Optimal Sparse Matrix Dense Vector Multiplication in the
I/0-Model

k
Michael A. Bender
Department of Computer Science,
Stony Brook University,
Stony Brook, NY 11794-4400, USA.

bender@cs.sunysb.edu

Riko Jacob
ETH Zurich,
Institute of Theoretical
Computer Science,
8092 Zurich, Switzerland.
rjacob@inf.ethz.ch

ABSTRACT

We analyze the problem of sparse-matrix dense-vector mul-
tiplication (SpMV) in the I/O-model. The task of SpMV
is to compute y := Ax, where A is a sparse N X N matrix
and z and y are vectors. Here, sparsity is expressed by the
parameter k that states that A has a total of at most kN
nonzeros, i.e., an average number of k£ nonzeros per column.
The extreme choices for parameter k are well studied spe-
cial cases, namely for k = 1 permuting and for k = N dense
matrix-vector multiplication.

We study the worst-case complexity of this computational
task, i.e., what is the best possible upper bound on the num-
ber of I/Os depending on k and N only. We determine this
complexity up to a constant factor for large ranges of the
parameters. By our arguments, we find that most matrices
with kN nonzeros require this number of I/Os, even if the
program may depend on the structure of the matrix. The
model of computation for the lower bound is a combination
of the I/O-models of Aggarwal and Vitter, and of Hong and
Kung.

We study two variants of the problem, depending on the
memory layout of A.

If A is stored in column major layout, SpMV has I/O com-

*Supported in part by NSF grants CCF 0621439/0621425,
CCF 0540897,/05414009, CCF 0634793/0632838, and CNS
0627645.

TPartially supported by the Danish Research Agency.

iSupported in part by the Danish Natural Science Research
Council (SNF).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPAA’07, June 9-11, 2007, San Diego, California, USA.

Copyright 2007 ACM 978-1-59593-667-7/07/0006 ...$5.00.

Gerth Stplting BrodalT
BRICS, Basic Research in
Computer Science,
University of Aarhus,

Aarhus, Denmark.
gerth@daimi.au.dk

Rolf Fagerberg1E
Department of Mathematics
and Computer Science,
University of Southern Denmark,

Odense M, Denmark.
rolf@imada.sdu.dk

Elias Vicari
ETH Zurich,
Institute of Theoretical
Computer Science,
8092 Zurich, Switzerland.
vicariel@inf.ethz.ch

plexity @(min{% (1 +logy, m), kN}) for k <
N'"¢ and any constant 1 > ¢ > 0. If the algorithm can
choose the memory layout, the I/O complexity of SpMV is

@(min{% (1 +logyp %),kN}) for k < V/N.
In the cache oblivious setting with tall cache assumption
M > B¢ the I/O complexity is O (% (1 +1oga 5 %))

for A in column major layout.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Algorithms, Theory

Keywords: I/0O-Model, External Memory Algorithms,
Lower Bound, Sparse Matrix Dense Vector Multiplication

1. INTRODUCTION

Sparse-matriz dense-vector multiplication (SpMV) is one
of the core operations in the computational sciences. The
task of SpMV is to compute y := Az, where A is a sparse
matriz (most of its entries are zero) and x and y are vec-
tors. Applications abound in scientific computing, computer
science, and engineering, including iterative linear-system
solvers, least-squares problems, eigenvalue problems, data
mining, and web search (e.g., computing page rank). In
these and other applications, the same sparse matrix is used
repeatedly; only the vectors x and y change.

From a traditional algorithmic point of view (e.g., the
RAM model), the problem is easily solved with a number of
operations proportional to the number of entries in the ma-
trix, which is optimal. In contrast, empirical studies show
that this naive algorithm does not use the hardware effi-
ciently, for example [18] reports that CPU-utilization is typ-
ically as low as 10% for this algorithm. The explanation for
this observation lies in the memory system of a modern com-
puter, where an access to a data item happens without delay
if the item is stored in the fast processor cache, whereas it
takes a significant amount of time if the item needs to be
fetched from memory, or even worse if the item resides on

disk. Today the trend in hardware development is that cache
has more levels, and that the speed of CPU and innermost
caches increase faster than the speed of the slower memory,
in particular the disk. Hence, the goal of taking algorithmic
advantage of the memory hierarchy will also remain impor-
tant for hardware in the foreseeable future.

Previous theoretical considerations.

The memory hierarchy of a computer is usually mod-
eled by the disk access machine (DAM) [1] and cache-
oblivious (CO) [7] models. The disk access machine
model is a two-level abstraction of a memory hierarchy, mod-
eling either cache and main memory or main memory and
disk. The small memory level has limited size M, the large
level is unbounded, and the block-transfer size is B. The ob-
jective is to minimize the number of block transfers between
the two levels. The cache-oblivious model enables one to
reason about a two-level model but to prove results about
an unknown multilevel memory hierarchy. The CO model
is essentially the DAM model, except that the block size B
and main memory size M are unknown to the coder or al-
gorithm designer. The main idea of the CO model is that
if it can be shown that some algorithm performs well in the
DAM model without being parameterized by B and M, then
the algorithm also performs well on any unknown, multilevel
memory hierarchy [7].

These models were successfully used to analyze the I/O
complexity of permuting [1], which can easily be seen as a
special case of sparse matrix-vector multiplication, namely
where the matrix is a permutation matrix. There are known
classes of permutation matrices that can be computed more
efficiently [4]. In its classical formulation, the DAM model
assumes that certain data items are atomic and can only
be moved, copied or destroyed, but not split or analyzed
further. Hence, the DAM model does not directly allow to
consider an algebraic task as we consider here. Such tasks
have been successfully analyzed by means of a red-blue peb-
ble game [11], which captures the existence of two levels of
memory, but does not assume that I/O operations consist
of blocks, i.e., it assumes B = 1. There are other modifi-
cation of the DAM model known that are geared towards
computational geometry problems [2].

Previous practical considerations.

In many applications where sparse matrices arise, these
matrices have a certain well-understood structure. Exploit-
ing such structure to define a good memory layout of the
matrix has been done successfully; examples of techniques
applicable in several settings include “register blocking” and
“cache blocking,” which are designed to optimize register
and cache use, respectively. See e.g., [5, 18] for excellent
surveys of the dozens of papers on this topic; sparse ma-
trix libraries include [6,10,13,14,17,18]. In these papers,
the metric is the running time on test instances and current
hardware. This is in contrast to our considerations, where
the block size B and the memory size M are parameters and
the focus is on asymptotic performance.

Our Results.

