
On the Provable Tight Approximation of

Optimal Meshing for Non-Convex Regions

Dmytro Chibisov, Victor Ganzha, Ernst W. Mayr1, Evgenii V. Vorozhtsov2

1 Institute of Informatics, Technical University of Munich, Garching 85748,
Boltzmannstr. 3, Germany;

chibisov@in.tum.de,ganzha@in.tum.de,mayr@in.tum.de
2 Institute of Theoretical and Applied Mechanics, Russian Academy of Sciences,

Novosibirsk 630090, Russia; vorozh@itam.nsc.ru

Abstract. Automatic generation of smooth, non-overlapping meshes on
arbitrary regions is the well-known problem. Considered as optimization
task the problem may be reduced to finding a minimizer of the weighted
combination of so-called length, area, and orthogonality functionals. Un-
fortunately, it has been shown that on the one hand, certain weights
of the individual functionals do not admit the unique optimizer on cer-
tain geometric domains. On the other hand, some combinations of these
functionals lead to the lack of ellipticity of corresponding Euler-Lagrange
equations, and finding the optimal grid becomes computationally too ex-
pensive for practical applications. Choosing the right functional for the
particular geometric domain of interest may improve the grid generation
very much, but choosing the functional parameters is usually done in the
trial and error way and depends very much on the geometric domain.
This makes the automatic and robust grid generation impossible. Thus,
in the present paper we consider the way to compute certain approxi-
mations of minimizer of grid functionals independently of the particular
domain. Namely, we are looking for the approximation of the minimizer
of the individual grid functionals in the local sense. This means the func-
tional has to be satisfied on the possible largest parts of the domain. In
particular, we shall show that the so called method of envelopes, other-
wise called the method of rolling circle, that has been proposed in our
previous paper, guarantees the optimality with respect to the area and
orthogonality functionals in this local sense. In the global sense, the grids
computed with the aid of envelopes, can be considered as approximations
of the optimal solution. We will give the comparison of the method of
envelopes with well established Winslow generator by presenting compu-
tational results on selected domains with different mesh size.

1 Motivation and Introduction

Advanced computer technologies and parallel architectures allow one to solve
time dependent problems with 109 and more unknowns on rectangular regions in
realistic time using hierarchical and adaptive approaches [2, 8]. In order to handle
problems of such order of computational complexity on arbitrary regions and,

in particular, with moving boundaries, we are interested to have efficient grid
generation techniques, which would support hierarchical approach to computing
and provide the possibility of adaptive mesh refinement as well as remeshing,
due to the changes of boundaries, with minimal computational costs.

The problem of grid generation on an arbitrary region Ω in the (x, y) plane
can be solved by giving a map x(ξ, η), y(ξ, η) from the unit square in the plane
(ξ, η) onto the Ω. By choosing a uniform grid (ξi, ηj) in the unit square, the
map x(ξi, ηj), y(ξi, ηj) would transform the grid (ξi, ηj) to the region of interest.
The required map may be computed in a number of ways. The variational grid
generation is one of the most established approaches for this purpose, due to high
quality of resulting grids. It provides the possibility to control the grid properties
by choosing appropriate grid functionals to be minimized. The basic functionals
are Length (IL), Area (IA), and Orthogonality (IO) functionals, which can be
written in the form (see [6]):

IL(x, y) = 1/2

∫∫

(xξ
2 + yξ

2 + xη
2 + yη

2)dξ dη; (1)

IA(x, y) = 1/2

∫∫

(xξ
2yη

2 + yξ
2xη

2 − 2 xξxηyξyη)dξ dη; (2)

IO(x, y) = 1/2

∫∫

(xξ
2xη

2 + 2 xξxηyξyη + yξ
2yη

2)dξ dη. (3)

The map x(ξ, η), y(ξ, η) minimizing each of above functionals can be found by
by solving corresponding Euler–Lagrange equations, which can be written in
general form

T1,1xξ,ξ + T1,2xξ,η + T2,2xη,η + S = 0,

where Ti,j are 2 x 2 matrices and S is a 2 x 1 vector. The terms in Ti,j and S
depend on the particular functional and are nonlinear in the case of Area and
Orthogonality Functionals. In the case of the Length functional IL, Ti,j can be
shown to be constant, and the Euler–Lagrange equations reduce to the simplest
one:

xξ,ξ + xη,η = 0, yξ,ξ + yη,η = 0.

Minimizing IL by solving above equations leads to smooth grids. However, the
intersections of grid lines may occur (Fig. 1). The folding of resulting grids
by using the Length functional is inadmissible for practical applications. The
Area functional leads to the following Euler–Lagrange equations, which produce
unfolded but, unfortunately, nonsmooth grids:

xξ,ξyη
2 + yηxξyξ,η− yηyξ,ξxη− 2 yηyξxξ,η− yξxξyη,η + yξyξ,ηxη + yξ

2xη,η = 0,

−xηxξ,ξyη− 2 xηxξyξ,η + yξ,ξxη
2 + xηyξxξ,η + xξxξ,ηyη + xξ

2yη,η− xξyξxη,η = 0.

