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Summary. Modern Computer Algebra Systems (CAS), such as
Maple or Mathematica, with their symbolic facilities and visualiza-
tion possibilities are powerful tools to design data structures and al-
gorithms used in numerical simulation, with significantly lower costs
compared to straightforward implementation in ”real” programming
languages, such as, for example, C or Java. The present paper shows
how the CAS Maple can be used to design finite element software
using linear and hierarchical bases. As a computational example the
two-dimensional Poisson-equation with Dirichlet boundary conditions
is presented.
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1. Introduction

Modern Computer Algebra Systems (CAS), such as Maple or Mathe-

matica, with their symbolic facilities and visualization possibilities
are powerful tools to design data structures and algorithms used
in numerical simulation, with significantly lower costs compared to
straightforward implementation in ”real” programming languages,
such as, for example, C or Java (Fig. 1).
We will show how the Maple abilities to solve equations, symbolic

integration and differentiation can be used in the context of finite
element calculations. The possibility to perform computation with
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Fig. 1. Computer Algebra in Software Development Cycle

symbolic constants instead of numerical, for example in boundary
conditions, is of industrial relevance.

The present work investigates some principles of symbolic pro-
gramming languages, using Maple as example, with regard to its ap-
plication in the context of Finite Element Method (FEM).

FEM is a powerful tool for the solution of many scientific and
engineering modeling problems. Typical FEM programs consist of
thousand lines of poorly structured Fortran or C code, in which the
data are stored in lists and arrays and distributed over the complete
system. The little change in such systems causes big bugs and, con-
sequently, such software is not fit for many scientific and engineering
purposes.

To cope with this complexity we need strategies, that would help
us to understand principles of complex computational processes and
structure the corresponding software based on this principles. There-
fore, in section 2 the computational process of solving Partial Dif-
ferential Equations (PDE’s) using FEM is explained. Using space
pavings and grids, we show how primitive data, for example numbers
and symbols, can be combined to compound structures, which can
be used to represent complex data and relationships among them.
The notion of relationships between data representing pavings and
grids will be formal described. All this leads to the notion of object
oriented modeling. We will introduce our package, that allows to de-
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velop object oriented programs in Maple. We shall show, how this
package can be applied in the context of finite element simulation.
As computational examples, the solutions of two-dimensional Pois-

son equation using hierarchical and linear approximations with Dirich-
let boundary conditions are presented.

2. Finite element computation

Consider the boundary value problem on the region Ω with the
boundary Γ :

(1) u(x, y)xx + u(x, y)yy = f(x, y), u(Γ ) = 0.

In order to solve this equation using the finite element method,
one have to minimize the following energy functional:

E(v) =

∫

Ω

∫ [

1

2
(v(x, y)2x + v(x, y)2y)− v(x, y)f(x, y)

]

dΩ

over a certain functional space X.
The finite approximation ũ is assumed to be of the following form:

(2) ũ(x, y) =

N
∑

i=1

ciφi(x, y),

where φi(x, y) are the so-called Ansatz functions and ci the unknown
coefficients to be determined.
According to the Ritz-Galerkin approach, ci’s can be computed

by solving

A−→c = −→b ,
where A is the stiffness matrix and b is the load vector given by

(3) A(i, j) =

∫

Ω

∫ [

∂

∂x
φi(x, y)

∂

∂x
φj(x, y)

+
∂

∂y
φi(x, y)

∂

∂y
φj(x, y)

]

dΩ,

(4) b(i) =

∫

Ω

∫

φi(x, y)f(x, y)dΩ.

Hat functions of the form

φi(x) :=







1− |x− xi|
hi

if |x− xi| ≤ hi

0 otherwise,
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Fig. 2. Function spaces spanned by hat functions

where xi is the middle point coordinate and hi the half width of the
hat, are typically used to approximate the unknown one-dimensional
function (Fig. 2).
The set

Wn = {φ1(x), . . . , φn(x)}
of such hat functions spans a particular space. As it is shown in the
figure, one can use the product of two one-dimensional sets to obtain
the two-dimensional spanning space Wn,m:

Wn,m =Wn ◦Wm = {φ1(x, y) ◦ φ1(x, y), φ1(x, y) ◦ φ2(x, y), . . . ,

φ2(x, y) ◦ φ2(x, y), φ2(x, y) ◦ φ3(x, y), . . .}.
OnceWm,n is constructed, the stiffness matrix and load vector can be
computed according to (3), (4). Let us consider this computational
process more in detail.

