Hierarchical Advancing Front Triangulation
Using Symmetry Properties

Victor G. Ganzha and Dmytro Chibisov!, Evgenii V. Vorozhtsov?

! Institute of Informatics, Technical University of Munich, Garching 85748, Boltzmannstr. 3, Germany;
ganzha@in.tum.de, chibisov@in.tum.de
2 Tnstitute of Theoretical and Applied Mechanics, Russian Academy of Sciences, Novosibirsk 630090, Russia;
vorozh@itam.nsc.ru

Abstract. We show how the implicitly given complex geometric regions can be subdivided into
symmetric parts to speed-up the computationally expensive advancing front triangulation and finite
element computation on the resulting grid. We calculate for the implicitly given geometric region the
symmetry axes by computing the invariant finite matrix group, such as, for example, reflections and
rotations. It is proposed to use the so-called R-Functions for the description of complex geometric
regions, for finding (with the aid of Maple) the symmetry groups of the given region, and for finding
the initial front for the advancing front method by boundary discretization using octal trees. The
advancing front triangulation can also be performed for only one of the symmetric parts, and the
resulting grid is assembled. It is shown that the use of symmetry properties of a given planar region
enables the CPU time savings by a factor from 3 to 8.

1 Introduction

In our work we are interested in the integration of computer aided geometric design (CAGD) and nu-
merical simulation in such a way that would allow us to design robust, efficient, and reliable scientific
software. On the one hand the physical or numerical properties of the computational problem make de-
mands on the possible geometric representation of an object under consideration. On the other hand
different topological and geometric representation of an object exist, which can not be converted to each
other in simple and efficient way.

By far the most common representation for curves and surfaces in CAGD is the parametric represen-
tation (Bezier, NURBS or BSPline curves). But the researchers recognized early the power of implicit
curves and surfaces for the purpose of modeling and simulation. The present paper shows how the com-
plex geometric regions whose boundaries are given as implicit algebraic curves can be subdivided into
symmetric parts to speed-up the computationally expensive advancing front triangulation and finite ele-
ment computation on the resulting grid. We calculate for the geometric region given as an implicit curve
the symmetry axes by computing the invariant finite matrix group of reflections. The advancing front
triangulation can also be performed for only one of the symmetric parts, and the resulting grid is assem-
bled. By using the possibility offered by computer algebra to perform FEM calculations with symbolically
given boundary conditions, as shown in [1], the partial FEM solutions on subregions can be assembled
what leads to CPU time savings.

2 Hierarchical Methods in Computer Aided Geometric Design and
Symmetry

In the present paper we consider the constructive hierarchical geometry representations. A constructive
representation defines an object by the sequence of operations for constructing an object [4]. The most
common constructive representation is called Constructive Solid Geometry (CSG) and uses the boolean
(set theoretic) operations. The operation sequence is typically stored as a tree. For example, the object
shown on the right hand side in the following figure can be constructed from rectangle, circle, and cone
using set union and difference operations.

To convert this set theoretic operations to a real valued functions the R-Functions proposed in [7] (a
short introduction and basic applications of R-Functions can be found in [9] too) can be used. R-Functions
allow us to write easily an equation for an object of arbitrary shape, in the same way as one forms the

2 Victor G. Ganzha and Dmytro Chibisov, Evgenii V. Vorozhtsov

N\

L)
Fig. 1.
solid by the boolean operations. If x = (21, ..., #,) is a point in R", then:

f(x) >0 if x is inside the object
f(x) =0 if x is on the boundary of the object (1)
f(x) < 0 if x is outside the object

The set-theoretic operations on objects described as R-Functions can be defined as follows

f1(x) U fa(x) = fi(x) + fo(x) + 4/ fE(x) + f(x
f1(x) N fa(x) = fi(x) + fo(x) =/ fi(x) + f2(x (2)
fix)\fa(x) = —/F(x) + f3(x

Note that the boundary of the geometric region is represented as roots of the R-Functions f(x) = 0.

