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Abstract. The present paper studies the application of symbolic facil-
ities of Computer Algebra Systems (CAS), in particular Maple, to the
development of numerical methods. As will be shown the complex alge-
braic relationships in the derivation of a particular numerical method can
be captured by computer algebra. We use the formalism of term rewrit-
ing system in order to demonstrate the derivation of numerical shemes
with the given properties, such as conservativity or non-linear stability
property (TVD shemes) using CAS Maple. In order to demonstrate our
approach we consider two-dimensional inviscid gas flow involving shock
waves.

1 Introduction

The rapid development of mathematical models and methods plays an impor-
tant role in all fields of science and engineering. We are interested in devel-
oping general methods on the symbolic-numerical basis for solving modelling
problems for inviscid fluid dynamics. The current methods of solving such prob-
lems range from complex analytic and numerical models to extensive numerical
code. The Problem Solving Environments (PSE) are usually used to cope with
this complexity. The existing PSEs, such as SciNapse [18], have a lot of very
useful features. For example, it transforms high level description of initial- and
boundary-value problems for PDE to efficient, documented and executable code,
which is typically generated in C or Fortran.

But the solving of modern fluid dynamics tasks requires not simply an au-
tomatable process of transforming one description into another; it involves com-
plex synthesis and analysis tasks in order to understand the multilevel relation-
ships between different objects in the particular numerical method.

Among the current methods for the numerical solution of the conservation
laws (13) widely used in fluid dynamics one can identify several groups of meth-
ods, which have gained a widespread acceptance:

— approximate Riemann solvers [19];



— Runge-Kutta finite volume schemes with artificial dissipators [2];
— TVD methods [16,19].

In [10,11] we have shown how the graphical data modelling techniques can
be used to obtain a numerical Runge-Kutta finite volume Euler solver auto-
matically. In this approach the developer has to identify the objects involved in
the Runge-Kutta method and to specify the relations among their attributes.
Such objects are, for example, finite volumes VJ”k ordered in space and time
with values of pressure, density and cartesian velocity components as attributes.
Any numerical sheme can be expressed as relationship between the attributes
of the appropriate volumes objects. In this way the specified associations be-
tween objects correspond, for example, to the numerical domain of dependence
of a particular sheme. Furthermore we have presented the tool prototype called
GROOME that provides graphical diagram editor to describe such objects and
relations. It has been shown how the numerical code according to the Jameson
scheme can be generated automatically from such diagrams.

The present paper deals with a wide variety of TVD methods. At the same
time we present some important extensions of the general GROOME methodol-
ogy. We present the application of symbolic term rewriting techniques to support
the developer in order to cope with the complex nature of algebraic relationships
while developing a numerical method. We will show how the symbolic term
rewriting can be used to derive the numerical schemes with given properties,
such as conservativity or TVD property. Our approach is motivated by the book
of Franz Baader and Tobias Nipkow ” Term Rewriting and All That” ([1]).

First of all let us give one example that illustrates some of the key issues
arising in connection with term rewriting systems generally and in particular
with those that arise in connection with symbolic-numerical methods (for more
precise introduction to term rewriting systems see [1]).

2 DMotivating Example

As a simple example of a Term Rewriting System (TRS) consider the symbolic
differentiation of arithmetic expressions that are built with the operations +, *
and /, indeterminates u (any function), c (any constant), x. t and numbers 0,1.
For the partial derivative with respect to one of indeterminates we introduce the
additional function symbol D. The following rules are some of the well-known
rules for computing the derivative:

(RSD1) D(c,d) — 0,
(RSD2) D(c*u,d) = ¢* D(u,d),

(RSD3) D(a +b,d) = D(a,d) + D(b,d),



Zu+ L(cxu)*u

(RA2)

%u + %c * (u*u)
(RSD4)
l (RSD2)

%u+(c*u)%u+u%(c*u) %u+c*%(u*u)

l (RSD4)

3 3 3
Futck(ux Sutu*Zu)

(RSD2), (RA3) / (RA1)

Zu+(cru)Zu+(cxu)Zu

(RA1)

%u+ ((c*u)+ (c*u))aa—wu

Fig. 1. Possible reduction of the Buergers equation

(RSD4) D(a*b,d) = a* D(b,d) + b D(a,d).