As described in [6], the further shortcoming of this method is that available
numerical procedures for solving the above equations do not converge for cer-
tain domains. The Orthogonality functional produces orthogonal and sufficiently

Fig. 1. Grid generation by minimizing the Length functional (top), and by minimizing
the Winslow functional (bottom)

.

smooth grids on many domains, however, fails to converge in certain cases. Euler-
Lagrange equations for the Orthogonality functional are:

xξ,ξxη
2 + 4 xηxξxξ,η + xηyξ,ξyη + xηyξyξ,η + 2 xξ,ηyξyη + xξ

2xη,η + xξyξ,ηyη

+xξyξyη,η = 0,

yηxξ,ξxη + yηxξxξ,η + yξ,ξyη
2 + 4 yηyξyξ,η + 2 yξ,ηxξxη + yξxξ,ηxη + yξxξxη,η

+yξ
2yη,η = 0.

In order to obtain smooth, orthogonal, and unfolded grids, the weighted combi-
nation of Length, Area, and Orthogonality functionals may be used:

I(x, y) = ωAIA(x, y) + ωLIL(x, y) + ωOII(x, y) (4)

In particular, Area-Length combination overcomes the limitation of individual
functionals because of avoiding grid folding produced by Length functional and
producing smooth grids in contrast to the Area functional. However, the corre-
sponding equations do not admit the continuous solution on many practically
important domains like airfoil, backstep, and ”C”-domains (see [6]). In order to
preserve the advantages of the Length functional and avoid the grid foldings the
famous Winslow grid generator has been proposed. The Winslow functional

IW (x, y) =

∫∫

xη
2 + yη

2

(xξyη − xηyξ)
2 +

xξ
2 + yξ

2

(xξyη − xηyξ)
2 dξ dη

leads to equations:
(

xξ
2 + yη

2
)

xξ,ξ − 2 (xξxη + yξyη) xξ,η +
(

xξ
2 + xη

2
)

xη,η = 0,
(

xξ
2 + yη

2
)

yξ,ξ − 2 (xξxη + yξyη) yξ,η +
(

xξ
2 + xη

2
)

yη,η = 0.

The Winslow generator inherits the grid smoothness from the Length functional
and tends to produce smooth non-folded grids (see Fig. 1). However, the lack
of orthogonality may lead, for example, to high truncation errors by using the
Winslow grids for numerical solution of PDE’s. Further modifications of the pre-
sented functionals may be found in the literature (see [6]), which tend to produce
good meshes in certain cases and fail to admit the solution in other cases. Choos-
ing the right functional for a certain geometric domain, or, in particular, choosing
optimal weights in (4) may improve the resulting grids significantly. The optimal
choosing, however, depends on the particular domain very much and is usually
performed in the trial-and-error way. All this makes the automatic and robust
grid generation impossible. Thus, in the present paper we study the possibility
of overcoming this difficulty by considering a domain independent approach for
the approximation of the minimizers of grid functional in the local sense. This
means, we are interested in satisfying the corresponding Euler–Lagrange equa-
tions on the possible large part of the domain. We admit the discontinuities in
the resulting mapping x(ξ, η), y(ξ, η) between certain parts of the geometric do-
main and study the approximation of the minimizers of functionals (1) – (3) in
discrete form, which will be derived in Section 2. In Section 3 we shall describe
the method of envelopes, or, otherwise called the method of rolling circle, and
show the quality of the approximation of the discrete optimization problem. Sec-
tion 4 is devoted to the comparison of computational performance of the method
of rolling circle with Winslow grid generators.

2 Variational Grid Generation: Discrete Optimization

Formulation

In order to admit discontinuous mappings from the unit square onto the ge-
ometric region of interest we formulate the Area, Length, and Orthogonality
conditions in the discrete sense. We consider the discretized map x(i, j), y(i, j)
from uniform grid in the unit square onto the arbitrary region in the (x, y) plane.
As can be seen in Fig. 2, the square of the length of two grid segments (hori-
zontal and vertical) intersecting in the common grid vertex (i, j) is given by the
following polynomial:

Li,j,i−1,j−1 = (xi,j − xi−1,j)
2+(yi,j − yi−1,j)

2+(xi,j − xi,j−1)
2+(yi,j − yi,j−1)

2 .

Summation over the grid vertices leads to the discrete form of the Length func-
tional:

IL(x1,1, y1,1, ..., xN,N , yN,N) =
N
∑

i,j=2

(xi,j − xi−1,j)
2 + (yi,j − yi−1,j)

2 +

(xi,j − xi,j−1)
2 + (yi,j − yi,j−1)

2 .

Fig. 2. Grid discrete function

The orthogonality condition between two intersecting line segments can be ex-
pressed in a similar way as polynomial by using scalar product of vectors (xi+1,j−
xi,j , yi+1,j − yi,j) and (xi,j+1 − xi,j , yi,j+1 − yi,j):

Oi,j,i+1,j+1 = ((xi+1,j − xi,j)(xi,j+1 − xi,j) + (yi+1,j − yi,j)(yi,j+1 − yi,j))
2.