3. Grid generation

In mathematical modeling and numerical simulation we have to deal
not only with functions, which return a real value dependent on real
parameters, but also with the domains over which such functions are
defined and especially with parts of these domains - the regions. In
this section we will consider the way in which such regions can be
described, stored and manipulated in Maple.
As mentioned above, during finite element modeling we have to

partition the spatial region of interest in disjunct elements. In one-
dimensional case the elements are intervals, in two or three dimen-
sions respectively squares or cubes can be used. This idea is very old
and is, for example, used in the classical integration calculus (Rie-
mann integration).
There is quite a choice as to how to define the partition; we will

first use the most restrictive definition: dyadic pavings of Rn [2].
In one-dimensional case we decompose the domain into little inter-

vals. Obviously, each two neighboring intervals have a common node.
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We assign to each node a hat function which takes the value 1 in the
given node and vanishes in all other nodes.
To use dyadic pavings in Rn, we do essentially the same thing. We

cut up Rn into cubes with sides 1 long. (By a ”cube” we mean an
interval in R, a square in R2, a cube in R3, and analogs of cubes in
higher dimensions.) Next we cut each side of a cube in half, cutting
an interval in half, a square into four equal squares, a cube into eight
equal cubes, etc. At the next level, we cut each side of those in half,
and so on.
To define dyadic pavings in Rn precisely, we must first say what

we mean by n-dimensional ”cube”. According to [2], for every

(5) k =







k1
...
kn






∈ Z, where Z represents the integers,

we define the cube

(6) Ck,N =

{

x ∈ Rn | ki
2N

≤ xi <
ki + 1

2N

}

.

Each cube has two indices. The first index, k, locates each cube: it
gives the numerators of the coordinates of the cube’s lower left-hand
corner,when the denominator is 2N . The second index, N , tells which
level we are considering, starting with 0. The length of a side of cube
is 1/2N (Fig. 3). The coordinates of the cube’s corners are:

(

kl
2N

,
km + 1

2N

)

,

(

kl
2N

,
km
2N

)

,

(

kl + 1

2N
,
km + 1

2N

)

,

(

kl + 1

2N
,
km
2N

)

, 0 ≤ l ≤ n, 0 ≤ m ≤ n, l 6= m.

Definition 1. The collection of cubes Ck,N at a single level N , de-

noted DN (Rn), is the Nth dyadic paving of Rn

At this point we have to make a decision how DN (Rn) can be
generated, stored and manipulated in our language.
The basic idea of data abstraction is to structure the programs

that are to use data objects, so that they operate on ”abstract data”.
That is, our programs should use data in such a way as to make
no assumptions about the data that are not strictly necessary for
performing the tasks at hand. At the same time, there are many
different representations of the same data. As will be shown bellow,
the dyadic paving can be stored in two ways:
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Fig. 3. A dyadic decomposition in R2

• using list of middle point coordinates of each cube and its width
(elements)

• using list of the corner points of cubes (grid)
As will be shown in the next section, in the finite element method

both representations are relevant. Our purpose now is to design the
dyadic pavings data representation transparent for the programs us-
ing it.
According to (5), (6) each two-dimensional cube

C[

i
j

]

,N

can be described by its middle point coordinates and its width. Thus,
we introduce the triple

〈

2i+ 1

2N+1
,
2j + 1

2N+1
, 1/2N

〉

.

Maple provides a list-construct to build compound data structures
from several primitives. For example,

D0(R2) = C[

0
0

]

,0

= 〈1
2
,
1

2
,
1

2
〉

can be described by a triple:

[> [1/2,1/2,1/2];

[1/2,1/2,1/2]
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D1(R2) consists of four triples

C[

0
0

]

,1

, C[

0
1

]

,1

, C[

1
1

]

,1

, C[

1
0

]

,1

,

which can be stored in the list of lists:

[> [[1/4, 1/4, 1/4], [1/4, 3/4, 1/4],

[3/4, 1/4, 1/4], [3/4, 3/4, 1/4]];

The D2(R2) consists of 16 triples:

[[1/8, 1/8, 1/8], [1/8, 3/8, 1/8], [1/8, 5/8, 1/8],

[1/8, 7/8, 1/8], [3/8, 1/8, 1/8], [3/8, 3/8, 1/8],

[3/8, 5/8, 1/8], [3/8, 7/8, 1/8], [5/8, 1/8, 1/8],

[5/8, 3/8, 1/8], [5/8, 5/8, 1/8], [5/8, 7/8, 1/8],

[7/8, 1/8, 1/8], [7/8, 3/8, 1/8], [7/8, 5/8, 1/8],

[7/8, 7/8, 1/8]].

On the other hand, the coordinates of corners of cubes in DN (Rn)
are:

(

i

2N
,
j + 1

2N

)

,

(

i

2N
,
j

2N

)

,

(

i+ 1

2N
,
j + 1

2N

)

,

(

i+ 1

2N
,
j

2N

)

, 0 ≤ i, j ≤ N − 1.

The grid corresponding to D2(R2) can be stored in the similar way
using list construct:

[[0, 0], [0, 1/4], [0, 1/2], [0, 3/4], [0, 1],

[1/4, 0], [1/4, 1/4], [1/4, 1/2], [1/4, 3/4], [1/4, 1],

[1/2, 0], [1/2, 1/4], [1/2, 1/2], [1/2, 3/4], [1/2, 1],

[3/4, 0], [3/4, 1/4], [3/4, 1/2], [3/4, 3/4], [3/4, 1],

[1, 0], [1, 1/4], [1, 1/2], [1, 3/4], [1, 1]].