(RSD5) D(a(b),d) — D(a,b) * D(b,d)

The symbols a, b and d are variables that can be replaced by arbitrary ex-
pression. These variables should not be confused with the indeterminates, for
example, ¢ and u, which are constant symbols.

In order to demonstrate our example we need additionally some well-known
algebraic rules. The distributive law of arithmetics can be expressed with the
aid of the bidirectional rewriting rule as follows:

(RA1) axb+axd+ ax(b+d)

Note that this rule applied in ”+”-direction corresponds to expansion im-
plemented in almost all computer algebra systems (in Maple the command
expand (a*(b+d))). In ”—”-direction this rule corresponds to Maple command
collect(a,axb+ax*d).

The associativity and commutativitiy of multiplication:



D(u,t) + D((c * u) * u,x)

(RSD4), (RSD?2)
(RA3), (RA1)

(RND1) — (RND11) D(u,t) + (c*u+ c*u)D(u, )

(RND1) — (RND11)

()= (n=1.7) ()~ (n—1.7)
t(n)—t(n—1) t(n)—t(n—1)
*%(n,j)*xi(n,j)—cx@(n,j—1)*%(n,j—1 ~ . ~ . a(n,j)—u(n,j—1
e (e (n, ) + ¢ aln, 1)) S5 =5
(A) (B)

Fig. 2. Non-confluence of (RSD2),(RSD4),(RA1),(RA4),(RND1)- (RND11) leads to
the possilbe derivation of the non-conservative sheme (B)

(RA2) ax(bxd) & (axb)xd

(RA3) axb<bxa

And the following rules that we will need to derive the TVD methods:

a b a
(RA4) Z*E_)E
a d 1
A -4+ - ==
(RA5) b+b—>b*(a+d)

Starting with the left-hand side of the Burgers equation described by the
term t = %u + %czﬁ the above defined rules lead to the possible reduction
depicted in Fig. 1.

Obviously there are different ways of applying rules to a given term ¢ leading
to different derived terms ¢; and t». As shown in Fig. 1 such terms in our exam-
ple can be joined. But can we always find a common term s that can be reached
both from #; and ¢, by the rule application ? If this is the case the TRS is called
confluent. If we add the following numerical differentiation rules to discretize
the above Burgers equation in space by left one-sided differences through replac-
ing of the derivative operator D by the difference operator D, the function u by
its value at the appropriate grid point @(n, j) (n and j are indeterminates) , the
continuous variables x, ¢ by their discrete form #(n), #(j) and introducing the
shift operator with respect to a particular discretization variable, for example,
T(’&(n,y),x(])) = ﬂ(n,j - 1)

(RN D1) D(u,d) — D(u,d)



(RND2) u — a(n, j)

(RND3) D(a,d) = %&2
(RN D4) T(axb,d) = T(a,d) * T(b,d)
(RND5) T(c,d) = ¢
(RNDS6) T(a(n,j),z) = a(n,j — 1)
(RNDT) T(a(n,5),t) = a(n — 1, 7)
(RND8) x = Z(j)

(RN D9) t = i(n)

(RN D10) T(z(j),a) = &(j — 1)
(RND11) T(#(n),a) = #(n — 1)

in (RSD1)-(RSD5), we lose the confluence. As shown in Fig. 2 we obtain two
different discrete equations that can not be joined. It is well known that one of
them is conservative, another one is not.

In the present paper we consider the discretization of conservation laws widely
used in fluid dynamics as term rewriting strategies. Our aim is the development of
such strategies in the way that would enable us to obtain the numerical schemes
with given properties, in particular, the non-linear stability or TVD property.