The orthogonality condition for four angles in each cell becomes:

Ocell
i,j = Oi,j,i+1,j+1 + Oi+1,j,i−1,j+1 + Oi+1,j+1,i−1,j−1 + Oi,j+1,i+1,j−1.

Summation over all cells then leads to the discrete orthogonality functional:

IO(x1,1, y1,1, ..., xN,N , yN,N) =

N−1
∑

i,j=1

Ocell
i,j .

The squared grid cell area can be expressed as follows

Acell
i,j = (− (xi,j − xi,j−1) (yi,j−1 − yi+1,j−1) + (xi,j−1 − xi+1,j−1) (yi,j − yi,j−1)

+ (xi+1,j − xi,j) (yi+1,j−1 − yi+1,j) − (xi+1,j−1 − xi+1,j) (yi+1,j − yi,j))
2.

Finally, the Area functional is given as

IA(x1,1, y1,1, . . . , xN,N , yN,N) =

N−1
∑

i,j=1

Acell
i,j .

Similarly to the Euler–Lagrange equations for the continuous Area, Length, and
Orthogonality functionals, we obtain the system of 2N 2 algebraic equations
necessary for the function I(x1,1, y1,1, . . . , xN,N , yN,N) to reach a minimum in
(x1,1, y1,1, ..., xN,N , yN,N):

∂I

∂xi,j

= 0,
∂I

∂yi,j

= 0. (5)

Similarly to the continuous case, equations (5) for the Length functional IL are
linear

8 xi,j − 2 xi−1,j − 2 xi,j−1 − 2 xi+1,j − 2 xi,j+1 = 0,

8 yi,j − 2 yi−1,j − 2 yi,j−1 − 2 yi+1,j − 2 yi,j+1 = 0

and equations (5) for IA and IO are cubic and are similar to the corresponding
discretized Euler–Lagrange equations.
Please note, in our approach we do not optimize the meshing with respect to
conditions (5) directly. It can be shown that existing global optimization ap-
proaches like branch and bound strategy, would become computationally too
expensive, especially in the case when mesh size decreases. Instead of applying
computationally expensive direct optimization techniques, we use the method of
envelopes, which has been introduced in [4] and will be described in Section 3.
We will, namely, show that this method leads to satisfaction of (5) on the most
part of the region for the Length, Area, and Orthogonality functionals.

3 Approximation of Grid Functionals by the Method of

Envelopes

In the present section, we describe the so-called method of rolling circle that has
been introduced in [4]. We shall show that this method produces nearly optimal
grids in the sense that equations (5) are satisfied locally. Let the region Ω ⊂ R2

be bounded by the roots of polynomials fi(x, y). The so-called Tarski formula
describing the set of points, which belong to this region can be written as follows:

Ω(x, y) ≡
∧

i

fi(x, y) ≥ 0

We propose to calculate the lines of the curvilinear grid in the following way.
We contact a circle C(x, y) = x2 + y2 − r2 = 0 with Ω and move C along the
boundary of Ω keeping them in contact. The motion of a circle can be produced
by shifting it by x0, y0 units:

C(x − x0, y − y0) = 0.

The circle moving along some boundary curve fi(x, y) = 0 describes a curve
gi(x, y) = 0 called envelope (Fig. 3). More precisely, the envelope in our case
is a curve, whose tangent at each point coincides with the tangent of a moving
circle at each time of its motion. In our grid generation approach the envelopes
correspond to grid lines parallel to the boundary (Fig. 5, left at the top). As will
be shown in Section 3.2, connecting the intersection points of the circle C and
envelope gi on the one hand and the circle C and boundary fi on the other hand
produces the line segment which is orthogonal to both curves (Fig. 5, right at
the top) and satisfies (5) for Length, Area and Orthogonality Functionals.

The contact of C and fi can be expressed in terms of common roots of
bounding polynomials. The envelope gi corresponds also to such shifts x0, y0 of

Fig. 3. Calculating of envelopes by quantifier elimination

C, where polynomials fi and C have common roots and coinciding tangents.
This can be formalized using polynomial equations as follows:

h : {(x0, y0)|∃x, y : f(x, y) = 0 ∧ C(x − x0, y − y0) = 0∧
−∂f(x,y)

∂x

∂C(x−x0,yy0)
∂y

+ ∂f(x,y)
∂y

∂C(x−x0,yy0)
∂x

= 0}.

Alternatively, if the boundary curve f(x, y) = 0 is given parametrically (x =
x(t), y = y(t)), the envelope may be defined by (see [1]):

h : {(x0, y0)|∃t : C(x(t) − x0, y(t) − y0, r) = 0 ∧ ∂

∂t
C(x(t) − x0, y(t) − y0, r) = 0.

Eliminating ∃-quantifiers with existing methods described below produces the
point set, which corresponds to the envelope g (Fig. 3). After h(x, y) is calculated
for different values of radius r of the circle, the grid points distributed along
them should be connected with those of f(x, y) in such a way the resulting grid
satisfies equations (5) for the Length, Area, and Orthogonality functionals on
the possible large part of the region. This construction will be presented in the
next Section after introducing the method to calculate h(x, y).