In this paper, we consider an N x N matrix A and describe
its sparsity solely by the number of nonzeros. More precisely,
our sparsity parameter k states that A has a total of at
most kN nonzeros, i.e., an average number of k£ nonzeros

per column. For this parameter, we consider algorithms
that work for all matrices with at most kN nonzeros, and
we are interested in the worst-case I/O performance of such
an algorithm. The bound on the number of I/Os performed
by the algorithm may only depend on the dimension N of
the matrix, the sparsity parameter k, and the parameters M
and B of the DAM model. Here, we extend the DAM model
to allow algebraic operations in a fairly controlled fashion.

In our discussion we assume that a sparse matrix is stored
as a list of triples (7, j,) describing that at position (row ¢,
column 7) the value of the nonzero entry is . The order of
this list corresponds to the layout of the matrix in memory.
Column major layout means that the triples are sorted
lexicographically according to j (primarily) and ¢ (to break
ties).

The precise contributions are as follows:

e We give a precise model of computation that combines
the models of [1] and [11].

e We give an upper bound parameterized by k& on the
cost for the SpMV when the (nonzero) elements of the
matrices are stored in column major layout. Specifi-
cally, the cost for the SpMV is

. [kN N
O (wn{5 (110 o) - +)-

This bound generalizes the permutation bound, where
the first term describes a generalization of sorting by
destination, and the second term describes moving each
element directly to its final destination.

e We also give an upper bound parameterized by k on
the cost for the SpMV when the (nonzero) elements
of the matrices can be stored in arbitrary order. The
cost for the SpMV now reduces to

. [EN N
@) (mln{§ (1+logM/B W) , kN}) .

e We give a lower bound parameterized by k on
the cost for the SpMV when the nonzero elements
of the matrices are stored in column major order

of Q(min{% (1 +logu,m ﬁ’ml\/f}) , kN}) I/Os.
This result applies for k¥ < N!'7¢, for all constant
1 > & > 0 (and the trivial conditions that B > 2 and
M > 4B). This shows that our algorithm is optimal
up to a constant factor.

e We conclude with a lower bound parameterized by
k on the cost for the SpMV when the nonzero el-
ements of the matrices can be stored in any order,
and, for k£ > 5, even if the layout of the input
and output vector can be chosen by the algorithm.

Then @ (min { 557 (1+logyy s 27), kN }) 1/0s are

required. This result applies for & < ¥/N (and the
trivial conditions that B > 6 and M > 3B) and shows
that our corresponding algorithm is optimal up to a
constant factor.

e In the cache oblivious setting with the tall cache as-
sumption M > B'™¢ the I/O complexity of SpMV is

O (% (1 +logn/p %)) for column major layout.

In this the lower bound takes most of the effort and re-
lies upon the following counting argument. We consider on
one hand data-flow descriptions that can arise from ¢ I/O
operations. On the other hand, we determine how many
matrices (of a specific family) can be dealt with by the same
data flow. Comparing the numbers (including the size of the
family), we can conclude that a certain number of 1/Os are
necessary to handle all matrices of the family, or in other
words that some matrices in the family cannot be handled
if the number of I/Os is too small.

As a side result, our arguments show that a uniformly cho-
sen random sparse matrix will almost surely require half the
I/0Os claimed by the worst-case lower bounds. This is due to
the fact that the number of programs grows exponentially
with the number of I/O operations.

Limits of the Results, Extensions, and Future Work.

Ideally, what we would like to have is some kind of com-
piler that takes the matrix A, analyzes it, and then efficiently
produces a program and a good layout of the matrix, such
that the multiplication Az with any input vector z is as
quick as possible. To complete the wish list, this compiler
should produce the program more quickly than the program
takes to run. Today, this goal seems very ambitious, both
from a practical and theoretical viewpoint. Our investiga-
tions are a theoretical step toward this goal.

In this process, we work with a sparsity parameter that
merely counts the number of nonzeros. This is not the per-
fect parameter. It is easy to specify matrices of arbitrary
sparsity that can be multiplied with in scanning time. Nev-
ertheless it is a natural parameter because kN is also the
number of multiplications and the input size. Additionally,
it is a good parameter to express the I/O complexity of the
task because it allows to show the existence of many sparse
matrices for which we now know the data flow I/O complex-
ity up to a constant factor.

Another interesting question that remains open is to pin-
point which matrices require many I/Os. This problem is
not even solved for permutation matrices (i.e., the problem
of permuting) because the counting argument only shows
that many difficult matrices exist. This question is perhaps
the aspect of the mentioned matrix compiler that is least
understood, namely what are strong lower bounds for the
necessary 1/O of a concrete matrix.

Moreover, the DAM model only counts memory transfers
rather than computation. Thus, the algorithm with the best
data locality may not be the algorithm with the fastest run-
ning times.

Finally, our lower bounds rely upon fairly strict algebraic
assumptions. These assumptions are standard, it seems nat-
ural to separate the algebraic aspects from the data flow as-
pects if this allows to show non-trivial lower bounds. Still,
it would be nice to relax these assumptions. We conjecture
that even if an algorithm is allowed to exploit the full struc-
ture of the real numbers, this will not increase its efficiency.

Map.

This paper is organized as follows: In Section 2 we de-
scribe the computational model in which our lower bounds
hold. In Section 3 we present upper bounds on the SpMV.
We prove the upper bound for column major layout, and
then for free layout. We conclude with a description of
an upper bound in the cache-oblivious model. Section 4

presents our lower bound for column major layouts. Sec-
tion 5 presents our lower bound for free layouts.

We use the established ¢ = O (f(N,k, M, B)) notation,
which here means that there exists a constant ¢ > 0 such
that ¢ < ¢- f(N,k,M,B) for all N > 1,k, M, B, unless
otherwise stated. Throughout the paper log stands for the
binary logarithm.

2. MODEL OF COMPUTATION

Our aim is to analyze the I/O cost of computing a matrix-
vector product. I/Os are generated by movement of data,
so our real object of study is the data flow of algorithms
for matrix-vector multiplication, and the interaction of this
data flow with the memory hierarchy. Our modeling is a
combination of the two models that were used to analyze the
special cases of permuting [1] and matrix-matrix multiplica-
tion [11]. We assume, as is standard, a two-level memory
hierarchy of Aggarwal and Vitter with limited main mem-
ory and data transfer organized in blocks [1]. Furthermore,
we restrict the algorithm to the classical modeling of [11],
and assume what they call “independent evaluation of mul-
tivariate expressions”, as explained in detail below.

Our model is based on the notion of a commutative
semiring S, i.e., a set of numbers with addition and mul-
tiplication, where operations are assumed to be associative
and commutative, and are distributive. There is a neutral el-
ement 0 for addition, 1 for multiplication, and multiplication
with 0 yields 0. In contrast to a field, there are no inverse
elements guaranteed, neither for addition nor for multipli-
cation.

Definitions.