3 Total Variation Diminishing Methods

A well established approach for constructing high-order TVD schemes is the
flux limiter approach [16]. This requires a high-order flux F¥ associated with
a scheme of accuracy greater than or equal to two and a low order-flux FE
associated with a monotone first-order scheme. At first we present the approach
in terms of model conservation law

ug + f(u)e =0 (1)

and then show a term rewriting system based on this approach that enables one
to obtain the TVD schemes for a particular non-linear equation dependent on
the user specified fluxes.



Equation (1) is approximated by the following difference scheme:

At
uptt = uf — A, Pt/ = Ficay2) (2)
One then defines a high-order TVD flux as
5—‘1//% = F;I-Ju/z + Giv1/2 (Fﬁ-1/2 - F}IJ—1/2) 3)
F,T_‘{/l; = FiL_l/z + ¢i—1/2(FiI£1/2 - FiL—l/z)a (4)

where ¢;+1/2 is a flux limiter function yet to be determined.

- L H
To preserve some generality we assume that i3, , and F;7, , are respec-

tively of the form

L _ n n
Fili)p = —a1a1uf + a101ufy,

H _ n n
Fiiip = —a1f1u} + a1fprufyy

L n n
FiZ1)p = a100uf — araouy_
H _ n n
F’i—l/2 - a/l,BOu] - al/BOUj_l (5)

for some a1, ao, fo, a1, b1
The following theorem of Harten can be used to give constraints on the

¢ii1/21

Theorem (Harten) 1. In order for the method of the form
u;}-i—l = u‘? — ijl(u]' — Ujfl) + Dj (Uj+1 — u]') (6)

to be TVD, the following conditions on the coefficients are sufficient:

Cij-12>20 Vi
D, >0 vj @
D; +Cj >1 Vj

Proof. The half-page proof of this Theorem can be found in [16].

Note that coeflicients C;j_; and D; are in general assumed to be dependent
on the data u?_, ...u7, , for some k.
The substitution of (3) and (4) in (2) yields:

n At
u?“ =ul — A_x[(FiI’Ll/z — FiL_1/2) + ¢i+1/2(ﬁ1iI—-Ii-1/2 - F}Il1/2)
~i1/2(FLyp — Ly )] ®)

The problem to find ¢;11/2 in equation (8) in accordance with the TVD
condition given by Harten theorem can now be solved in two steps:



— determine the coefficients C;_; and D; in (6) with regard for (8)

— apply any user defined flux limiter function ¢ to C;_; and D; that would
guarantee (7) (a well established flux limiter function is minmod, see, for
example, [16]).

Let us add the function symbol F(u) (flux function) to our TRS. Then ap-
plication of (RSD5) to our model problem reduces it to the so-called wave form:

D(u,t) + D(F(u),z) = D(u,t) + D(F(u),u) * D(u,x).
If we add the rule
(RND12) T(F(a),d) = F(T(a,x))

both terms D(u,t) + D(F(u),z) and D(u,t) + D(F(u),u) * D(u,z) can be dis-
cretized to the same unique irreducible form
u Tt — Fu?) — F(u?_,)

j j i—
At + Az )

by using (RND1)-(RND12) and (RA4).
Furthermore we add the following rule with two new function symbols Fj; /5:

(RND13) F— Fip12— Ficape

According to (3), (4) let us add the TVD flux rules:
(RTVD1) Fiy12 = Fiﬁ—l/2 + Git1/2 (Fi{{i-l/Z - Fiﬁ-l/2)

(RTVD2) Fiipp = FE s+ biap(FE - FEy )

But with regard for (5) the following rules must hold too:

(RTVD3) Ff;l/2 = a1a1uf +araiuly,
(RTV D4) Fll s = a1} + a1 frufyy
(RTV D5) Fly )y = aiaou} + araouf,