3.1 Elimination of Variables Using Resultants

In this section we shall describe how the well known approach to the elimination
of variables from the following first-order formulas (so-called existential first-
order theory over the reals) with the aid of resultants can be used to calculate
the grid lines parallel to the boundaries. Assume the geometric region is bounded
by N parametric curves [x(j)(t), y(j)(t)], t ∈ [0, 1] of degree deg ≤ M :

x(1)(t) =
∑M

i=1 a
(1)
i ti, y(1)(t) =

∑M
i=1 b

(1)
i ti,

...

x(N)(t) =
∑M

i=1 a
(N)
i ti y(N)(t) =

∑M
i=1 b

(N)
i ti.

(6)

The envelope described by a circle rolling along parametric curves (6) can be
described with the following formula:

∃t :

N
∨

i=1

C(x(i)(t)−xc, y(i)(t)−yc, r) = 0∧ ∂

∂t
C(x(i)(t)−xc, y(i)(t)−yc, r) = 0, (7)

where C is the circle equation with indeterminate radius r and center position
xc, yc on the curve (x(i)(t), y(i)(t)). Given a polynomial f(x) of degree n with
roots αi and a polynomial g(x) of degree m with roots βj , the resultant is defined
by

ρ(f, g) =
∏

i,j

(αi − βj).

ρ(f, g) vanishes iff ∃a : f(a) = 0∧g(a) = 0. The resultant can be computed as the
determinant of the so-called Sylvester Matrix [3]. In the multivariate case, the
computation of resultant can be reduced to the univariate one by considering the
polynomials f, g ∈ K[x1, ..., xN] as univariate polynomials in K[x1] with unknown
coefficients in K[x2, ..., xN] (denoted by K(x2, ..., xN)[x1]). In the following we
call the resultant of f, g ∈ K(x1, ..., xi−1, xi+1, ..., xN)[xi] as resxi(f, g).

In order to eliminate t from (7) and find the envelope h of the circle and the
curve (x(t), y(t)) we may calculate

h(x0, y0, r) = rest

(

C(x(t) − x0, y(t) − y0, r),
∂

∂t
C(x(t) − x0, y(t) − y0, r)

)

.

(8)
In this way the first family of grid lines, namely parallel to the boundary, can
be calculated in analytic form. A Maple calculation shows that the resultant for
the envelope to the curve (x(t), y(t)) with indeterminate coefficients has already
2599 terms even if the degree of the original curve is equal to 2. This makes
direct computation with resulting envelopes impossible. Bellow we shall describe
the way how to avoid such computations for by the generation of grid lines
perpendicular to the envelopes.

In order to generate the second family of grid lines, which are perpendicular
to the first family, we discretize each of the curves (6) with step size ∆t = 1

M

and obtain a number of points pj = (xj , yj), j = 1..M . This can be done with
symbolic M by substitution of t = j

M
, j = 1, . . . , N in (1). We place the circle

center in each pj and compute the intersection of C(x−xj , y−yj) with h(x, y, r).
Let us denote the common roots of the both polynomials as V(C(x − xj , y −
yj), h(x, y, r)). Thus, the second family of grid lines v(j, r) perpendicular to
h(x, y, r) = 0 can be obtained by computing

v(j, r) = V(C(x − xj , y − yj), h(x, y, r)). (9)

Since h(x, y, r) is a large symbolic expression, as mentioned previously, comput-
ing (9) in a direct way by elimination of variables using resultants becomes a
very expensive task.

GenVertex(xi, yi, j, r)
(* The procedure computes grid vertex corresponding to the boundary curve
[xi(j), yi(j)] using the circle of radius r*)

(*generate new grid vertex*)

xj,r
i ← xi(j/N) −

r
dyi
dt

|xi(j/N)
r

dxi
dt

|2
xi(j/N)

+
dxi
dt

|2
xi(j/N)

;

yj,r
i ← yi(j/N) +

r
dxi
dt

|yi(j/N)
r

dxi
dt

|2
yi(j/N)

+
yi(j/N)

dt
|2
yi(j/N)

;

return xj,r
i , yj,r

i ;

Fig. 4. Calculating the grid vertex corresponding to the given boundary curve and
radius of the circle according to the Proposition 1

Therefore, we use the following simple result, which gives the intersection of a
circle with middle point (xj , yj) ∈ [x(t), y(t)] and radius r and h(x, y, r) given
by (8):

Proposition 1. Let h(x, y, r) be envelope of a family of circles C(x − x(t), y −
y(t), r) with radius r given by (8). Then for any tj ∈ R the following is satisfied:

V(C(x − x(tj), y − y(tj), r), h(x, y, r)) =








x(tj) ±
r dy

dt
|tj

√

(

dy
dt
|tj

)2

+
(

dx
dt
|tj

)2

, y(tj) ∓
r dx

dt
|tj

√

(

dx
dt
|tj

)2
+
(

dx
dt
|tj

)2









.

