue/light blue 0.15, green/light green 0.25, yellow, light yellow 0.5

a formal analysis of variance (ANOVA) test shows that we should not reject
the hypothesis of equality of the running times with the bias at 0.15 and 0.25.
(Admittedly, it is not at all clear that all the assumptions necessary to validate
the test are satisfied.)

4.2 Nonlinear Dependence of Running Time on Path Length

Finally, let us take a closer look at the dependence of running time on the path
length in the case of exact Dijkstra’s algorithm (no Sedgewick-Vitter heuristic).
The best fit for the data appears to be a logistic response curve of the form

b—x -
I4e c
How to explain this behavior? Consider a regular two-dimensional grid (a

reasonable approximation to the dense street network of a city). If the path
length from the origin to the destination is k, then there are roughly k2 nodes
to be examined before the destination is reached. Thus, we may expect that the
running time grows as a square of the path length. However, in a finite grid,
if the explored area reaches a boundary, the number of nodes examined must
grow slower simply because there are no more nodes to be examined. Thus, after
a certain path length is achieved without finding the destination, the growth of
the running time should slow down. Indeed, the point of inflection on the logistic
curve is just under half the maximum path length among our planned trips, and
intuitively, this is where the curve tapers off—when the algorithm runs out of
new useless nodes to explore.
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nodes

Fig. 6. Running time plotted against the number of nodes on the path produced
by the algorithm for overdo= 0. The parameters were estimated at a = 8.14297,
b = 137.083 and ¢ = 49.629. Notice that the point of inflection is a little under
half the maximum path length.
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