(RTV D6) F, 5 = arfou} + a1 fouf



Unj —v (ﬁ - Fi_l/Q)
(RTVD1) — (RTVDG) |
aron (—tng +tngi1) + Giprzz (@B (“Ung + Uai1) —ar0n (“tng + Uaii1)) = Fioiy
(RAL) l
— (@101 + is1/2a181 — diy120101) Unj + (@101 + Biy1/20181 — Pit1/2a101) Un,jr1 — Fiip
(RTVD1) — (RTVDS) '
(a101 + hir1/20181 — bir1jpa101) unj + (G100 + bit1/2011 — bit1/pa101) Un,jp1—
(a100 (tng = tns 1) + $i-172 (@180 (Un — Ung 1) — @100 (Ung — Unj 1))
(RAL1) l

—(a101 + ip1/22181 — biva/28101) Unj + (A101 + Piv1/28101 — hiy1/28101) Unj1—

((alao + ¢i_1/2 (a180 — a1ao)) Unj — (a1a0 + ¢i—1/2 (a1f0 — a1040)) Upi-1)

(RALL) '
(alal + Giy1/20181 — ¢i+1/2ala1) (Un,j+1 — Un,j)—

((alao + pi_1/2 (@180 — alao)) (Un,j — Un,j—1)

Fig. 3. Application of rules (RTVD1)-(RTVD6) and (RA1) to flux limiter scheme 2 in
order to obtain the algebraic form corresponding to Harten theorem. The underlined
symbols denote the terms to which the appropriate rules are applied

Starting from equation (9) obtained with (RND1)-(RND12) and (RA5) the
reduction depicted in Fig. 3 leads to the following equations in order to satisfy
the Harten theorem:

Dj = a101 + ¢ip1/201 81 — dig12a101 >0 (10)

Cj—1 = a1ao + ¢i_1/2 (a1 — ar1a0) > 0 (11)

1-Cjo1 = Dj=1-(a1o1 + $ir1/2a1 81 — di1/2a101) —
(a1a0 + ¢i—1/2 (a180 — a1cp)) > 0 (12)

In Appendix A we present the Maple implementation of the used TRS to the
derivation of these conditions.

In particular one can use the minmod function to fulfill the conditions (10),
(11), (12) (see [15]).



Let us demonstrate some results obtained by the application of this technique
to a more complex fluid dynamics task involving the shock waves in a two-
dimensional gas flow.

4 Equations to Solve

Consider the Euler equation in the following conservation form:

ow  Of(w) , O0f(w)
ot or T oy O (13)

where z and y are Cartesian coordinates and

p gu pU
_ | pu _ | pum+p _ pvu

w= [ 20| fw) = [ 7P aw) = | B (14)
pE puH pvH

Here p, p,u,v, E and H denote the pressure, density, Cartesian velocity compo-
nents, total energy and total enthalpy. For a perfect gas

Y4 1, 5 2 p
E=—" 4+ _(w?+v?), H=E+*<, 15
(v=1)p 3 ) p (15)

where 7 is the ratio of specific heats.

As a flow problem we have chosen a simple problem of inviscid flow developed
by an oblique stationary shock wave reflecting from a rigid surface (Fig. 4).
This test problem is often used for the validation of new numerical methods in
computational fluid dynamics. The advantage of this test is that it is possible to
obtain the exact solution for it by using the theory of stationary oblique shocks.
This solution represents a piecewise constant function. We have used the value
¢ = /6 for the angle between the incident shock wave front and the z axis (see
Fig. 4). In the case of perfect gas (air) with v = 1.4, the constants of the exact
solution in subregions 1, 2, and 3 indicated in Fig. 4 are as follows:

Y
1.0 ~
¥
_ Incident @
1 shock “17  Fig. 4. Spatial region in the shock
@ 3 @ z reflection problem