Proof. According to (8) V(C(x−x(tj), y−y(tj)), h(x, y, r)) = V(C(x−x(t), y−
y(t), r), ∂

∂t
C(x − x(t), y − y(t), r)) for some t. Note that

∂

∂t
C(x− x(t), y − y(t), r) =

∂C

∂x

dx

dt
+

∂C

∂y

dy

dt
= −2(x− x(t))

dx

dt
− 2(y − y(t))

dy

dt
.

This means that all solutions of V(C(x − x(tj), y − y(tj), r), h(x, y, r)) lie on a

line xdx
dt
|tj + y dy

dt
|tj − x(tj)

dx
dt
|tj − y(tj)

dy
dt
|tj = 0 independently of r. Thus, we

are interested to find the intersections of circle C(x − xj , y − yj , r) and this line
going through the middle point of C. Using a bit of elementary mathematics we
obtain the statement of this proposition. ♦

Now we are able to find the points (xh, yh) on envelope h(x, y, r), which cor-
respond to the particular position (xb, yb) of a circle on the boundary of the

Fig. 5. Grid generation by the method of rolling circle: 1) calculating the first family
of grid lines parallel to the boundary; 2) calculating grid lines orthogonal to the first
family; 3) connecting ”hanging” grid vertices

region. For example, when the bounding curve (1) is of degree 3 with unknown
coefficients a1, ..., a4, b1, ..., b4 we obtain using Proposition 1:

xb = a1 + a2tj + a3tj
2 + a4tj

3,
yb = b1 + b2tj + b3tj

2 + b4tj
3,

xh = a1+ a2tj + a3tj
2+ a4tj

3+
r(b2+2 b3tj+3 b4t2j)√

b2
2+4 b2b3tj+4 b3

2tj
2+a2

2+4 a2a3tj+4 a3
2tj

2
,

yh = b1 + b2tj + b3tj
2 + b4tj

3 − r(a2+2 a3tj+3 a4t2j)√
b2

2+4 b2b3tj+4 b3
2tj

2+a2
2+4 a2a3tj+4 a3

2tj
2

.

(10)

Using (10) we are able to calculate the spatial positions of the individual
grid nodes lying on envelopes dependent on the distance r from the boundary
(r is a radius of the circle, which produces corresponding envelope). Because of
Proposition 2 (see below) the line segments induced by the calculated nodes are
orthogonal. For example, the vertices of the grid shown in Figs. 5 and 6 have
been generated in this way.

So far we have considered successive generation of grid cells starting from an
individual boundary curve by computing two families of grid lines: perpendicular
and parallel to this curve. Since the given region is bounded by several trimmed
curves, it is convenient to provide a method guaranteeing that the edges of grid

GenGrid(x1,, xn, y1,, yn)
(* The procedure computes grid vertices for the region with a boundary given
by parametric polynomials [xi(t), yi(t)]*)

(*preprocessing: calculating envelopes *)
for i from 1 to n do

(*calculating the envelopes with distance r from boundary*)
hi(x, y, r) := rest(C(x− xi(t), y − yi(t), r),

∂
∂(t)

C(x− xi(t), y − yi(t), r))
od:

(*calculating grid vertices*)
nodes← Empty;
for r from 1 to m; i from 1 to n; j from 1 to N do

(*generate new grid vertex*)
(xj,r

i , yj,r
i)← GenV ertex(xi, yi, j, r)

(* check the intersection with already generated grid edges using equa-
tion of envelopes and append the new vertex to the list nodes*)
if hk(xj,r

i , yj,r
i) ≤ 0 for all k 6= i then nodes← (xj,r

i , yj,r
i);

od:

return nodes;

Fig. 6. Grid generation algorithm: Calculating the grid vertices. The generated vertices
may use the algorithm shown in Fig. 7

cells generated for individual curves do not intersect or even coincide in their
nodes. As can easily be seen by considering, for example, Fig. 5, a certain initial
distribution of points (xb, yb) on boundary curves could produce the coincidence
of the grid nodes generated by (10) separately for each curve. However, the
calculation of the boundary point distribution is computationally very expensive
because of involving the solution of nonlinear equations like (10). With regard
to needed CPU time this computational task can be compared with solving
equations (5) themselves, which we are looking to approximate. Thus, instead of
calculating the initial distribution of boundary points, we start with any given
distribution. Because of possible intersection of grid edges generated by (10) in
the case of arbitrary boundary points distribution, we check at each step of our
algorithm the intersection. Please note, we do not need to check intersection
with already calculated grid edges. Instead of it we may use the equations of the
envelopes by substituting the coordinates of grid nodes (xh, yh) calculated using
(10) in the equations hi(x, y) = 0. Depending on the sign of hi(xh, yh) the new
generated grid edge intersects already generated edges or does not intersect. In
this way the grid vertices shown in Fig. 5 on the top, right are produced. The
description of this part of the algorithm is given in Figs. 4 and 6 The arising
”hanging” nodes are eliminated by connecting them to the closest nodes using