The semiring I/O-machine has an infinite size disk D,
organized in tracks of B numbers each, and main memory
containing M numbers from a semiring S. Accordingly, a
configuration can be described by a vector of M numbers
M = (mi,...,mum), and an infinite sequence D of tracks
modeled by vectors t; € SB. A step of the computation leads
to a new configuration according to the following allowed
operations:

e Computation on numbers in main memory: alge-
braic evaluation m; := m; + mg, m; := m; X my, set-
ting m; := 0, setting m; := 1, and assigning m; := m;.

e Input operations, each of which moves an arbitrary
track of the disk into the first B cells of memory,
(1’)’L17 e ,mB) = ti7 tz‘ = 0.

e Output operations, each of which copies the first
B cells of memory to a previously empty (t; = 0)
arbitrary track, and sets t; := (ma,...,mp).

Input and output operations are collectively called I/O op-
erations.

A program is a finite sequence of operations allowed in the
model, and an algorithm is a family of programs. For the
sparse matrix-vector multiplication, we allow the algorithm
to choose the program based on N and the conformation
of the matrix, i.e., the positions of the nonzeros. More
precisely, we say that an algorithm solves the sparse matrix-
vector multiplication problem with ¢(k, N) I/Os if for all
dimensions N, all k£, and all conformations of N x N matrices

with kN non-zero coefficients, the program chosen by the
algorithm performs at most ¢(k, N) I/Os.

Note that this model is non-uniform, such that an algo-
rithm always knows what an intermediate result stands for,
for example which row and column a coefficient of the ma-
trix belongs to. In particular, this reduces an input-triple
(4,4,7) to a single number, whereas the indices ¢ and j are
implicit and known to the algorithm and reflected in the
program. Because the underlying algebraic structure is an
arbitrary semiring, by Lemma A.1, we may assume that all
intermediate values are a “subset” of the final results and
can be classified as follows: every intermediate results is
what we call a canonical partial results, i.e., of the form
Tj, Qij, AijTj, O S; = Zjesaijwj, where 1 < 4,5 < N,
S CR; C{1,...,N}, and R; is the conformation of row ¢
of the matrix. The various forms above are called input
variable, coefficient, elementary product, and partial
sum, respectively, with ¢ being the row of the partial sum.
If S = R;, we simply denote the partial result a result.
Hence, every intermediate result is either part of one col-
umn or part of one row. Our algebraic assumption that an
algorithm must work for any semiring imply that all use-
ful intermediate results are canonical partial results, see the
Appendix A for details. This coincides precisely with the
notion of “independent evaluation of a multivariate expres-
sions” of [11].

One partial result p is a predecessor of another p’ if it
is an input to the addition or multiplication leading to p/,
and is said to be used for calculating p’ if p is related to p’
through the closure of the predecessor relation.

For the algorithm to be fully specified, we still need to
decide on the layout in memory of the input matrix and
vector, and the output vector. Omne option is to consider
fixed layouts (such as column major layout for the matrix
and sequential layout for the vectors). Another is to allow
the algorithm to use a different layout for each program. We
consider both possibilities in the rest of the paper.

Discussion of the model.

This model is natural because all efficient algorithms for
matrix-vector multiplication known to us work in it. As do
many natural algorithms for related problems, in particular
matrix multiplication, but not all—the most notable excep-
tion is the algorithm for general dense matrix multiplication
by Strassen. It is unclear if ideas similar to Strassen’s can
be useful for the matrix-vector multiplication problem.

Models similar to the semiring I/O-machine above have
been considered before, mainly in the context of matrix-
matrix multiplication, in [16], implicitly in [15], and also
in [11]. Another backing for the model is that all known
efficient circuits to compute multilinear results (as we do
here) use only multilinear intermediate results, as described
in [12].

We note that the model is non-uniform, not only allowing
an arbitrary dependence on the size of the input, but even on
the conformation of the input matrix. In this, there is simi-
larity to algebraic circuits, comparison trees for sorting, and
lower bounds in the standard I/O-model of [1]. In contrast,
the algorithms are uniform, only relying on the comparison
of indices.

One natural idea is to extend the algorithm to compare
numbers, along the lines of comparison trees. In the plain
semiring model, this would be binary equality tests. As it

turns out, this does not allow for more efficient algorithms,
see Appendix A for details.

3. ALGORITHMS

A number of standard algorithms for sparse-matrix dense-
vector multiplication exist. One is the naive algorithm,
which for increasing ¢ computes the sums ¢; = Z]ERI, Qi T;
by summing for increasing j. If the matrix is stored in
row major layout, this takes O (kN) I/Os, just for access-
ing the variables, if it is stored in column major for ac-
cessing the coefficients. A blocked version (see [9]) uses
a blocked row major mode—think of the matrix as N/M
matrices of size N x M, store each of these in row major
mode, and calculate the matrix-vector product as the point-
wise sum of the N/M products of these matrices with the
appropriate size M segments of the vector. This amounts
to O (min{kN, N*/(BM)} + kN/B) 1/Os. A different ap-
proach that works independently of the matrix layout is to
create all products a;;x; by sorting the coefficients and vari-
ables on j, and then create the sums by sorting the prod-
ucts on i. Using the sorting algorithm of [1], this takes

0 ((k:N/B) (1 +log,, /B(k:N/M))) 1/0s.

In this section, we propose improved algorithms based on
the sorting approach. Essentially, the resulting improvement
in I/O cost consists of exchanging Nk with N/k inside the
logarithm in the last bound above. In particular, the new
algorithm asymptotically beats the above algorithm for k =
w(1), has the same performance for k = 1, meets the dense
matrix multiplication algorithm for £k = N, and provides a
smooth transition between these two cases. Furthermore,
in the remaining sections we prove that the algorithms are
optimal for large fractions of the parameter space. In the
following, we assume k < N, and M > 3B.

3.1 Column Major Layout

For matrices stored in column major layout, any algorithm
computing the product of the all-ones vector with a sparse
matrix can be used to compute a matrix-vector product with
the same matrix: perform an initial simultaneous scan of the
coefficients and the input variables, where the coefficients
are replaced by the elementary products a;;jz;, and then
apply the algorithm. This does not change the asymptotic
performance of the algorithm.

The task of computing the product of the all-ones vector
with a matrix can be understood as having to sort the coeffi-
cients according to rows (after which the result vector can be
computed by scanning the matrix once more). The idea to
gain efficiency over plain sorting is to immediately perform
additions as soon as two partial sums for the same output
value meet, i.e., reside in memory simultaneously during the
sorting. The resulting gradual decrease in data size during
the sorting gives the speedup.