0.0 >
0.0 4.0




Subregion 1 Subregion 2 Subregion 3

up = 1.0 uz = 0.890755053 uz = 0.806645743

v1 = 0.0 v = —0.189217798 vz = 0.0

p1 = 0.084932903  p» = 0.194177850 p3 = 0.390838939

p1=1.0 p2 = 1.776135164 p3 = 2.898621574

M, =2.90 My = 2.327642861 M3 = 1.856588584

Here M;, M5, M3 are the values of the Mach number M = vu? + v2/c in subre-
gions 1, 2, and 3, respectively; c is the sound velocity, ¢ = y/vp/p. The reflected
shock wave front makes the angle 3 = 0.418279545 with the positive direction
of the z-axis.

Initial conditions. Initially, the entire flow field is set equal to the free stream
supersonic inflow values given above for subregion 1, that is the initial gas flow
is parallel with the z-axis.

Analytical boundary conditions. The spatial region has the size 4 along the
z-axis and the size 1 along the y-axis. The boundary conditions are given as
follows:

(a) supersonic inflow at = 0, 0 < y < 1, which allows the values of u, v, p, p to
be fixed at free stream conditions given above as subregion 1;

(b) prescribed fixed values from subregion 2 at y = 1, 0 < z < 4, which produce
the desired shock strength and shock angle;

(c) supersonic outflow at x =4, 0 <y < 1;

(d) a rigid flat surface at y = 0, 0 < = < 4, which is properly represented by
the condition v = 0 with the additional condition dp/dy = 0 at y = 0 from the
normal y-momentum equation.

Numerical boundary conditions. The supersonic outflow values wy, k =
1,..., K, are obtained by zeroth-order extrapolation, i.e., wyy = wj_1%, k =
1,...,K.

or the computation of the TVD corrections in the Chakravarthy-Osher
method, the numerical solution values are needed in two rows of image cells
adhering to the spatial region boundaries. We have specified the values of the
components of the solution vector w in image cells in accordance with the sym-
metry technique presented in [6]:

Rigid wall Outflow boundary z = 4
Dj0 = Pj1; Pj,—1 = Pj,2 Wik = Wj—1,k

P50 = Pj,15 Pj,—1 = Pj,2 Wy1,k = Wj—2,k

Uj,o = Uj,1; Uj,—1 = Uj2

Uj0 = —Yj5,15 Vj,—1 = —Uj2

The numerical solution values in two rows of cells adhering to the inflow bound-
aries ¢ = 0 and y = 1 were specified similarly to the case of the outflow boundary
x =4.

As a criterion for the convergence of pseudo-unsteady difference solution w™
to the stationary limit we checked the inequality Res(n) < e, where ¢ is a user-
specified small positive number;

Res(n) = n]l%x {max (|Rfj,k|> |R2n,j,k|7 |Rg,j,k|7 |Rf,j,k|)} )



where

f;L-',-l/Z,k - fjn—l/z,k g;:k-;—l/z - gﬁk—1/2
+
hl h2

T
n n n n _
{RY ;6 RS B o Ri i} =

in the case of the Chakravarthy-Osher scheme (16); the superscript T' denotes
the transposition operation.

4.1 Chakravarthy-Osher Scheme

The following scheme proposed by S.R. Chakravarthy and S. Osher [3] belongs to
a wide class of the TVD schemes (see also [16]) and can be derived by flux limiter
method using the combination of Lax-Wendroff and Beam-Warming methods.
As we have shown in Sec. 3 our TRS can be used to perform this task. Applied
to the Euler equations (13), (14) this scheme has the following form:

n+1 n n _ fn ~n _~n
Wik _“’j,k+fj+1/2,k fj,1/2,k+gj,k+1/2 9jk—1/2

T hi ha

=0, (16)

where hy and hs are the steps of a uniform rectangular grid along the z- and y-
axes, respectively. The fluxes f;ﬁrl 2.k and 95 k41 /2 are computed as follows:

- 1 -

Fvvon = 5 @) + F@fe) = 9(A) /26850172 005k] = Wik jons

- 1 -

g;'fk+1/2 = 9 [g(w‘?,k-f—l) + g(w]nk) - ¢(B)j,k+1/2Aj,k+1/2w?,k] - er,bk+1/27 (17)
where

n —_ n n n —_ n n
Aj+1/2,kwj,k =Wit1,x — Wy Aj,k+1/2wj,k = Wj g1 — Wi

-1
$(A) g1/ = B,y Diag WO, 008, 00,00 410 (B o)

V(B)jki1y2 = REY,, nDiag (D), 6 (AD), ¥ (AP), o)) j k12

(18)

In each of the expressions (17), the expression [...] ensures the first order of

accuracy of the scheme. The terms W2, /5 ., W2 5 involve the monotonizing
corrections ensuring the second or third order of approximation in space.
The matrices A and B entering (17) and (18) are the Jacobi matrices corre-

sponding to the flux vectors f(w) and g(w) (14), that is

Aw) = W gy = B



The matrices R(™ and (R(™)~!, m = 1,2, which enter formulas (18), are taken
from the decompositions

A=RWD, (Rﬂ))*1 , B=R®D, (R@))*1
where
D,, = Diag (Agmugmugmugmg . m=1,2,
/\§1) =u-—c, /\gl) = u, /\gl) =u+ec, /\S) =u; (19)
,\§2) =v—uc, Agm =, )\§2) =v+eg, AP = .

The explicit expressions for the matrices R(™ and (R™)~!, m = 1,2, for the
case of the ordering of eigenvalues /\fcm) in accordance with (19) may be found
n [20], therefore, we do not present these expressions here for the purpose of
brevity.

The function 1(z) entering (18) is defined as [20, 16]

>0
v ={ '+5 oo (20)

where 0 is a positive user-specified constant taken in the interval [0.01,0.25].
We now present the expressions for the corrections WTfH 2,k The formulas

for W k12 are similar, therefore, we do not present them for the purpose of
brev1ty

~ 1-— 1+
Wikijoe= 19 [Af sk Af 1, k]+ %[ﬂf ir1/2,k " Af 1/2](21)

where

Af J+3/2,k = R§+3/z pminmod |o [ +3/2,k 5‘73+1/2 k]
Af'—1/2,k = R§ /2,5 minmod [‘7 —1/2, k’ﬂa-]+1/2 k] )
Afiis o = B, pminmod [ m/“,gaﬁsm] (22)
2l ;5-1/2 k= R§'+)1/2 pminmod [ Oj+1/2, k’ﬁag 1/2, k}

+ —
Tk = §(D1 + |D1|)j+1/2,k(Rj+1/2,k) YAy pw]

3(Dm £ 1D]) = Ding (GO £ A1), 5087 2 D, 506 £ ),

1
R |A§””|) , m=172

minmod(z,y) = sgn(z) - max(0, min(|z|, sgn(z)y)).



The entries of matrices RJ(.EI J2k (Rﬁ)1 /2, )~ !, etc., were computed by using
the cell interface values pji1/2k, Wjg1/2,k> Vjt1/2,k> Cjt1/2,k averaged in accor-
dance with Roe’s approach; the corresponding formulas may be found in [3].

The time step 7 entering (16) was specified with regard for the results of [3]

by formula
46 lu| + ¢ |v|+c>]_1
_ . ulte uire)l 23

r=srrara (U )

where 6 is the safety factor, 0 < 8 < 1, cis the local speed of sound, ¢ = (yp/p)°-3,
~ is the ratio of the gas specific heats entering (15).

The constant ¢ entering the correction (21) is a user-specified parameter,
which regulates the upwindedness: ¢ = 1 yields central differencing, ¢ = —1
second-order accurate upwind-biased differencing, ¢ = 1/3 third-order accurate
upwind-biased differencing. The parameter § entering (23) is a ”compression”
parameter determined in the range given by [3] as

3-¢
1<p8< s (24)
If a larger value of 3 satisfying (24) is taken then a switch of scheme (16) from
a higher order of approximation to the first order occurs in a lesser number of
spatial grid nodes.