Fig. 7. Grids with different mesh size

the algorithm shown in Fig. 9. The resulting grid is depicted in Fig. 5, at the
bottom.
As can be seen the grid edges induced by grid vertices generated by the algorithm
shown in Figs. 4, 6, and 9 are orthogonal to the boundary curves since the grid
vertices lye on the normals to the boundary curves (Proposition 1). In the same
way it can easily be shown that most grid edges induced by (10) are orthogonal
to all the envelopes:

Proposition 2. Let h(x, y, r) be envelope of a family of circles C(x − x(t), y −
y(t), r) with radius r given by (8). Then for any tj ∈ R the line segment given
by P1, P2 ∈ R

2, where P1 = (x(tj), y(tj)) and P2 lies on the envelope h(x, y, r)
and is given by

P2 =









x(tj) ±
r dy

dt
|tj

√

(

dy
dt
|tj

)2

+
(

dx
dt
|tj

)2

, y(tj) ∓
r dx

dt
|tj

√

(

dx
dt
|tj

)2
+
(

dx
dt
|tj

)2









and intersects h(x, y, r) orthogonally.

Proof. By the result of Proposition 1 the envelope h(x, y, r) = 0 may be param-
eterized by

(

x − ryt
√

xt
2 + yt

2
, y +

rxt
√

xt
2 + yt

2

)

.

Fig. 8. Grids generated by rolling a circle along one boundary curve (left) and along
two boundary curves (right)

Differentiation yields the tangent vector th to the envelope:

th =

xt −
ryt,t

p

xt
2 + yt

2
+ 1/2

ryt (2 xtxt,t + 2 ytyt,t)

(xt
2 + yt

2)3/2
,

yt +
rxt,t

p

xt
2 + yt

2
− 1/2

rxt (2 xtxt,t + 2 ytyt,t)

(xt
2 + yt

2)3/2

!

.

Then the inner product of vectors P2 − P1 and th is given by the following
expression. After reducing the expression to the common denominator, we obtain
the inner product to be equal to 0:

−

xt −
ryt,t

p

xt
2 + yt

2
+ 1/2

ryt (2 xtxt,t + 2 ytyt,t)

(xt
2 + yt

2)3/2

!

ryt
1

p

xt
2 + yt

2

+

yt +
rxt,t

p

xt
2 + yt

2
− 1/2

rxt (2 xtxt,t + 2 ytyt,t)

(xt
2 + yt

2)3/2

!

rxt
1

p

xt
2 + yt

2

=
r2ytyt,t

xt
2 + yt

2
−

r2yt
2xtxt,t

(xt
2 + yt

2)2
−

r2yt
3yt,t

(xt
2 + yt

2)2
+

r2xtxt,t

xt
2 + yt

2

−
r2xt

3xt,t

(xt
2 + yt

2)2
−

r2xt
2ytyt,t

(xt
2 + yt

2)2
= 0.

In this way, we have shown that grid edges generated by our algorithm are
orthogonal to boundary as well as to envelopes. ♦

3.2 Satisfaction of the Local Optimality Conditions

In the previous sections we have described the calculation of the grid nodes
starting from each boundary curve. The algorithm shown in Fig. 6 generates
grid nodes iteratively till no more grid nodes can be generated because of in-
tersections. As can be seen in Fig. 5, on the top, right, the hanging nodes are
produced. At the next step we connect the hanging nodes in such a way as

ConnectVertices(x1,, xn, y1,, yn)
(* The procedure connects grid vertices computed by GenGrid *)

(*calculating intersections of envelopes, which correspond to the adjacent
boundary curves*)
for all i,j,r if adjacent(hi, hj) do

intersections[i, j, r]← solve(hi(x, y, r) = 0, hj(x, y, r) = 0)
od:

line segments← Empty;
(*calculating grid line segments*)
(*connect grid vertices corresponding to the particular position on the boundary
curve and the radius of the circle*)
for all r, i, j do

(*calculating grid line segments parallel to the boundary: if both vertices could
be generated, then connect them*)
if (xj−1,r

i , yj−1,r
i), (xj,r

i , yj,r
i) ∈ nodes then

line segments← [(xj−1,r
i , yj−1,r

i), (xj,r
i , yj,r

i)]

(*if the left vertex could not be generated, then connect the right vertex to the
intersection of envelopes on the left hand side*)
if (xj−1,r

i , yj−1,r
i) /∈ nodes then

line segments← [intersections[i, i− 1, r + 1], (xj,r
i , yj,r

i)]

(*if the right vertex could not be generated, then connect the left vertex to the
intersction of envelopes on the right hand side*)
if (xj,r

i , yj,r
i) /∈ nodes then

line segments← [intersections[i, i + 1, r + 1], (xj−1,r
i , yj−1,r

i)]

(*calculating grid line segments perpendicular to the boundary: if both vertices
could be generated, then connect them*)
if (xj,r

i , yj,r
i), (xj,r+1

i , yj,r+1
i) ∈ nodes then

line segments← [(xj,r
i , yj,r

i), (xj,r+1
i , yj,r+1

i)]
od:

(*if the top vertex could not be generated, then connect the bottom vertex to the
closest intersection point of envelopes*)
if (xj,r+1

i , yj,r+1
i) /∈ nodes then

line segments← [find closest intersection(), (xj,r
i , yj,r

i)]

return line segments;