In more detail: If k < M, we start by sorting the coef-
ficients (elementary products) in chunks of M consecutive
elements in internal memory, leading to kN/M < N many
runs. Otherwise, the input itself constitutes IV runs of aver-
age length k. These runs are merged in a bottom-up fashion
as in the M /B-multiway merge sort—performing immediate
additions of partial results meeting during the merging—
until there are at most k£ runs. This marks the end of phase

one, which costs at most O (% logys, s r/k) I/0Os, where r

is the initial number of runs. Due to the merging, no run can

ever become longer than N, as this is the number of output
values, so at the start of phase two, we have at most k runs
of length at most N. The algorithm finishes phase two by
simply merging (again with immediate additions) each run
into the first, at a total I/O cost of O (kN/B) for phase two.

For k < M we get O (% (1 +logar/ %)) I/Os and oth-

erwise O (% (1 +logn/p %)), hence the overall number
of I/Os is

kN N
o (F (1 +108,/5 m» '

3.2 Free Layout of the Matrix

For general layouts, we can get a further speed-up by using
a blocked row major layout. More precisely, we store the
coefficients in blocks of M — 2B full columns, where each
such block is stored in row major layout.

In an outer loop, we load the variables of the input vec-
tor into main memory, M — 2B at a time. In an inner
loop, we produce elementary products by loading the ap-
propriate coefficients (accessed in scanning time due to the
layout), and multiplying them with the corresponding vari-
ables. The elementary products of the same row are merged
immediately by summing them up. In kN/B 1/Os, this
produces r = N/(M — 2B) runs. Then, we continue as in
the previous algorithm. By the analysis of Section 3.1, the
overall number of I/Os of this algorithm is

kN N
O (F (l-l-logM/B W)) .

3.3 Cache Oblivious Algorithm

We can execute the algorithm of Section 3.1 in a cache-
oblivious setting (under the tall cache assumption M >
B¢ as is needed for optimal sorting in this model). Recall
that the algorithm uses column major layout. We first do all
multiplications of coefficients and variables in a single scan,
as in Section 3.1. We then group the columns into & groups
of N/k columns each. In memory, each group will form
a file consisting of N/k sorted runs, which by the cache-
oblivious adaptive sorting algorithm of [3] can be sorted

using O (n/B logys/ N/k:) I/Os, where n is the number
of coefficients in the group. Summed over all groups we
get O (k:N/BlogM . N/k:) 1/Os for this. The first phase
ends by compressing each group to size at most N by do-
ing additions during a scan of each group. The second
phase proceeds exactly as in Section 3.1. The total I/O cost
is O (kN/B(l +logy/ s N/k)), which under a tall cache

assumption is asymptotically equal to the bounds in Sec-
tion 3.1 and 3.2.

4. AN EASY LOWER BOUND:
COLUMN MAJOR LAYOUT

All the algorithms of Section 3 are asymptotically optimal
for wide ranges of the parameters. This section and Section 5
are devoted to the proofs of these lower bounds. In this
section, we consider the somewhat easier case that matrices
are stored in column major layout, the natural layout to
compute the elementary products. Here, it is sufficient to

consider only the k-regular sparse matrices, i.e., matrices
with precisely k£ nonzeros per column.

As described later in more detail, we here use the assump-
tions about the allowed intermediate results to describe the
numbers constituting the configuration of the machine by
an index, either standing for a column (position in the input
vector) or a row (position in the output vector). Further, we
abstract from the order in which numbers are stored in main
memory and on disk. To describe the content of the main
memory of the machine, we only record the subset M C [N],
|M| < M of variables currently in memory. This is an im-
portant difference to the vector of numbers that describe the
main memory in the general model. Similarly, the tracks of
the disk are described by the list D as subsets 7; C [N],
|7:| < B (for i > 1). As we will see, the same formalism can
describe all intermediate results.

Additionally, we assume that the program complies with
the following rules: In the initial and final configuration,
unused tracks of the disk and the memory are empty. Recall
that read operations leave the track of the disk empty, and
write operations require the track of the disk to be empty.
Tracks are used consecutively, such that no track address
is bigger than the total number of I/Os performed. Any
program that correctly computes matrix-vector products (or
achieves one of the studied tasks) can easily be transformed
to comply with these rules, changing the number of 1/Os
only by a constant factor.

4.1 Producing i-Regular Conformations

We start with a simple computational task, whose impor-
tance will become clear later in this section.

The precise job is to transform an initial list of atomic
numbers y1,...,yn into a list of KN numbers organized in
N blocks. This output is understood as the representation
of a k-regular matrix by assuming that every block contains
copies of different variables that are sorted according to the
index of the variables. With this representation, the i-th
block describes the i-th column of a k-regular N x N-matrix.
The algorithm should be able to produce any k-regular ma-
trix conformation.

In this setting, the model of computation allows variables
only to be copied, moved, or destroyed. Hence the abstrac-
tion to use the index of the variable to describe a configura-
tion of the machine is certainly justified here.

Suppose that an algorithm is given and look at its ex-
ecution on an instance. By analyzing the changes of the
configurations of memory and tracks on the disk, one can
characterize the I/O data-flow and, thus, the program exe-
cution uniquely.

Imagine to revert the configuration sequences and to re-
place the copy operation by a sum operation. Along with
some details discussed in the next section, we get an al-
gorithm that computes the row-sums of a matrix initially

Yy Y1
(17253) ~ ([173}7 [172]7 [273]) = Y2 Y2
Y3 Y3

Figure 1: The representation for an example of pro-
ducing a matrix in column major layout (N = 3 and
k=2).

stored in column major layout. Thus we say that the task
of producing conformations is time dual to the task of com-
puting the row-sums of a matrix in column major layout.

By comparing the number of conformations that can be
created by programs with £ 1/Os with the number of possible
conformations, we get a lower bound on the I/Os that some
matrix requires to calculate its row-sum.

Note that in Section 5, we argue about the sequence of
configurations of collecting results using the same time di-
rection as discussed here. Hence, the time duality gains even
more interest.

4.2 Column Major Layout

The argument of Section 4.1 and time duality directly
imply a lower bound that we will calculate in this section.
Still, we describe the process of computing row-sums in a
time forward manner, because it is the basis for the data-flow
analysis of Section 5, together with the process described in
Section 4.1.

Set up.

We define a trace of the algorithm when running on the
semiring I/O-machine. The values are replaced by row-
indices describing the row of the matrix a value stems from
and, by this, the index of the variable in the result vector it
is a predecessor of. This representation assumes in particu-
lar, that the program immediately merges in memory results
with the same index by summing them up. This assumption
can always be achieved without inducing additional I/Os.

Furthermore, we work with stubs of partial results, i.e.,
zeros that are a predecessor of a particular output value. At
first sight, this is perhaps a strange concept, but it is actually
quite natural if we want to analyze time-backward. Then,
having stubs is dual to the policy of destroying elements
only when it is necessary because the memory locations are
needed again. Here, as soon as a memory location becomes
available, a stub for some other output variable is created.
Note that creating a stub for an output variable already
residing in memory would violate the policy of immediately
merging.