The usage of lists becomes painful if we refine the grid by cutting
some elements in half. Then we must remove some old elements and
add new elements from the both lists elements and grid. We must
perform following operations:

• find the position of the element in the list elements
• remove the element from the list elements
• compute and add new elements to the list elements
• compute and add new elements to the list gird
The situation will be much more tedious if we try to remove some

elements. In this case the following operations have to be performed:

• find the position of the element in the list elements
• remove the element from the list elements
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• for each node of element to remove, check the presence of other
owners in the list elements

• find the position of each elements node in the list grid, which
does not belong to any other elements

• remove this node
These difficulties arise chiefly from two facts:

• the relationship between two different representations of a paving
are not explicitly described

• the positions of elements and grid nodes in the list do not corre-
spond to their spatial position

Let us begin with the second problem and show the way to over-
come this difficulty.

3.1. Hashing

The idea is simple : instead of using lists indexed by integers, we
make the usage of the hashing principle and Maple ability to quote
a data object, such as number or procedure. Using quotation (’. . .’
or convert(...,name)) we can build symbols from numbers. For
example:

[> ‘1/4‘:=1/4;

or

[> convert(1/4,name):=1/4;

Using quotation, the left hand side of an assignment is interpreted
by Maple as a symbol, to which a particular value can be assigned.
Using this idea, we store our elements in variables whose names are
built from spatial coordinates. Let us define the following procedure,
which generates a dyadic paving at level N:

Dyadic_Paving:=proc(N)

local i,j:

for i from 0 to 2^N-1 do

for j from 0 to 2^N-1 do

x:=convert((2*i+1)/2^(N+1),name);

y:=convert((2*j+1)/2^(N+1),name);

element||x||y:=[(2*i+1)/2^(N+1),(2*j+1)/2^(N+1),1/2^(N+1)];

od:

od:

end proc:
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We use concatenation operation (||) to build the complex names.
For example, the element with middle point coordinates x = 1/2, y =
1/2 and width h = 1/2 will be stored in the variable ”element1/21/2”.
From here it must be clear that in this implementation operations

like finding an element do not require computational costs, in contrast
to searching in a list. For example, we can address an element with
the spatial position x = 1/4, y = 3/4 by

[> element||‘1/4‘||‘3/4‘;

[1/4,3/4,1/4]

Before we address the second problem concerning the relationships
between pavings and girds, it would be advisable to gather all the
data, which describes an element, and a grid node, in one structured
data unit.

3.2. Compound data objects

The data unit corresponding to a certain element consists of the fol-
lowing parts:

• variable x : x coordinate
• variable y : y coordinate
• variable h : element width
The following procedure generates variables, in which spatial coor-

dinates of an element and its width are stored and returns the symbol
built from spatial coordinates, by which this element can be referred
to:

Element:=proc(x_i, y_i, h_i)

local this:

this:= ‘‘||(convert(x_i,name))||(convert(y_i,name));

element||this||x:=x_i;

element||this||y:=y_i;

element||this||h:=h_i;

return this:

end proc:

the variables, in which the element’s data is stored, are built from
prefix element and the element’s spatial coordinates. For example

[> elem1:=Element(1/2,1/2,1/2);

1/21/2

Now we can refer to data fields (for example h) of the just generated
element by
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[> element||elem1||h;

1/2

The data fields, which correspond to a grid node, are:

• variable x : x coordinate
• variable y : y coordinate
Similar to the constructor Element, the constructor GridNode can

be implemented:

GridNode:=proc(x_i, y_i)

local this:

this:= ‘‘||(convert(x_i,name))||(convert(y_i,name));

node||this||x:=x_i;

node||this||y:=y_i;

return this:

end proc:

The value returned by the procedures Element and GridNode can
be considered as identifier of the compound data object. Through
this identifier we can refer to data fields of this object.
The relationship between elements and grid nodes can be repre-

sented with the aid of such identifiers.
For example let us rewrite the procedure GridNode in the following

way:

GridNode:=proc(x_i, y_i)

local this:

this:= ‘‘||(convert(x_i,name))||(convert(y_i,name));

if node||this||exists = true then

return this;

fi:

node||this||exists:=true;

node||this||x:=x_i;

node||this||y:=y_i;

node||this||elements:=[];

node||this||addElement:=proc(elem)

node||this||elements:=[op(node||this||elements),elem];

end proc:

return this:

end proc:
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First of all, the new data field, the list elements and the proce-
dure addElement were added. We will see bellow how the generated
elements can be stored in elements with the aid of this procedure.
Since each one node belongs to several elements, we need at the

beginning of the procedure GridNode to check, whether this node has
already been created or not. If this is not the case, we initialize all
data fields, otherwise exit the procedure.
Then the procedure Element can be overwritten as follows:

Element:=proc(x_i, y_i, h_i)

local this:

this:= ‘‘||(convert(x_i,name))||(convert(y_i,name));

element||this||x:=x_i;

element||this||y:=y_i;

element||this||h:=h_i;

element||this||node1:=Node(element||this||x-(element||this||h)/2,

element||this||y-(element||this||h)/2);

element||this||node2:=Node(element||this||x+(element||this||h)/2,

element||this||y-(element||this||h)/2);

element||this||node3:=Node(element||this||x-(element||this||h)/2,

element||this||y+(element||this||h)/2);

element||this||node4:=Node(element||this||x+(element||this||h)/2,

element||this||y+(element||this||h)/2);

node||(element||this||node1)||addElement(this);

node||(element||this||node2)||addElement(this);

node||(element||this||node3)||addElement(this);

node||(element||this||node4)||addElement(this);

return this:

end proc:

Additionally to data fields x, y and h, we have introduced the data
fields node1, node2, node3, node4, which store the identifiers of its
grid nodes.
To generate paving and grid we can use the following code:

for i from 1 to N do

for j from 1 to N do

Element(2*i+1)/2^(N+1),(2*j+1)/2^(N+1),1/2^(N+1));

od:

od:

Note that in fact we have developed the way, in which object
oriented programs can be implemented in Maple. The procedures
GridNode and Element correspond to the classes in object oriented
languages. The instances of classes or objects can be created by calls
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of this procedures. With the aid of the concatenation operation ”||”,
we can refer to class variables and methods. In the next section we
shall present our package for object oriented programming in Maple
based on the ideas introduced in this chapter.
In case of N = 0 one element will be generated and we can refer

to data it is characterized with, for example to its width, by

[> element||‘1/2‘||‘1/2‘||width;

1/2

The element’s nodes can be referred to by

[> element||‘1/2‘||‘1/2‘||node1;

element||‘1/2‘||‘1/2‘||node2;

element||‘1/2‘||‘1/2‘||node3;

element||‘1/2‘||‘1/2‘||node4;

node00

node01

node10

node11

The data on nodes, the list of elements to which the node belongs,
can be obtained in the same way:

[> element||‘1/2‘||‘1/2‘||node1||elements;

[element1/21/2]

In this way, we have represented relationships between grid nodes
and elements by ”pointers” and can now discuss the second prob-
lem concerning representation of relations between elements end grid
nodes in more detail.

3.3. Relationships between data objects

We see that the procedure, which generates paving and grid, is equiv-
alent to a series of assignments.
For example, in case of D0(R

2) the data of a single element and
its 4 nodes will be stored in the following variables:

element1/2/1/2x:=1/2;

element1/2/1/2y:=1/2;

element1/2/1/2width:=1;

element1/2/1/2node1:=node00;

element1/2/1/2node2:=node01;

element1/2/1/2node3:=node10;

element1/2/1/2node4:=node11;

node00elems[1]:=element1/21/2;

node00x=0;

node00y=0;
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node01elems[1]:=element1/21/2;

...

node10elems[1]:=element1/21/2;

...

node11elems[1]:=element1/21/2;

...

in case of D1(R
2):

element1/41/4width:=1/2;

element1/41/4node1:=node00;

element1/41/4node2:=node01/2;

element1/41/4node3:=node1/20;

element1/41/4node4:=node1/21/2;

element3/41/4width:=1/2;

element3/41/4node1:=node01/2;

element3/41/4node2:= ...

...

element1/43/4width:=1/2;

...

element3/43/4width:=1/2;

...

node00elems[1] :=element1/41/4;

node01/2elems[1] :=element1/41/4;

node01/2elems[2] :=element1/43/4;

node1/20elems[1] :=element1/41/4;

node1/20elems[2] :=element3/41/4;

node1/21/2elems[1] :=element1/41/4;

node1/21/2elems[2] :=element1/43/4;

node1/21/2elems[3] :=element3/41/4;

node1/21/2elems[4] :=element3/43/4;

node01elems[1] :=element1/43/4;

node10elems[1] :=element3/41/4;

node11elems[1] :=element3/41/4;

and so on.
Now we want to introduce the formal definition of the relationship

between grid and paving in our computational model
Let V = {vi} be a linear ordered set of all assigned variables.

We denote the function, which returns the name of the variable vi,
vi ∈ V , by N (vi). The evaluation function, which returns the value
of the variable vi, vi ∈ V , will be denoted by E(vi).
Additionally, we introduce the predicate P (N (vi), prefix), which

is true, iff the name of vi ∈ V has prefix prefix.
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Furthermore let G be a linear ordered set of generated grid nodes
and D the set of generated elements. Obviously, G consists of those
variables, whose name begins with ”node” and D of those, whose
name begins with ”element”:

G = {N (vi) | P (N (vi), node)} ,
D = {N (vi) | P (N (vi), element)} .

For example, in case of D0(R
2) we obtain:

D = {element1/2/1/2x, element1/2/1/2y,
element1/2/1/2width, element1/2/1/2node1,

element1/2/1/2node2, element1/2/1/2node3,

element1/2/1/2node4},
G = {node00elems, node00x, node00y, node01x, node01y,
node01elems, node10x, node10y, node10elems, node11x,

node11y, node11elems}.
The Cartesian product G × D can be described as follows :
D × G = {(N (vi),N (vj)) |

P (N (vi), element) ∧ P (N (vj), node)∨
P (N (vi), node) ∧ P (N (vj), element)}.

For example:
D × G = {
(element1/2/1/2x,node00elems),

(element1/2/1/2x,node00x),

(element1/2/1/2x,node00y), (element1/2/1/2x,node01elems), ...,

(element1/2/1/2x,node10elems), ..., (element1/2/1/2x,node11elems),

..., (element1/2/1/2y,node00elems), (element1/2/1/2y,node00x),

(element1/2/1/2y,node00y), (element1/2/1/2y,node01elems), ...,

(element1/2/1/2y,node10elems), ..., (element1/2/1/2y,node11elems),...

}.