Fig. 9. Grid generation algorithm: Connecting the grid vertices

0

0.5

1

1.5

2

2.5

500 1000 1500 2000 2500 3000 3500

Fig. 10. Values of the Orthogonality Functional IO in dependence on the number of
mesh nodes for the Winslow Generator (dash-dot), the Length Generator (dot), and,
the method of envelopes (solid)

.

to obtain the valid meshing. In this section we shall consider our method with
respect to local minimization of Orthogonality and Length functionals. As has
been mentioned in the Introduction, we are interested in satisfying the corre-
sponding Euler–Lagrange equations locally. This means the following. Let us fix
the hanging nodes and consider above functionals for all the nodes in between.
First, consider the Orthogonality functional:

Proposition 3. The grid generated by

x(ξ, η) = x(ξ) ± η
dy
dξ

q

(dx
dξ)2

+(dy
dξ)2

;

y(ξ, η) = y(ξ) ∓ η dx
dξ

q

(dx
dξ)

2
+(dy

dξ)
2
.

(11)

minimizes IO.

Proof. Substituting (11) into each of Euler–Lagrange Equations for the Orthog-
onality functional IO given by

xξ,ξxη
2 + 4 xηxξxξ,η + xηyξ,ξyη + xηyξyξ,η + 2 xξ,ηyξyη + xξ

2xη,η + xξyξ,ηyη

+xξyξyη,η = 0,

yηxξ,ξxη + yηxξxξ,η + yξ,ξyη
2 + 4 yηyξyξ,η + 2 yξ,ηxξxη + yξxξ,ηxη + yξxξxη,η

+yξ
2yη,η = 0,

we obtain with the aid of Maple a large differential expression containing 27
terms. After reducing this expression to the common denominator we obtain the
expression equal to 0:

−8
η yξ,ξ

2yξ

(xξ
2 + yξ

2)3/2
− 2

xξ
4xξ,ξ

(xξ
2 + yξ

2)2
+ 2

η yξ
3xξxξ,ξ,ξ

(xξ
2 + yξ

2)5/2
+ · · ·

2
η yξ,ξ,ξxξ

2yξ
2

(xξ
2 + yξ

2)5/2
+ 6

η yξ,ξxξ
3xξ,ξ

(xξ
2 + yξ

2)5/2
+ 2

xξ
2xξ,ξ

xξ
2 + yξ

2
= 0.

The Euler–Lagrange equations for the Orthogonality functional are also satis-
fied. ♦
In this way we have proved that grid calculated using our algorithm is locally
optimal with respect to the Orthogonality functional. In the global sense the
computational comparison for the Winslow generator and our method has been
performed and is shown in Fig. 10.

4

5

6

7

8

9

10

500 1000 1500 2000 2500 3000 3500

Fig. 11. Values of the Length Functional Iv
L in dependence on the number of mesh

nodes for the Winslow generator (dash-dot), the Length generator (dot), and, the
method of envelopes (solid)

30

40

50

60

70

80

500 1000 1500 2000 2500 3000 3500

Fig. 12. Values of the Length Functional Ih
L in dependence on the number of mesh

nodes for the Winslow generator (dash-dot), the Length generator (dot), and, the
method of envelopes (solid)

.

Furthermore, by the construction, the method does not produce grid foldings.
Since the meshing is required to cover the whole area of the domain, the method

is optimal with respect to the area. Let us consider the presented method with
respect to the Length functional. Let us write the Length functional as a sum of
two functionals IL = Iv

L + Ih
L corresponding to grid edges, which are perpendic-

ular and parallel to the boundary:

Ih
L(x, y) = 1/2

∫∫

(x2
ξ + y2

ξ)dξ dη; Iv
L(x, y) = 1/2

∫∫

(x2
η + y2

η)dξ dη .

The following Proposition shows that our method optimizes Iv
L.

Proposition 4. The grid generated by (11) minimizes Iv
L.

Proof. The proof is similar to the proof of Proposition 3. Substituting (11) into
the Euler–Lagrange equations corresponding to Iv

L yields the statement of the
proposition. ♦

From the geometric point of view, the statement of Proposition 4 holds because
of the following reasons. Consider the fixed boundary point (x(tj), y(tj)). By
our construction (as shown in Proposition 1) increasing r produces grid nodes
(xh(j, r), yh(j, r)), which lie on the straight line perpendicular to the boundary
in (x(tj), y(tj)). Of course, a straight line produces the minimal length among
all the curves, which may connect the points (xh(j, r), yh(j, r)). On the other
hand, the statement does not hold for Ih

L, because the points (xh(j, r), yh(j, r))
by increasing j lie on the envelope, which is not the curve of minimal length
between these grid vertices, in contrast to the straight line. Our method allows
to minimize Ih

L as well, namely, by appropriate changing of the radius of the
rolling circle in such a way as the points (xh(j, r), yh(j, r)) lie on the straight line.
However, as can be easily seen from the presented considerations, minimizing Ih

L

would destroy the orthogonality of grid edges. The computational comparsion
for our method, the Winslow generator, and the Length generator with respect
to Ih

L and Iv
L is shown in Figs. 11 and 12.