We can isolate the squared roots in (2) and sqare left and right hand side respectively, in case of the
intersection, for example :

\/f] +f2 X +f2)
f(x)+ f5(x) = fi(x)+2f1(x)f2()+f§(x)
2f1(x) fa(x) =

In this way we obtain the the point set containing boundary given by the equation fi(x)f2(x) = 0:

A(f1(x) U fa(x)) C {x: fi(x) * fa(x) = 0}
A(f1(x) N f2(x)) C {x: fi(x) * f2(x) = 0} (3)
O(f1(x)\f2(x)) C {x: fi(x) * fa(x) = 0}

In the next section we will show, how the domain boundary obtained according to (3) can be used to
compute finite symmetry groups of the domain.

The rectangle in Fig. 1 can be constructed as the intersection of 4 half-spaces according to (2) :

fileg,y) =1—x
folz,y) =1+a
falz,y)=1—y
falz,y) =1+y

Then we obtain:
Rect(z,y) = (N f2) 0 (fa N fa) = f1 +f2 = \[f17 + 22 + 3 + f4—

2 2
I8P+ 17— \/<f1 +f2 —\/f1? +f22> + (ﬁ +f4 —\/f8° +f42>

Hierarchical Advancing Front Triangulation Using Symmetry Properties 3

Another representation of the rectangle boundary is the one according to (3):
ORect(z,9) C (= 1)(1 +2)(y = 1)(1 +y)

Other primitives used in the above example are:
2 : 2 o9, 1
parabola(z,y) =y — 3 z%; circle(z,y) = —2” — y* + 3
The complete object is given by

O(z,y) = Rect\(circle U parabola) =

2
Rect — parabola — circle — \/pambola2 + circle® — \/Rect2 + (pambola + circle + \/pambola2 + circleQ)

Obviously the following symmetry properties hold:

Rect(z,y) = Rect(xz, +y)
Rect(z,y) = Rect(ty,)

or in the matrix form

Rect(D4x) = Rect(x)

{2223

Dy 1s the well known dihedral group whose elements correspond to rotations and reflections in the plane.
The circle has a symmetry group SO2

+1 0
0 *1

0 +£1
+1 0

)

350, — [cos(@’) —sin(cﬁ)]

sin(¢) cos(9)

and the parabola is a reflection symmetric with respect to the y-axis:

—10
Ry =
Y 01

In the present paper we present an algorithm for computation of the symmetric decomposition shown
in the following figure and show how the costs of advancing front triangulation can be reduced by per-

Fig. 2.

forming them on the symmetric parts only marked in the figure.

4 Victor G. Ganzha and Dmytro Chibisov, Evgenii V. Vorozhtsov

3 Computing the Invariant Matrix Group

We start with the decomposition of single polynomials from which our region was built. Consider the
polynomial
N

Flao,y) = > aijaty

i,7=0

Let the transformation matrix be given by

91,1 91,2
G =
92,1 92,2
Then the polynomial remains invariant iff

N
f(Gxx) = f(G*(x,y)7) = Z aij(g1,12 + g1,29) (92,12 + g2,29)° = f(x)

1,7=0

Exponentiating and collecting coefficients of like power leads to

N N
f(Gxx) = Z 2y fi (911,912,921, 92,2) = Z ai jz'y = f(x).
1,7=0 1,7=0

In this way we obtain the following system of N? equations ([11])

fii(911,91,2,921,922) = ai j,

where f; ; are some functions, which depend on (g1,1, g1,2,92,1,92,2) and can be computed, for example,
with Maple, as follows:

transform the polynomial according to (10) and expand it
[> fG:=expand(f(op(convert(G.xx,list))),{x,y});

calculate the coefficients of f(G*x)
[> f:=[coeffs(£G,{x,yH)];

calculate the coefficients of f(x)
[> a:=[coeffs(f,{x,y})];
The last step is to solve the system of equations to obtain the invariant matrix group

[> solve({(f[i]l=al[i])$i=1..N}):

For example, for the Rect(z,y)\circle(z,y) = —(z —2)* (y—2) *x (2 +2) * (y + 2) * (2> + y* — 1) we
obtain the following system of equations
—20=—20g1,> —20g2.%,16 =16,4 =4 g11" +4g21" + 91179217,
9= 991,2292,12 + 2492,1292,22 + 991,1292,22 +3691,192,192,291,2 + 2491,1291,227

2 2 2 3 2 2 2 4 2 2 4 3

—1=—-6g12°9g21 922" — 8911922 01,2921 — 6911 G22 G122 — 1,2 921 — 91,1 G22 —8g1,192192.201,2", (4)
3 2 2 2 2 2 2 2 4 4 2 3