Initial and final configurations.

The final configuration of the machine is uniquely deter-
mined, it has M = 0, and 71 = {1,...,B}, 7o = {B +
1,...,2B}, ..., Trnygy = {([N/B] —=1)B+1,...,N}. In
general, the initial configuration of the disk does not iden-
tify the conformation of the k-regular matrix uniquely. We
denote by 7 = 7(N, k, B) the maximal number of different
conformations that any initial configuration can be used for.

If k = B, then there is a one-to-one correspondence be-
tween the precisely k£ entries in a column and the content
of a track. Since the column major layout dictates that the
entries of the matrix are stored in order of increasing row,
the set 7; uniquely identifies the vector t;. For other values
of B < k, some tracks belong completely to a certain col-
umn. The other tracks are shared between two neighboring
columns. Every element of the track can hence belong either
to the left column, the right column, or both columns, i.e.,
there are at most 3 choices for at most kN elements. Once
it is clear to which column an entry belongs to, the order
within the track is prescribed. For B > k we describe these
choices per column of the resulting matrix. Such a column
has to draw its k entries from one or two tracks of the disk,

2B
k
sults in up to (QE)N < (2eB/k)*N different matrices that
are handled by the same initial configuration. Summarizing

we have:

these are at most () choices. Over all columns, this re-

3N if B<k
T(N,k,B) < {1, ifB=k
(2eB/k)FN | if B>k

Identifying the program execution.

The sequence of configurations (M, D) is described ac-
cording to the I/Os performed, starting from the unique fi-
nal configuration, “backward” in time. Accordingly, we will
reconstruct the sequence starting from the unique final con-
figuration. In any case, we specify the track of the disk that
is touched by the I/O. Remember that this track is empty
after reading or before writing. Consider the transition from
(M, D) (earlier in time) to (M’, D) (later in time). Since
we want to reconstruct backwards, (M’, D) is assumed to
be known already, and we want to specify (M, D) succinctly.
For an input operation we specify the up to B row-indices
that come into memory as a subset of M’. Knowing the
track number of the input, this specifies D. For the memory
we have M = M’ because we assume that at least stubs of
partial sums are already there. For an output operation, the
specified track must be empty, and the content of the track
in D’ must have been in the memory M. To this end, we
have to describe which variables of M’ are not in M, i.e.,
which stubs are created to fill positions of partial results that
are moved to disk. With this encoding we can reconstruct
the sequence of configurations. There are less than é(MgB)
choices for each step, where £ is a bound of the considered
tracks on the disk and the term (MEB) allows the possibility
to read or write incomplete tracks.

Because the number of distinct conformations of a N x N
k-regular matrix is (]IX)N, we can summarize this discussion
in the following Lemma:

LEMMA 4.1. If an algorithm computes the row-sums for
all k-regular N X N matrices stored in column magjor layout
in the semiring 1/0-model with at most £ = €(k,N) I/Os
then it holds that

(3= (5)

where 7 = 7(N, k, B) is the mazimal number of different ma-
triz conformations that any initial configuration can specify.

Proof. By exploiting the aforementioned time duality, we
. . . N\N .
argue in terms of the matrix producing task. (k) is the
number of distinct conformations of a N X N k-regular ma-
trix. Therefore (%)N /7 is a lower bound on the number of
distinct final configurations. As showed above, any program
execution generates at most (1V IEB)K different configurations
by every 1/0. Since the algorithm is required to deal with

any final conformation

(2] = ((57))

is a necessary condition and the claim is proved. O

Doing the math.

Algebraic manipulations of the inequality in Lemma 4.1
lead to the following Theorem. Note that for all values of
N, k, M, and B the scanning bound (i.e., the cost of scanning
the coefficients once) holds, that is, £(k, N) > kN/B.

THEOREM 4.2. Assume that an algorithm computes the
row-sums for all k-reqular N X N matrices stored in column
magor layout in the semiring 1/O-model with at most £(k, N')
I/Os. Then, for B> 2, M > 4B,and k < N'7¢, 0 < e < 1,
there is the lower bound

e(k,N)>mm{ N L kN}

kN
B OBM/B ax{k, M} 82—«

—minJe (=9 1
form_mm{3, 5 16

Comparing this lower bound to the number of I/Os of the
algorithm in Section 3.1 shows that the algorithm for fixed
la}iout is optimal up to a constant factor as long as k <
N~

PROOF OF THEOREM 4.2: We perform some algebraic
manipulation on the claim of Lemma 4.1.

Using ¢ < kN 4+ [N/B] < 2kN and taking into account
the different cases established for 7, we get the following
inequalities:

For k < B: (IZ)N < ((MEB)QkN)Z - (2eB/k)*™N. Using
(z/y)Y < (:) < (we/y)? and taking logs we get kN log & <

¢ (10g(2kN) + Blog <)) 4 kN log(2¢B/k) . With M >
4B, implying M + B < 4M/3, and e4M /3 < 4M we get
log %
log(2kN) + Blog 3~

(1)

For k > B: (IZ)N < ((M;'B)QkN)e - 3*N_ Taking logs:

kNlog & < ¢ (log(QkN) + Blog e(M'%B)) + kN log3, i.e.,

log %
log(2kN) + Blog &

(2)

Combining (1) and (2) we get
N
max{3k,2eB

log
N o -
log(2kN) + Blog =53

For small N, this bound is weaker than the scanning
bound for accessing all kN entries of the matrix: If N <
max{22/1-9% 161/¢,91/< 21} then logy,, 5 N < 2/(1 —¢)?
and log,; ;5 N < 3/e. Similarly N < 16B gives logy;, 5 N <
—1+log, 16 = 3.

Otherwise, for large N, distinguish between the dominat-
ing term in the denominator. Fix an 1 > € > 0 and assume
that k < N'~¢; if log 2kN > Blog(4M/B) we get

N
EN log max{3k,2eB}
- 21og(2kN)
Now, Lemma B.3 gives B < 3N*'~ 6/26 and using k < N'=¢
2/e 7& elog N—log3
N > 3%¢ we get £ > k:Nizlogg;N) kN 52 f=ced, >

e/2log N ek N
kNQ 2(2—e)log N — 16—8¢ °

Otherwise (log 2kN <B log(4M/B)), by using log M/B >

2, we get £ > kN-= 198 s (BB
& log 44 +2 =

xnax{Sk 2eB} > kN |
2B log 43 = 2B

—3+log — N .
ER W{k'm . Now, assume further N > 16B, which,
B

together with N/k > N°¢ > 16 for N > 16'/¢, implies
log % > 4. Hence,

N
EN 108 oo sy . kN N
> 2madh B B - —
~ 2B 8log4y ~ 16B 08y max{k, M}

Here, we estimate M > B which is certainly weakening the
lower bound, but since this estimation is inside a log,,,p it
merely loses an additive constant. O

5. LOWER BOUND: FREE LAYOUT - THE
SEPARATED MODEL

In this section, we consider algorithms that are free to
choose the layout of the matrix on the disk; we refer to this
case as the free matrix layout. In this setting, computing
row-sums can be done by one single scan if the matrix is
stored in row major layout. Hence, the input vector be-
comes an important part of the input, whereas the coeffi-
cients of the matrix are no longer important. Accordingly,
in our argument, we do not even count the accesses to coeffi-
cients as I/Os. As already hinted at in the introduction, we
trace both the movements of variables and the movements
of canonical partial sums while the algorithm is executing.