Let us define the correspondence relation C ⊆ G ×D between grid
nodes and elements:

(7) C = {(N (vi),N (vj)) | P (N (vi), element) = P (E(vi), node)∧
P (N (vj), node) = P (E(vj), element)}.

For example, in case of D1(R
2), we obtain exactly the pairs of vari-

ables, which belong to corresponding elements and grid nodes:
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C = {
(element1/41/4node1, node00elems[1]),

(element1/41/4node2,node01/2elems[1]),

(element1/41/4node3,node1/20elems[1]),

(element1/41/4node4,node1/21/2elems[1]),

(element3/41/4node1, node1/40elems[2]),

(element3/41/4node2,node1/21/2elems[3]), ...,

(element3/43/4node3, node1/21/2elems[4]), ...,

(element1/43/4node4, node1/21/2elems[2]), ...

}
In this way the notion of relationships between compound data

objects can be represented formally. In the next section we present the
package based on this computational model, which allows to develop
object oriented programs in Maple.

4. Object oriented programming in Maple: FEM in action

To make the data abstraction technique introduced in the previous
chapter more reliable and user-friendly we have developed a package
that makes it possible to implement the object-oriented programs in
Maple ([3], [1]).
Additionally to the features shown in the previous chapter, our

package:

• manages the instance identifiers
• allows the operations like

– searching in object oriented data structures like trees
– adding objects
– removing objects
to be implemented in a simple way.

In this chapter, we would like to show the way, in which this
package operates using a finite element solver as example.

5. Finite element method using linear basis

In this section we show how the linear finite element method can be
implemented using the ideas of object oriented programming.
The class Node introduced in the previous section consists of the

following member variables

• x i : x coordinate of the elements middle point
• y i : y coordinate of the elements middle point
• list elems : stores the owners of this node
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• list ansatz : stores the Ansatz functions assigned to this node
and of the following member procedures

• addAnsatzFunction( f ): stores the Ansatz function f in the list
ansatz

GridNode:=proc(xi,yi)

local this:

this:=DECLARE_CLASS(node,xi,yi);

node||this||x_i:=xi;

node||this||y_i:=yi;

node||this||ansatz:=[];

node||this||elems:=[];

node||this||addAnsatzFunction:=proc(f, elem)

use oop in

node||this||ansatz:=[op(node||this||ansatz),f]:

node||this||elems:=[op(node||this||elems),elem]:

end use:

end proc:

return this:

end:

The main difference between this implementation and the imple-
mentation from the last chapter is the command DECLARE CLASS pro-
vided by our package. This command builds the instance identifier
and ensures that an object with given coordinates is generated only
once (see previous chapter).
An instance of this class can be generated by using command new

provided by our package:

[> new(GridNode,[1/2,1/2]);

1/21/2

As arguments of new accept the class name (here GridNode) and
the constructor parameters (here coordinates of the node).
The class Element introduced in the previous section consists of

the following member variables

• x i : x coordinate of the elements middle point
• y i : y coordinate of the elements middle point
• h i : the half width of the element
• node1, node2, node3, node4: identifiers of the element’s nodes
• v1, v2, v3, v4: local Ansatz functions, which take the value 1 in
each of four nodes and vanish in all other nodes

and can be implemented in Maple as follows:
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Element:=proc(xi,yi,hi)

this:=DECLARE_CLASS(element,xi,yi);

element||this||x_i:=xi;

element||this||y_i:=yi;

element||this||h_i:=hi;

element||this||node1:= new(GridNode, [xi-hi,yi-hi]);

element||this||node1:= new(GridNode, [xi+hi,yi-hi]);

element||this||node1:= new(GridNode, [xi-hi,yi+hi]);

element||this||node1:= new(GridNode, [xi+hi,yi+hi]);

element||this||v1:= ...

element||this||v2:= ...

element||this||v3:= ...

element||this||v4:= ...

node||(element||this||node1)||addAnsatzFunction(f1,this);

node||(element||this||node1)||addAnsatzFunction(f2,this);

node||(element||this||node1)||addAnsatzFunction(f3,this);

node||(element||this||node1)||addAnsatzFunction(f4,this);

return this:

end:

Before we start our computation, the Ansatz functions v1, v2, v3,
v4 must be determined.

5.1. Nodal basis

The Ansatz functions v1, v2, v3, v4 are assumed to be bilinear func-
tions of the form a0 + a1x + a2y + a3xy. The coefficients ai depend
on the spatial position of the element and can be determined from
the requirement that each Ansatz function takes the value 1 in one
of the element nodes and vanishes in all other nodes.

For example, for v1 the following system of equations may be
produced:























a0 + a1 (xi − hi) + a2 (yi − hi) + a3 (xi − hi) (yi − hi) = 1,

a0 + a1 (xi + hi) + a2 (yi − hi) + a3 (xi + hi) (yi − hi) = 0,

a0 + a1 (xi − hi) + a2 (yi + hi) + a3 (xi − hi) (yi + hi) = 0,

a0 + a1 (xi + hi) + a2 (yi + hi) + a3 (xi + hi) (yi + hi) = 0.
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Fig. 4. Local basis functions

We can find unknown coefficients a0, a1, a2, a3 using the Maple
command solve.The following solution will be obtained:

{

a0 = 1/4
xiyi + xihi + hiyi + hi

2

hi
2 , a1 = −1/4

yi + hi

hi
2 ,

a2 = −1/4
xi + hi

hi
2 , a3 = 1/4hi

−2

}

.