—-1= —891,1 g21922G1,2 —691,1 g22 g21 —691,2 g21 g1 —G12 G201 — g1 G222 —891,292,1 gi11922,

20= —20g12° — 200222, 4 =4 g’ +4g12" + 912720

Note, we are looking for symmetric decomposition and, therefore, are interested in reflections groups
only. According to [12] the following condition must be satisfied for any reflection transformation:

gi,1922 —ge,1g1,2 = —1 (5)

The system of equations (4), (5) has the solutions

Hierarchical Advancing Front Triangulation Using Symmetry Properties 5

Fig. 3. Decomposition of Rect(z,y)\circle(z,y) and Rect(z,y)\(circle(z —1/2,y — 1/2) 4+ 3/4)

{p22=0,12=1,921 =1, 11 =0}, {g22=0,011 =0,g12 = —1,g21 = —1},
{2=0,922=1,921 =0,911 = =1}, {12 = 0,921 = 0,922 = =1, 911 = 1},

which correspond to the reflection of part R4 of G4 given by:

we {25 S

Note that R4 does not satisfy the closure property and, therefore, is not a group.

Obviously, the symmetry axes are given by those eigenvectors of these matrices, which correspond to

O MEnE

Solving R;x” = x” we obtain four symmetry lines:
li(z,y) ==,
lQ(I; y) =Y,
lS(I;y):w_ya (6)
la(z,y) =z +y.

As shown in Fig. 3, four lines (6) decompose the initial domain O(z,y) given by

O(z,y) = Rect(z,y)\circle(z,y) = Rect(z,y) — circle(x,y) — \/Rect(z,y)? + circle(z, y)?

in 8 congruent parts O;(x, y), which can be obtained using R-intersection (2) of O(x,y) and eight halfspaces
given by 4 lines (6) as follows:

O1(z,y) = O(z,y) Nlz(z,y) Nis(x,y)
Oz (z,y) = O(z,y) Nl (z,y) N —l3(x,y)
Os(z,y) = O(z,y) N =11 (z,y) Nla(z,y)
Oa(x,y) = O(x,y) Nlz(x,y) N —la(z, y) (7)
05(y) = O(z,y) N —la(2,y) N —l3(z,y)
Os(z,y) = O(x,y) N =l (z,y) Nls(z,y)
O7(x,y) = O(z,y) Nl (x,y) N —la(z,y)
Og(z,y) = O(z,y) N =la(z,y) Nla(z,y)

6 Victor G. Ganzha and Dmytro Chibisov, Evgenii V. Vorozhtsov

0,8 0,8

S, Sy

¥ / /
4 (4
N\ \
\ \

LA e 1 T u 1
0,2 0,4 0,6 0,8 1 0,2 0,4 0,6 0,8 1
x x

gt

g

Fig. 4. Curve approximation with quadtrees

In this way the finite symmetry group of simple geometric regions given as roots of polynomial
equalities can be calculated. The decomposition of the region shown in Fig. 2 can be derived using
symmetry axes of such primitive regions in the same way.

4 Boundary Discretization Using Quadtrees

As shown in section 2, the implicit curves can be used to describe complex geometric regions. In order
to perform the advancing front triangulation needed for the FEM calculations on such regions enclosed
by R(z,y) = 0 we need to partition the curve R(z,y) = 0 into linear segments. The term quadtree (or
octtree in 3-dimensional case) is used to describe a well-known class of hierarchical data structures whose
common property is that they are based on the principle of recursive decomposition of space [10]. As
shown in Fig. 4 we start with the root rectangular element enclosing the geometric region of interest
and subdivide it successively into four equal-sized quadrants. Each of these quadrants can be entirely
contained in the region (R(z,y) > 0), entirely disjoint from it (R(z,y) < 0) or crossed by the boundary
curve (R(z,y) changes the sign along some quadrant edge). Checking the sign of R(z,y) in the quadrant
nodes one can determine the edges wich are crossed by the boundary curve and approximate the curve
in the particular quadrant as shown in Fig. 4. The boundary quadrants can be successively subdivided
to achieve a better approximation of the region boundary.