Set up.

At this point, we introduce a slight structural modifica-
tion of the semiring I/O-machine that formalizes this clas-
sification of intermediate results without changing the I/0O-
behavior. Each configuration in the separated model en-
capsulates the sequence of internal operations between two
1/0s. In particular, it abstracts away the order of multipli-
cations and summations, and thus focuses on the resulting
movement of partial results and variables.

The input variable memory My C [N], |IMy| < M is the
set of variables in memory right after the preceding I/0O,
before the internal computation at hand starts. The result
memory Mg C [N], IMg| < M gives the row index of the
matrix (or the result vector) for which some partial sum is
in memory after the internal computation, before the suc-
ceeding I/0.

We also separate the disk into Dy containing copies of
variables, and Dr containing partial results. Each track of
such a disk contains at most B items.

The multiplication step P C Mg x My represents which
coefficients of the matrix A are used in this internal com-
putation. The sequence of multiplication steps is called the
multiplication trace. We have (i,j) € P if the partial
result for row ¢ contains the term a;;x; after the internal
computation, but not before. Note that this can only be
the case if x; is in the variable memory at the start of this
sequence of internal computations. Additionally, we can as-
sume that every coefficient a;; is only used once, and that
this use is as early as possible, i.e., at the earliest memory
configuration where a copy of variable j and a partial sum
of row ¢ are simultaneously in memory.

Identification of the conformation.

By the assumption that all intermediate values are a pre-
decessor of some output value, the multiplication trace spec-
ifies the conformation of the matrix uniquely. For this rea-
son we do not need to argue about the parameter 7 as in

Section 4.2. This proves the following Lemma.

LEMMA 5.1. The conformation of the computed matriz is
determined uniquely by the sequence of configurations in the
separated model.

Identifying the program execution.

For a computation with £ I/O operations, consider the se-
quences (over time) of My, Dy, P, and Mg, Dg separately.
Observe that for the purpose of a lower bound, there is no
harm in overestimating My or Mg with a superset, just
as we could assume this for the variables y; in the example
setting of Section 4.1. Hence, we assume that variables are
only deleted when this is necessary to provide space for other
variables to be loaded into My . That is, as long as there are
less than M — B variables in memory, no variable is deleted.
Then, only at the moments when new variables are loaded
into memory, variables previously residing in memory are
deleted. This is the only occasion where we trace numbers
that are no longer used in the computation. This is dual to
the concept of a stub. It is useful to separate the time of
using a variable from its movement in memory and on disk.
It is not important how we decide upon which variables to
keep, but for the sake of concreteness we can, for example,
deterministically always delete the variable that is not in the
memory of the original algorithm and has not been used for
the most number of I/Os, breaking ties by index (variable
name). Symmetrically, we can assume that Mg is always
filled by allowing empty partial results (stubs) of a specific
row. Then, immediately after writing some partial results
to disk, the new stubs can be created. For concreteness, we
can create the empty stub for which there is no partial result
in memory, which is used next (time forward) by the algo-
rithm. Note that the possibility to create stubs and delete
variables differently only weakens the lower bound because
it allows several descriptions of the same program.

Memory configurations.

Now, we can compactly describe the sequence of separated
memory and disk configurations as in the previous sections.
More precisely, as in Section 4.1, the My, Dy can be de-
scribed by a time forward trace of input and output opera-
tions, whereas, by the argument of Section 4.2, the sequence
of the Mg, Dr is described backward in time, starting from
the unique final configuration. For all four cases, there are
at most K(M;'B) choices for each 1/0.

Multiplication trace.

It remains to specify the multiplication trace compactly.
Every multiplication is specified by an index into the cur-
rent subset of variables and partial results present in the
respective memories. Remember that we assume that every
coefficient a;; is used only once when either its corresponding
variable or the partial sum are freshly loaded into memory
(is not present in the predecessor configuration). Because
the differences in memory-configurations stem from I/Os of
at most B elements, there are at most B such variables and
at most B such partial sums. Now, over the run of the
algorithm there are at most 2/B such elements, each can
combine (get multiplied) with at most M other elements.
Out of these possibilities, we have to identify a subset of
precisely kN positions where actually a multiplication hap-
pens. Hence the number of (codes for) multiplication traces

for the complete computation is at most (Mk]\]{,B) We sum-

marize this discussion in the following lemma:

LEMMA 5.2. Any computation of a matriz-vector product
taking £ 1/0s that uses only canonical partial results, can be
characterized by two sequences of length £ of E(MgB) codes,
and a specification of the multiplication trace by a subset of
size kN out of a universe of size 20BM . This code uniquely
determines the conformation of the matriz.

It remains to compare the compact coding of Lemma 5.2
with the number of different conformations of a matrix.

LEMMA 5.3. If an algorithm computes the matriz-vector
product for all k-reqular N x N matrices in the semiring
1/0-model with free matriz layout with at most £(k, N') 1/Os.
Then, for M > 3B and B > 2, it holds:

(1) = (750 ()

Now, we can conclude the following theorem that shows
that the algorithm presented in Section 3 is optimal up to
a constant factor for large ranges of the parameters. In the
proof we use the upper bound ¢ < 2kN (B > 2, M > 3B):
The entries of the matrix are read in blocks of size B, for each
entry the corresponding variable is read and the product is
added to the current partial result. As soon as B results
are ready, they are output with one I/O and the memory is
freed for the next B results.

THEOREM b5.4. Assume that an algorithm computes the
matriz-vector product for all k-reqgular N x N matrices in
the semiring 1/0O-model with free matriz layout with at most
{(k,N) I/Os. Then for M > 3B, B> 6, and k < /N there
is the lower bound

>mind —EkN, — -

E(k,N)_mln{84kN 21 log m
PROOF OF THEOREM 5.4: Consider the inequality claimed

in Lemma 5.3. Because of the naive algorithm we estimate

¢ < 2kN such that we get: (IZ)N < ((MEB)QkN)M . (Qi’?vM).
Using (z/y)¥ < (i) < (we/y)? we arrive at kNlog & <

20 (10g(2kN) + Blog 5(M+B))+kN log 252+ QCZBM by taking log-
arithms. Rearranging terms and using e(M + B) < 4M
yields 2¢ > kN

108 3 2ty
log(2kN)+B log 43L~

Assume k 2 > Hand N > 2!0. Otherwise the logarithmic
term is inferior to the scanning bound and the theorem is
true.