The coefficients of other Ansatz functions can be determined sim-
ilarly. Finally, for each element four local Ansatz functions are con-
structed (Fig. 4).

5.2. Assembling of stiffness matrix

In this section we will compute the stiffness matrix and load vector
according to (3), (4). Let us begin with the grid consisting of one
element and four nodes:

[> e1 := new(Element,[1/2,1/2,1/2]);

The Ansatz functions can be referred to by

[> element||e1||v1;

element||e1||v2;

element||e1||v3;

element||e1||v4;

1-x-y+x*y

y-x*y

x - x y

x y

According to (2) we are looking for the solution of (1) in the
following form

(8) u(x, y) = c1v1(x, y) + c2v2(x, y) + c3v3(x, y) + c4v4(x, y).
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Maple provides constructs Matrix and Vector, which can be used
to define stiffness matrix and load vector:

[> A:= Matrix(4);

b:= Vector(4);

Then according to (3) the stiffness matrix can be computed using
Maple procedures diff (symbolic differentiation) and int(symbolic
integration) by:

[>for i from 1 to 4 do

for j from 1 to 4 do

A[i,j]:=int(int(diff(objthis1v||i,x)*diff(objthis1v||j,x),

x=0..1),y=0..1)+

int(int(diff(objthis1v||i,y)*diff(objthis1v||j,y),

x=0..1),y=0..1);

od:

od:

We obtain the following matrix:

(9)













2/3 −1/6 −1/6 −1/3
−1/6 2/3 −1/3 −1/6
−1/6 −1/3 2/3 −1/6
−1/3 −1/6 −1/6 2/3













.

The rank of the matrix can be determined with the aid of procedure
Rank from the Maple package LinearAlgebra:

[> Rank(A);

3

Since the rank of A is 3, the system of equations Ac = b does not
have the unique solution and one of the coefficients in (8) must be
provided.
The power and flexibility of Finite Element Method manifests it-

self in the possibility to model systems consisting of several elements.
In this section we will show how the stiffness matrix for the complete
system can be assembled from the individual element matrices (9).
At first, let us generate a grid consisting of 4 elements:

[> for i from 1 to 2 do

for j from 1 to 2 do

new(Element,[i/2,i/2,i/2]);

od:

od:

Our package provides the following functions to obtain the infor-
mation about the generated objects:
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• getNumberOfInstances - returns the number of instances of the
given class

• getInstances - returns the list of instances of the given class

Let us illustrate how the function getInstances can be used:

[> D:=getInstances(element);

G:=getInstances(node);

D =

[1/41/4, 3/41/4, 1/43/4, 3/43/4]

G =

[00, 1/20, 1/21/2, 01/2, 10, 11/2,

01, 1/21, 11]

This loop thus also generates 4 elements and 9 grid nodes.

Recall from the previous section that we denote by G a linear
ordered set of generated grid nodes and by D a linear ordered set of
generated elements.

We denote the area of a finite element by Ωi. Furthermore, we
define the set of local Ansatz functions VD(i), which belong to the
element Di, and the set of local Ansatz functions VG(i), which take
the value 1 in the node Gi.
Then the function φi can be represented as a sum of four local

Ansatz functions:

φi =
∑

vk∈VG(i)

vk.

Using the correspondence relation C ⊆ G × D between elements
and grid nodes (7), we introduce the set O of owners of a certain grid
point Gi:

O(i) = {j | (Dj ,Gi) ∈ C} .

Then the equation (3) can be rewritten as follows:

A(i, j) =
∑

k∈VG(i)

∑

l∈VG(j)







∫∫

(
⋃

m∈O(i)Ωm)
⋂

(
⋃

n∈O(j)Ωn)

(

∂

∂x
vk(x, y)

× ∂

∂x
vl(x, y) +

∂

∂y
vk(x, y)

∂

∂y
vl(x, y)

)

dΩ

]

.
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Fig. 5. Linear basis

The following stiffness matrix can be obtained:

(10)











































2/3 −1/6 −1/6 −1/3 0 0 0 0 0

−1/6 4/3 −1/3 −1/3 −1/6 −1/3 0 0 0

−1/6 −1/3 4/3 −1/3 0 0 −1/6 −1/3 0

−1/3 −1/3 −1/3 8/3 −1/3 −1/3 −1/3 −1/3 −1/3
0 −1/6 0 −1/3 2/3 −1/6 0 0 0

0 −1/3 0 −1/3 −1/6 4/3 0 −1/3 −1/6
0 0 −1/6 −1/3 0 0 2/3 −1/6 0

0 0 −1/3 −1/3 0 −1/3 −1/6 4/3 −1/6
0 0 0 −1/3 0 −1/6 0 −1/6 2/3











































.