We have implemented a package SpaceTrees for Maple, that provides the following features:

— generating and refinement of quadtrees
— performing the set operations on quadtrees (union, intersection, difference)

— generating the discretization for numerical methods: both initial front for advancing front method
described bellow and rectangular elements

This package is implemented in object-oriented way as described in [1]. For example, the following
command generates the quadtree with top left corner with coordinates 0 , 1 and widths 1, 1 in - and
y-direction:

[> root:=quadtree(0, 1, 1, 1, 0(x,y));

O(z,y) = 0 is the implicit function that bounds the region to be partitioned.
To refine the generated quadtree the method refine can be invoked:

[> ““|lroot||refine();

After several refinements one obtains the result shown in Fig. 4.
To obtain the approximation of O(z,y) = 0 corresponding to a particular depth of the quadtree use:

[> ““|lroot||getBoundary(depth_level);

The line segments generated in this way approximate boundary and are now used as initial front for
the advancing front triangulation method described bellow.

Hierarchical Advancing Front Triangulation Using Symmetry Properties 7

5 Advancing Front Triangulation

This method [8] starts with the initial front AF obtained in the previous section. Then, it adds triangles
into the domain, with at least one edge on the front. At each step, this will update the front. When the
front is empty, the mesh generation is completed. This requires that the domain be bounded, but for
unbounded domain the front can be advanced until it is at some large distance from the object. As the
algorithm progresses, the front will advance to fill the remainder of the area with triangles.

In Fig. 5 the algorithm that we use is shown in more detail. Let three sets be given:

AF — current advancing front, consisting of edges
V — the set of all triangulation vertices
& — the set of oriented triangulation edges

E(a,b) — the edge connecting vertices a and b

For each edge F = (a,b) € AF of the front the algorithm calculates candidate vertex v lying in the
vertex of an equilateral triangle with the base E. The triangles can be stretched by the user defined
parameter §(z,y). Adapting J(z, y) the size of triangles can be adapted through the region.

compute next_candidate vertex(F,dJ) - returns the point lying in the vertex of an
equilateral triangle with the base F|
to the left from E at the distance dist(x, y)
d(z,y) - determines the stretching factor

Before new candidate edges (a,v), (v,b) are inserted in the current triangulation, we perform the
intersection tests with existing edges using the procedure visible. Furthermore we calculate the minimal
distance and minimal angle between (a,v), (v,b) and existing triangulation edges using min_distance,
min_angle:

visible(E::edge, v::vertex, s::set)— tests, wether the generated edge
is crossed by any other edge of the set s

min distance(s::set) — computes the minimal distance between points
of the set s

min_angle(s::set) — computes the minimal distance between edges
of the set s

If (a,v), (v,b) does not intersect any other edge and minimal distance and angle condition are not
violated, they will be added to the triangulation. If this is not the case, the next candidate vertex will be
chosen from the existing triangulation vertices V using find nearst vertex:

find nearest_vertex(s::set, v::vertex)—finds the vertex in s nearest to v

while AF # 0 do
v := compute_next_candidate_vertex (E(a,b) € AF,é(z,y))
while not visible(F(a,b),v) or min_angle (£ U (a,v) U (v,b)) < Omin
or min distance(VUwv)) < lyin do
v := find nearest_vertex (V,v)

od:

£:=EU{(a,v),(v,b)}

V:=VuU{v}

AF := AF U {(a,v), (v,0)} — {(a,b)}
od:

Fig. 5. A quasi-Maple description of the basic structure of advancing front algorithm

8 Victor G. Ganzha and Dmytro Chibisov, Evgenii V. Vorozhtsov

In this way the triangulation result depends on the choice of the following parameters:

lmin — the minimum distance allowed between vertices

Omin — the minimum angle allowed between edges

d(x,y) — stretching parameter

Compare, for example, grids obtained with d(x,y) = 1 (on the left hand side in Fig. 7) and § given by

{2334—18—7 $<——

1 otherw 1se

(on the right hand side in Fig. 7) In Figs. 6 and 8 the different grids for different choices of these
parameters are shown. For two parts of the region of Fig. 1 their triangulation as well as composite grid
for the entire region are depicted in Fig. 8. In this case there are six symmetric subregions according to
Fig. 2, but the advancing front triangulation is executed only in two of them as shown in Fig. 8. The
filling of the remaining symmetric counterpart subregions by a grid is a mere reflection, thus, no costly
operations of the advancing front triangulation are performed at this reflection. Therefore, we can neglect
the CPU time needed for these reflections. As a result, we obtain for the region of Fig. 1 the speed-up
factor of 6/2 =3. For another region shown in Fig. 9 the speed-up factor is obviously equal to 8.