5 Results

In this section we will present some results obtained by the Osher-Chakravaty
sheme applied to the above described shock reflection problem. Note that in our
previous work [11], we have generated a code implementing the Jameson sheme
applied to the same problem.

0.4 —

0.3

0.2 3
014

SIS
LN O

Fig. 5. Shock reflection problem, the Chakravarthy—Osher scheme (16): (a) pressure
profile in the section y = 0.4875, (—) the exact solution, (o o o) the numerical solution;
(b) predicted Mach number contours.



In Fig. 5 we show the numerical results obtained on a mesh of 160 x 40 cells by
the Chakravarthy-Osher scheme. It can be seen that this TVD scheme produces
monotone solution profiles. It may be seen in Fig. 5, (b) that two oblique shocks
are generated: one of them is the incident shock, and the other is the reflected
shock. These shocks are well visible as the subregions, in which different Mach
number contours coalesce.

6 Appendix A

In this appendix we will present the implementation of TRS (RTVD1)—-(RTVDG6)
in Maple and demonstrate its application to the model problem described in
section 3.

Let us describe the TRS rules as follows:

RTVD1:=F[i+1/2]=F[i+1/2] L+phi[i+1/2]1*(F[i+1/2] "H-F[i+1/2]1"°L);
RTVD2:=F[i-1/2]=F[i-1/2]"L+phi[i-1/2]1*(F[i-1/2] “H-F[i-1/2]1"L);
RTVD3:=F[i+1/2] "H=a[1]*beta[1]*(-u[n, jl1+uln,j+11);
RTVD5:=F[i-1/2] "H=a[1]*beta[0]*(ul[n,jl-uln,j-11);
RTVD4:=F[i+1/2] "L=a[1]*alpha[1]*(-uln,jl+uln, j+11);
RTVD6:=F[i-1/2] "L=a[1]*alpha[0]* (u[n,jl-uln,j-11);

V V. V V V VvV

The first rewriting step depicted in Fig. 3 is then obtained by:

> s1:=subs(RTVD1,RTVD2,RTVD3,RTVD4,RTVD5,RTVD6,
F[i+1/2])-F[i-1/2];

sl .= a1 0 (—Un,j + Un,j+1) +
Giv1/2 (a1f1 (—Un,j + Un,jt1) — @101 (—Unj + Un,jy1)) —
Fi_1)0
In order to apply the bidirectional rule (RA1) to particular terms underlined
in Fig.3 at the second rewriting step we use the Maple commands expand and
collect:

> s3:=collect (expand(s2),uln,j+1]):
> s4:=collect(s3,uln,j-11):
> sb:=collect(s4,uln,jl);

89 1= (—a1a1 — Git1/2a1P1 + ¢i+1/2a1041) Up,j +

(ar101 + diy1/2a1 81 — Pig1/20101) Unjt1 — Fi_1)s
And the similar application of (RTVD1)—~(RTVD6), (RA1) but only to F;_;5:

> s1b:=subs(RTVD1,RTVD2,RTVD3, RTVD4, RTVD5,RTVDS,
op(s5)-op(1,s5)-op(2,s5));

> s3b:=collect(s2b,uln,j+1]):

> s4b:=collect(s3b,uln,j-1]):

> sbb:=collect(s4b,uln,j]l):



As a result we have obtained the algebraic form of flux limiter method cor-
responding to Harten theorem:

(—a1a0 —di_1/2 (@180 — a1a0)) Unp,; +
(a100 — Gi—1/2 (—a1Bo + a10)) tpj—1 +
(—a101 — diy1/201B1 + Pi12a100) Unj +
(alal + Gir1/20181 — ¢i+1/2a1041) Un,j+1
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