The load vector b can be calculated according to (4), where f(x, y)
is the function on the right-hand side in (1), we use f(x, y) = −2π2

sin(xπ) sin(yπ):

b(1) = −24− 4π + π2

π2
, b(2) = −8−2 + π

π2
, b(3) = −8−2 + π

π2
,

(11) b(4) = −32 1
π2
, b(5) = −24− 4π + π2

π2
, b(6) = −8−2 + π

π2
,

b(7) = −24− 4π + π2

π2
, b(8) = −8−2 + π

π2
, b(9) = −24− 4π + π2

π2
.

Since the rank of A is lower as its dimension, the system of equa-
tions Ac = b does not have the unique solution.
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5.3. Boundary conditions

In order to guarantee the existence of the unique solution, the bound-
ary conditions have to be specified.

For example, consider our model problem given by the following
equation in the domain Ω with the boundary Γ :

u(x, y)xx + u(x, y)yy = −2 sin(xπ)π2 sin(yπ).

The Dirichlet boundary conditions can be formulated

u(Γ ) = 0.

Then this equation has the unique solution

u(x, y) = sin(πx) sin(πy)

shown in Fig. 6.

To introduce the boundary conditions in our system of equations
we need the indices of coefficients ci, which correspond to boundaries.
Let us call getInstances(node)

[> G:=getInstances(node);

G =

[00, 1/20, 1/21/2, 01/2, 10, 11/2,

01, 1/21, 11]

We can write a simple procedure to determine the nodes corre-
sponding to the boundaries:
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Fig. 6. Exact solution
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[> getNode:=proc(coordinate, value);

local g, result:

use oop in

result:=[];

g:=getInstances(node);

for i from 1 to nops(g) do

if node||(g[i])||(coordinate||_i)=value then

result:=[op(result), c[i]]:

fi:

od:

return result:

end use:

end:

Using

[> boundary:={op(getNode(x,0)), op(getNode(x,1)),

op(getNode(y,0)), op(getNode(y,1))}

we obtain coefficients {c1, c2, c3, c5, c6, c7, c8, c9}, which must be spec-
ified.
Now consider the system of equations Ac = b, where A and b are

given by (10) and (11), respectively, in the following form:

−1/3c4 − 1/6c6 − 1/6c8 + 2/3c9 = −2
4− 4π + π2

π2
,

−1/3c2 − 1/3c4 − 1/6c5 + 4/3c6 − 1/3c8 − 1/6c9 = −8
−2 + π

π2
,

−1/6c3 − 1/3c4 + 2/3c7 − 1/6c8 = −2
4− 4π + π2

π2
,

−1/3c3 − 1/3c4 − 1/3c6 − 1/6c7 + 4/3c8 − 1/6c9 = −8
−2 + π

π2
,

−1/6c1 + 4/3c2 − 1/3c3 − 1/3c4 − 1/6c5 − 1/3c6 = −8
−2 + π

π2
,

−1/6c1 − 1/3c2 + 4/3c3 − 1/3c4 − 1/6c7 − 1/3c8 = −8
−2 + π

π2
,

2/3c1 − 1/6c2 − 1/6c3 − 1/3c4 = −2
4− 4π + π2

π2
,

−1/3c1 − 1/3c2 − 1/3c3 + 8/3c4 − 1/3c5 − 1/3c6,

−1/3c7 − 1/3c8 − 1/3c9 = −32
1

π2
,

−1/6c2 − 1/3c4 + 2/3c5 − 1/6c6 = −2
4− 4π + π2

π2
.
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Fig. 7. The numerical solution using D2(R2) and corresponding error distribution

Since only one unknown coefficient, namely c4, is independent we
must obtain only one equation:

8/3c4 = −32π−2 + 1/3c1 + 1/3c2 + 1/3c3

+1/3c5 + 1/3c6 + 1/3c7 + 1/3c8 + 1/3c9.

Using the Maple command solve as shown above, we obtain the
solution:

c4 =
1

8π2
(c3π

2 − 96 + c1π
2 + c2π

2

+c8π
2 + c5π

2 + c6π
2 + c7π

2 + c9π
2).

In case of 16 elements and 25 grid nodes the elimination of depen-
dent equations reduces the stiffness matrix to dimension 9:











































8/3 −1/3 0 −1/3 −1/3 0 0 0 0

−1/3 8/3 −1/3 −1/3 −1/3 −1/3 0 0 0

0 −1/3 8/3 0 −1/3 −1/3 0 0 0

−1/3 −1/3 0 8/3 −1/3 0 −1/3 −1/3 0

−1/3 −1/3 −1/3 −1/3 8/3 −1/3 −1/3 −1/3 −1/3
0 −1/3 −1/3 0 −1/3 8/3 0 −1/3 −1/3
0 0 0 −1/3 −1/3 0 8/3 −1/3 0

0 0 0 −1/3 −1/3 −1/3 −1/3 8/3 −1/3
0 0 0 0 −1/3 −1/3 0 −1/3 8/3











































.