6 FEM Computation
Consider the boundary value problem in the region §2 with the boundary I™:

u(l‘, y)zr + u(l’, y)yy = f(xa y)) U(F) =0. (8)

In order to solve this equation using the finite element method, one has to minimize the following energy
functional:

//[)2 +v(@,y);) — v(z,y) fz,y)| d2

over a certain functional space X.
The finite approximation % is assumed to be of the following form:

N

ﬂ(;‘B,y) :Zci¢i(may)a (9)

i=1

where ¢;(z,y) are the so-called Ansatz functions and ¢; the unknown coefficients to be determined.
Accordlng to the Ritz—Galerkin approach, 111)6 ¢;’s can be computed by solving the algebraic system
AT = b where A is the stiffness matrix and & is the load vector given by

0 0
i) = [[|t getiton) + Sosta) ts(.9)] a2

:/n/qﬁi(r,y)f(r,y)dﬂ-

Each Ansatz function ¢; is defined in some particular triangular element and is required to take the
value 1 in one of the element nodes and vanish in all other nodes.

In [1] the Maple based FEM solver has been presented. This solver has been extended in the present
work in order to support unstructured triangular grids. Our FEM package provides two main classes:
FEElement and FENode. For each triangle generated by advancing front algorithm the corresponding grid
nodes and finite element can be generated by calling the object constructor FEElement with the triangle
vertices as parameters:

[> fe:=FEElement([0,0],[1,1],[5,01):
The class FEElement provides following methods:

— getLocalStiffnessMatrix - computes the stiffness matrix of the element
— getLocalLoadVector - computes the load vector of the element
— getGlobalStiffnessMatrix - perform the assembling of all exisitng element matrices

Hierarchical Advancing Front Triangulation Using Symmetry Properties

1 1

0, 8 0,8

0, 61 0, 6

0,4 0,4

0, 2 0,2

0 T T T T T T T T T T T T T T I T T T T T T n
ALLARARARLARAARARRARRRRRRARRRR AR 0.3 004 0.5 0.6 0.7 0.8 0,9 1
0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Fig. 6. Advanci (compare with Fig. 4)

(a) (b) (©)

Fig. 8. The triangulation of parts of our region obtained with § = 1,l,,:, = 0.3,6,:, = 0.6 (a), (b) and the
derived triangulation of the whole region (c).

10 Victor G. Ganzha and Dmytro Chibisov, Evgenii V. Vorozhtsov

\/ \/

Fig. 9. Decomposing of a channel with a cylinder leads to speed-up factor 8.

Fig.10. An example: Ansatz functions of the element

— getGloballLoadVector - perform the assembling of all exisitng load vectors

— getElementAnsatzFunctions - returns the Ansatz functions defined in the element

Using, for example, the method getElementAnsatzFunctions the Ansatz functions, which belong to
the particular element can be plotted (see Fig. 10).

The invocation of both methods getLocalStiffnessMatrix and getLocallLoadVector
[> ““|l|fe||getLocalStiffnessMatrix();
[> ““llfe||getLocalLoadVector();

yields:

1T 9 3/10
—2 5/2 —-1/2
3/10 =1/2 1/5

120125
32

438895
192

1160875
192

Each object of the class FEElement generates three objects of the class FENode, which consist of the
following data fields:

Hierarchical Advancing Front Triangulation Using Symmetry Properties 11

(X
0‘0

Q

2

RSXSS

2
Q

/'v.‘
RS
8
KL

&
N

Fig.11. An example: computed and exact solutions of (8)

— phis — Ansatz functions, which take the value 1 in the node
— c¢i — the unknown coefficient in the linear combination (9) corresponding to the node

The ci may be, for example, addressed by the user in order to provide boundary conditions. As
described in [1] the spatial coordinates can be used to address data objects, for example, with the help
of the functions getAttribut, setAttribut provided by our package:

[> getAttribut (FENode, 0, 0, ci);
or

[> setAttributName (FENode, 0, 0, ci, 0);

Assembling of local element matrices is performed using the methods getGlobalStiffnessMatrix,
getGlobalStiffnessMatrix.