We take the statement of Lemma B.2 with s := ﬁ,

= log(2kN) + Blog 23, and z := 2¢/kN. Because s >
5/eB we have st > 3 log M glogﬁl > 1, such that the
assumption of Lemma B.2 1s satisfied. Hence, we conclude
20/kN > log(st)/2t. Now, we distinguish according to the
leading term of t. If log(2kN) < Blog ‘Y, then we get
20/kN > log(g7 B log 451)
= 4B log 231)

Using log 22 > 3 > e (recall that 4M > 8B): £ > Y.
214(:?07;]%%' Using log 1)3 1: £ > 216412 110g ’3{‘,4 , which is the
statement of the theorem.

Otherwise, if log(2kN) > Blog(4M/B), we use, N > 210,
t > 1 and Lemma B.3 (iii), yielding st > Blog %5~ P >

keBJW

élogN

N 9 log st 1 3 _ 1
tenr = VN. Now, Tog SEN > Thog N1 > 5% = 57 Hence,
{>kN/84. ad

THEOREM 5.5. Assume that an algorithm computes the
matriz-vector product for all k-reqular N X N matrices in
the semiring I1/O-model with free matriz layout with at most
(k,N) I/Os. Here, the algorithm can chose the memory
layout (order) of the input vector and the result vector. Then
for M > 3B, B>6, and 18 < k < N there is the lower
bound:

L(k,N) Zmin{ L kN N }

L k 1
1207120 B %% kM

PrOOF OF THEOREM 5.5: We proceed as in the proof
of Lemma 5.3 and Theorem 5.4. The input vector can be
stored in an arbitrary order, generating N! different initial
configurations. This arguments applies also for the end con-
figurations.

Summarizing, ¢ has to be as least so large, that

(1) = (")) (s

is satisfied. N
By Lemma B.4 we have that (]Z) J(ND? > (Lk]75j)' So ¢

has to fulfill: ()" < ((MF7)2kN)* - (EM).

The remaining computations follows as easy as in Theo-
rem 5.4. ad

APPENDIX

A. DETAILS OF THE MODEL OF COMPU-
TATION

Our model is based on the notion of a commutative
semiring S. One well investigated example of such a semir-
ing (actually having multiplicative inverses) is the max-plus
algebra (tropical algebra), where matrix multiplication can
be used to for example compute shortest paths with nega-
tive edge length. Another semiring obviously is R with usual
addition and multiplication.

In any matrix-vector multiplication algorithm in our model,
every intermediate result can be represented as a polynomial
in the input numbers (the z;s of the vector and the non-zero
a;js of the matrix) with natural coefficients® (i.e. coefficients
in {0,1,1+1,14+1+1,...}). As the algorithm must work
over any commutative semiring, in particular the free com-
mutative semiring over the input numbers where this repre-
sentation is unique, the result values can only be represented
as the polynomials ¢; = 1~ZRi ai;Tj, where the sum is taken
over the conformation (i.e., the non-zero entries) of row i of
the matrix.

LEMMA A.1. If there is a program that multiplies a given
matriz A with any vector in the semiring I/O-machine that
performs £ 1/0s, then there is also a program with £ I/0s
that computes only canonical partial results, that does only
compute partial results which are used for some output value,
and that has never two partial sums of the same row in mem-
ory when an I/0 is performed.

'We denote these poly-coefficients, to distinguish them from
the input coefficients a;; of the matrix.

Proof. Note that for the sake of this proof, we can analyze
and modify the given program without any uniformity con-
straint. First, intermediate results that are computed but
are not used for a result may as well not be computed. Sec-
ond, if two partial sums are in memory, they can be merged
(summed) into one of them.

Multiplication by 0 can be replaced by setting the result
to 0. Hence, the constant 0 is useless to the algorithm,
and we can assume that intermediate results are not the
0-polynomial.

If two such polynomials f and g are multiplied or added,
then the set of variables of the resulting polynomial is the
union of the variables of f and g. For multiplication, the
degree is equal to the sum of the (non-negative) degrees.
For addition, the number of terms cannot decrease.

If an intermediate result has a poly-coefficient bigger than
1, the result cannot be used for a final result, because in
all successor results there will remain a term with poly-
coefficient bigger than 1. If an intermediate result contains
(matrix) coefficients from different rows, it can never be used
for a final result. If an intermediate result contains the prod-
uct of two variables or two coefficients, this product remains
in all successors and it is not useful for the final results. If an
intermediate result contains two terms of total degree one
(i.e., single variables or coefficients), then it needs to be mul-
tiplied with a non-constant polynomial before it can become
a result. But then, there will be products of two variables or
two coefficients, or a product of a variable with a coefficient
of the wrong column. Hence, such a result cannot be useful
for a result. ad

Allowing Comparisons

Alternatively, one could assume an additional ordering, giv-
ing ternary inequality tests. A program for the machine
then consists of a finite tree, with binary (ternary) compar-
ison nodes, and all other nodes being unary. The input is
given as the initial configuration of the disk and all mem-
ory cells empty. The root node of the tree is labeled with
this initial configuration, and the label of a child of a unary
node is given by applying the operation the node is marked
with. For branching nodes, only the child corresponding to
the outcome of the comparison is labeled. The final config-
uration is given by the only labeled leaf node. It is assumed
that main memory is again all zero.

An algorithm with comparisons is allowed to branch ac-
cording to the output of an equality test. The equality test
is performed by checking whether a non-trivial polynomial
of the data present in the memory equals zero.

LEMMA A.2. Consider the conformation of a matriz A.
If there is a program P computing the matriz-vector prod-
uct ¢ = Az for all inputs in R (for appropriate d) with at
most £ 1/O0s, then there is a program Q without comparisons
(equality tests) computing the same product with at most £

1/0s.

Proof. Consider the tree of the program P. Since the
number of leaves is finite, there must be a leaf which is
reached exactly when all tests on the internal nodes have
been negative; define T to be the path from the root to that
leaf. By definition the set of inputs of R? reaching that leaf
(also following T') is an open set in the Zariski topology [8]
and thus dense in the usual metric topology.