82 D. Chibisov, V.G. Ganzha, and C. Zenger

The load vector b is reduced to

b(1) = −16− 8π + π2

π2
+ 2
16
√
2− 4

√
2π + π2 − 16
π2

−48− 8
√
2π − 32

√
2 + π2 + 8π

π2

+1/3c1 + 1/3c2 + 1/3c3 + 1/3c5 + 1/3c11,

b(2) = 8
−4
√
2 +

√
2π + 4− π

π2
− 8−12 +

√
2π + 8

√
2− π

π2

+1/3c2 + 1/3c5 + 1/3c7,

b(3) = −16− 8π + π2

π2
+ 2
16
√
2− 4

√
2π + π2 − 16
π2

−48− 8
√
2π − 32

√
2 + π2 + 8π

π2

+1/3c5 + 1/3c7 + 1/3c9 + 1/3c10 + 1/3c15,

b(4) = 8
−4
√
2 +

√
2π + 4− π

π2
− 8−12 +

√
2π + 8

√
2− π

π2

+1/3c3 + 1/3c11 + 1/3c16,

b(5) = 64
−3 + 2

√
2

π2
,

b(6) = 8
−4
√
2 +

√
2π + 4− π

π2
− 8−12 +

√
2π + 8

√
2− π

π2

+1/3c10 + 1/3c15 + 1/3c20,

b(7) =
16
√
2− 4

√
2π + π2 − 16
π2

+
−48 + 8

√
2π + 32

√
2− π2 − 8π

π2

−16− 8π + π2

π2
− −16

√
2 + 16 + 4

√
2π − π2

π2

+1/3c11 + 1/3c16 + 1/3c21 + 1/3c22 + 1/3c23,

b(8) =
−4
√
2 +

√
2π + 4− π

π2
− 8−12 +

√
2π + 8

√
2− π

π2

+1/3c22 + 1/3c23 + 1/3c24,

b(9) = −16− 8π + π2

π2
+ 2
16
√
2− 4

√
2π + π2 − 16
π2

−48− 8
√
2π − 32

√
2 + π2 + 8π

π2
,

+1/3c15 + 1/3c20 + 1/3c23 + 1/3c24 + 1/3c25.
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Fig. 8. The error distribution using D4(R2)

Using LinearSolve we obtain the solution.
The boundary coefficients are now: {c1, c2, c3, c5, c7, c9, c10, c11, c15,

c16, c20, c21, c22, c23, c24, c25}.
The solution vanished on the boundary and its error distribution is

shown in Fig. 7. Compare it with the error distribution using D4(R2)
shown in Fig. 8

6. Finite element method using hierarchical basis

The first known mathematician to use hierarchical ideas was Archi-
medes in ”The quadrature of the parabola”. By inductively exhaust-
ing the parabola with triangles, he was able to measure the area given
by a parabola. In 1909 Faber [6] introduced the hierarchical basis and
explicitly used it for the representation of functions. Yserentant [5]
applied the hierarchical basis in 1986 for numerical methods. In 1990,
Zenger [4] directly represented a smooth multivariate function u with
a hierarchical tensor product basis instead of a standard nodal basis.
The coefficients of this representation, the so-called hierarchical sur-
pluses, decrease with the volume of the support of the corresponding
basis functions. In this section we consider hierarchical finite element
method on sparse grids and demonstrate how the hierarchical struc-
tures can be implemented in OO-Maple.
Let us consider our model problem (1) with f(x, y) = 2(1−x)y(1−

y)−4xy(1−y)−2x2(1−x). Then the equation has the exact solution
u(x, y) = 2x2(1− x)y(1− y) (Fig. 9).
Similarly to the case of linear basis we can define the class, whose

objects would correspond to hierarchical finite elements. This class
consists of the following members:
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Fig. 9. The exact solution by f(x, y) = 2(1−x)y(1−y)−4xy(1−y)−2x2(1−x)

• x i : x coordinate of the elements middle point
• y i : y coordinate of the elements middle point
• h x : the element’s half width in x-direction
• h y : the element’s half width in y-direction
• child1, child2, child3, child4: identify the children nodes of this
element

• phi: Ansatz function, which takes the value 1 in the middle point
of this element

Using hierarchical grid consisting of 4 nodes we obtain the follow-
ing stiffness matrix A



















8/3 1/2 1/2 1/2 1/2

1/2 10/3 0 0 0

1/2 0 10/3 0 0

1/2 0 0 10/3 0

1/2 0 0 0 10/3



















and load vector b:




















− 5
48

1
1536

− 149
1536

− 37
768

− 37
768





















.
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Fig. 10. The numerical solution by f(x, y) = 2(1 − x)y(1 − y) − 4xy(1 − y) −
2x2(1− x) using coarse sparse grid and error distribution

The coefficients of this hierarchical representation can be obtained
with the aid of LinearSolve(A,b):





















− 289
9088

361
72704

− 1769
72704

− 11
1136

− 11
1136





















.

These coefficients decrease with the volume of the support of the
corresponding basis functions. Consequently, the values of hierarchi-
cal surpluses is a very simple criterion for the decision of whether the
contribution to the basis representation is important enough or not.
This consideration leads to the concept of sparse grids [4] in which
we order the basis functions in terms of their support volume. The
above class generates exactly the sparse grid.

The main advantage of the hierarchical approach is the possibility
to refine adaptively until the hierarchical surplus is lower than the
given error tolerance limit.
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Fig. 11. The numerical solution by f(x, y) = 2(1 − x)y(1 − y) − 4xy(1 − y) −
2x2(1− x) using refined sparse grid and error distribution

In this way for example the result shown in Fig. 10, 11 was ob-
tained.
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