In order to provide the more complicated example we solve (8) using grid shown in Fig. 8. Let f be
given by:

fla,y) =3—189%2? — 99 s ysa” +450 % a” % y? —2Txy” + 41l s a* + 24y — 9Ty + 8% y° —
245 2% + 128 % 22 % y° — 504 % 2t v y? — 14wyt w22 + 24 v 2t % y+ 36 %y

Then the exact solution is

u(z,y) =4 (x—1)(z+1)(y+1) (y— 1) (=2 —y* +1/8) (y —327) .

to obtain the result shown in Fig. 11.
We show in Fig. 12 the error |upgp — Uegact| of the FEM solution for N = 17 (Fig. 12, (a)) and for
N =59 (Fig. 12, (b)). The error can be seen to drop with increasing N.

7 Conclusion and Future Work

In the present paper the advancing front triangulation on geometric regions given as implicit functions
has been considered. In order to perform the triangulation we, at first, discretize the boundary of the
region with the aid of octal trees. We have proposed to use symmetry properties in order to perform
triangulation in much more efficient way. For this purpose we have presented an algebraic technique,
which allows one to perform the decomposition of the geometric domain by computing finite reflection
groups of the domain described as implicit R-Functions. Such a decomposition of the domain in symmetric

12 Victor G. Ganzha and Dmytro Chibisov, Evgenii V. Vorozhtsov

0.2 0.0
0.15 0.0
0.3 0.0
0.05 0.0
O byt Sy, 0 an
4 8 12 16 0 10 20 30 40 50 60
(a) (b)

Fig.12. [urem — Uezact| of the FEM solution for N = 21 (a) and for N =91 (b)

parts leads to CPU time savings by factor from 3 to 8 in order to perform triangulation of the given
region.

As shown in this paper computer algebra systems, such as, for example, Maple are powerful tools in
order to handle algebraic functions applied, calculate the domain decomposition into symmetric parts by
solving algebraic equations, and perform Finite Element analysis, but unfortunately too ”slow” in order
to deal with real-life applications.

Therefore, the future work in this field may concern the automatic generation of numerical code in
the real programming languages, such as C or Fortran (as we have proposed in [2], [3]).

References

1. Chibisov, D., Ganzha, V., Zenger, Chr.: Object oriented FEM calculations using Maple, Selguk Journal of
Applied Mathematics 4 (2003) 58-86

2. Ganzha, V., Chibisov, D., Vorozhtsov, E.V.: GROOME - tool supported graphical object oriented modeling
for computer algebra and scientific computing. In: Computer Algebra in Scientific Computing (CASC 2001),
V.G. Ganzha, E.W. Mayr, E.V. Vorozhtsov (eds.), Springer-Verlag, Berlin (2001) 213-232

3. Ganzha, V., Chibisov, D., Vorozhtsov, E.: Problem Solving for Scientific Computing: Data Modelling Instead
of Algorithms ?, Selguk Journal of Applied Mathematics 2 (2001) 53-72

4. Requicha, A.: Representations for Rigid Solids: Theory, Methods, and Systems, ACM Computing Surveys
(CSUR)archive, Volume 12 , Issue 4 (December 1980)

5. Hoffmann, Chr.: Implicit curves and surfaces in CAGD, [EEE Computer Graphics and Applications, 1993

6. Sederberg, T.W.: Implicit and Parametric Curves and Surfaces for Computera-Aided Geometric Desgin, PhD
Thesis, Purdue University, 1983

7. Rvachov, V.L.: Methods of Logic Algebra in Mathematical Physics, Naukova Dumka, Kiev (1974)

8. George, P.L.: Automatic Mesh Generation. Application to Finite Element Method, John Wiley & Sons, New
York (1991).

9. Shapiro, V.: Theory and Applications of R-Functions: A primer, Technical Report, Cornel University, 1991

10. Samet, H.: The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1990

11. Cox, D.A., Little, J.B., O’Shea D.: Ideals, Varieties, and Algorithms, Springer-Verlag, 1996

12. Groove, L.C.,; Benson, C.T.: Finite Reflection Groups, Springer-Verlag, 1985