The program (@ is induced by following 7" and deleting
the comparison nodes from the path. Every result of @ is
given by a polynomial g on the input and it is equal to the
multilinear result p of the computation for an open set C' of
inputs. Thus it follows that p = ¢ on the closure of C', hence
on the whole space. a

B. TECHNICAL LEMMAS

LEMMA B.1. For every x > 1 and b > 2, the following
inequality holds: log, 2x > 2log, log, .

Proof. By exponentiating both sides of the inequality we
get 2z > logi z. Define g(z) := 2z —log} z, then, g(1) =2 >
Oand g'(z) =2 — 322 >2—-3--1>2-2-.1>0
for all z > 1, since In(x)/x < 1/e. Thus g is always positive
and the claim follows. a

LEMMA B.2. Let b > 2 and s,t > 0 such that s-t > 1.
For all positive real numbers x, we have x > w =

1 logy (s-t)
T2 5y

Proof. Assume z > log,(s/x)/t and, for a contradiction,
also z < 1/2log,(s - t)/t. Then we get x > w >

2s-t
logy, Togy, (s-6)

_ logy(2s-t)—logy log),(s-t) ~, logp(2s-t)— 3 logy (2s:t) _
t = t

, where the last inequality stems from Lemma B.1.

This contradiction to the assumed upper bound on = estab-

lishes the lemma. O

t
1 logy(2s-t)
2 t

LEMMA B.3. Assume logkN > Blog(4M/B), k < N/2,
B>2, and M > 2B. Then

(i) N >2'° implies B < 2V/N.
(i) 0 < e <1, N> 209" implies B < EN'"¢.

(iii) N > 2", B>6, and k < VN implies > VN.

Proof. By M > 2B, we have log(4M/B) > log8 = 3.

Thus B < ﬁ < 2log1/v2N < 2%/N for N > 2'°,

which proves (i). Similarly follows statement (ii). To see

(iii), we rewrite the main assumption as (2kN)/Z > 4M/B.

With B > 6, k < /N, and (i) we get: M < 1B(2kN)"/5 <
1/6 1441 1/6 .5

éW(Qk’N)l/G <2 Nstss = 2T]\579 .

N 6N 1—-1-3 9
> —>20 > N"T"379 =+/N. O
keM = 51/6 YNens —

Hence

LEMMA B.4. For any N > 5, 5 < k < /N it holds
N 2 N
(e)/(ND* = (11)5))-

Proof. By applying the usual estimates for the binomial
factor and the factorial function we get NN (F=2)=kN/2 92N
1/kFN > NFN/S . ohN/S gkN/5 1 /EkN/5 - By taking the
logarithm, dividing by N and using that & < /N we get
(8/151log N —log(5e)/5)k —2log N + 2 > 0 which is implied
by k > m. The function on the right side
never exceeds 4. Since the binomial coefficient estimates are
only valid if the lower term is positive, by choosing & > 5
the claim is proved. a

C. REFERENCES

[1] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems. Comm. ACM,
31(9):1116-1127, September 1988.

[2] L. Arge and P. B. Miltersen. On showing lower bounds for
external-memory computational geometry problems. In
J. M. Abello and J. S. Vitter, editors, External Memory
Algorithms, vol. 50 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages
139-159. AMS Press 1999.

[3] G. S. Brodal, R. Fagerberg, and G. Moruz. Cache-aware
and cache-oblivious adaptive sorting. In Proc. 32nd
International Colloquium on Automata, Languages, and
Programming, vol. 3580 of Lecture Notes in Computer
Science, pages 576-588. Springer Verlag, Berlin, 2005.

[4] T. H. Cormen, T. Sundquist, and L. F. Wisniewski.
Asymptotically tight bounds for performing BMMC
permutations on parallel disk systems. SIAM J. Comput.,
28(1):105-136, 1999.

[5] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, R. V.

Antoine Petitet, R. C. Whaley, and K. Yelick.

Self-adapting linear algebra algorithms and software. Proc.

of the IEEE, Special Issue on Program Generation,

Optimization, and Adaptation, 93(2), February 2005.

S. Filippone and M. Colajanni. PSBLAS: A library for

parallel linear algebra computation on sparse matrices.

ACM Trans. on Math. Software, 26(4):527-550, Dec. 2000.

[7] M. Frigo, C. E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms. In Proc.
40th Annual Symp. on Foundations of Computer Science
(FOCS), pages 285-297, New York, NY, Oct. 17-19 1999.

[8] R. Hartshorne. Algebraic Geometry. Springer, 1977.

[9] T. Haveliwala. Efficient computation of pagerank.
Technical Report 1999-31, Database Group, Computer
Science Department, Stanford University, Feb. 1999.
Available at http://dbpubs.stanford.edu/pub/1999-31.

[10] E. J. Im. Optimizing the Performance of Sparse
Matriz- Vector Multiplication. PhD thesis, University of
California, Berkeley, May 2000.

[11] H. Jia-Wei and H. T. Kung. I/O complexity: The red-blue
pebble game. In STOC ’81: Proc. 13th annual ACM
symposium on Theory of computing, pages 326-333, New
York, NY, USA, 1981. ACM Press.

[12] R. Raz. Multi-linear formulas for permanent and
determinant are of super-polynomial size. In Proc. 36th
Annual ACM Symposium on Theory of Computing
(STOC), pages 633-641, Chicago, IL, USA, June 2004.

[13] K. Remington and R. Pozo. NIST sparse BLAS user’s
guide. Technical report, National Institute of Standards
and Technology, Gaithersburg, Maryland, 1996.

[14] Y. Saad. Sparsekit: a basic tool kit for sparse matrix
computations. Technical report, Computer Science
Department, University of Minnesota, June 1994.

[15] S. Toledo. A survey of out-of-core algorithms in numerical
linear algebra. In J. M. Abello and J. S. Vitter, editors,
External Memory Algorithms, vol. 50 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science,
pages 161-179. AMS Press 1999.

[16] J. S. Vitter. External memory algorithms and data
structures. In J. M. Abello and J. S. Vitter, editors,
Ezternal Memory Algorithms, vol. 50 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science,
pages 1-38. AMS Press 1999.

[17] R. Vudac, J. W. Demmel, and K. A. Yelick. The Optimized
Sparse Kernel Interface (OSKI) Library: User’s Guide for
Version 1.0.1b. Berkeley Benchmarking and OPtimization
(BeBOP) Group, March 15 2006.

[18] R. W. Vuduc. Automatic Performance Tuning of Sparse
Matriz Kernels. PhD thesis, University of California,
Berkeley, Fall 2003.

[6

	Introduction
	Model of Computation
	Algorithms
	Column Major Layout
	Free Layout of the Matrix
	Cache Oblivious Algorithm

	An Easy Lower Bound: Column Major Layout
	Producing k-Regular Conformations
	Column Major Layout

	Lower Bound: Free Layout - The separated model
	Details of the Model of Computation
	Technical Lemmas
	References