4 Computational Experiments

In order to compare the presented method of envelopes with well-established
grid generation methods, we describe the numerical procedure implementing a
finite-difference method for solving the Euler–Lagrange equations corresponding
to the individual functionals. For this purpose we use the Alternating Direction
Implicit (ADI) method introduced in [7].

For instance, consider the Winslow grid generator, which is based on the
solution of the following system of nonlinear coupled PDE’s:

(

xξ
2 + yη

2
)

xξ,ξ − 2 (xξxη + yξyη) xξ,η +
(

xξ
2 + xη

2
)

xη,η = 0,
(

xξ
2 + yη

2
)

yξ,ξ − 2 (xξxη + yξyη) yξ,η +
(

xξ
2 + xη

2
)

yη,η = 0.

20

40

60

80

100

500 1000 1500 2000 2500

Fig. 13. CPU time versus the number of mesh nodes for the Length generator (dot)
and the method of envelopes (solid)

0

2000

4000

6000

8000

10000

12000

14000

200 400 600 800 1000 1200

Fig. 14. CPU time versus the number of mesh nodes for the Winslow generator (dash-
dot) and the method of envelopes (solid)

As described in [5], we use the following second-order approximation for the
partial derivatives of the function f(ξ, η):

(fξ)i,j = 1/2(fi+1,j − fi−1,j ,

(fη)i,j = 1/2(fi,j+1 − fi,j−1), (fξ,ξ)i,j = (fi+1,j − 2fi,j + fi−1,j),

(fη,η)i,j = (fi,j+1 − 2fi,j + fi,j−1),

(fη,ξ)i,j = 1/4(fi+1,j+1 − fi+1,j−1 − fi−1,j+1 + fi−1,j−1) .

Let us introduce the following difference operators:

Λn
ξ fi,j =

[

(x2
η)n

i,j + (y2
η)n

i,j

]

(fi+1,j − 2fi,j + fi−1,j) ,

Λn
ηfi,j =

[

(x2
ξ)

n
i,j + (y2

ξ)n
i,j

]

(fi,j+1 − 2fi,j + fi,j−1) ,

Λn
η,ξfi,j = −1/2

[

(xξxη)n
i,j + (yξyη)n

i,j

]

(fi+1,j+1−fi+1,j−1−fi−1,j+1 +fi−1,j−1) .

The superscript denotes the number of iterations. Then the ADI difference
scheme, which converges to the solution of Winslow equations using pseudo-time
steps τ , may be written as follows:

x̃i,j − xn
i,j

0.5τ
= Λn

ξ x̃i,j + Λn
ξ,ηxn

i,j + Λn
ηxn

i,j ,

xn+1
i,j − x̃i,j

0.5τ
= Λn

ξ x̃i,j + Λn
ξ,ηx̃i,j + Λn

ηxn+1
i,j ,

ỹi,j − yn
i,j

0.5τ
= Λn

ξ ỹi,j + Λn
ξ,ηyn

i,j + Λn
ηyn

i,j ,

yn+1
i,j − ỹi,j

0.5τ
= Λn

ξ ỹi,j + Λn
ξ,ηỹi,j + Λn

ηyn+1
i,j .

Using this scheme, for example, the grid in Fig. 1 has been obtained. In Figs. 10,
11, and 12 the values of the discrete Length and Orthogonality functionals, which
have been introduced in Section 2, are compared for the Winslow Generator and
our method of envelopes for different sizes of the mesh. We have used the region
shown in Fig. 5. The proposed method of envelopes proves to be efficient in
terms of the CPU time needed for its computer implementation. As shown in
Figs. 13 and 14, increasing mesh size produces almost linear time growth in the
case of our method, whereas the CPU time for the Winslow generator tends to
grow much faster.

5 Conclusion

In the present paper we have presented a method of envelopes, called otherwise
the method of rolling circle, which allows us to obtain the tight approxima-
tion of optimal meshing on nonconvex regions. As has been shown, Area and
Orthogonality functionals, which have to be minimized in order to obtain op-
timal unfolded meshing are minimized by the method of envelopes in the local
sense. This means, the corresponding Euler–Lagrange equations are satisfied lo-
cally. For the split Length functional (in the sense of Proposition 4) one part
is completely minimized, and the value of another part depends on the curva-
ture of the boundary. Increasing curvature leads to the worse approximation
of the minimizer. Minimizing the second part of Length functional is also pos-
sible using our method. However, as can easily be derived from the presented
consideration, minimizing the second part of the split Length functional would
destroy the orthogonality. The obtained results show the tight approximation
of the minimizers of individual mesh functionals by the method of envelopes.
The main advantage of the method is its algorithmic simplicity and efficiency.
Furthermore, the method is domain independent and can be applied to domains
for which many classical iterative procedures do not converge, or require the
manual choosing of weights of individual functionals.

References

1. Bruce, J.W., Giblin, P.J.: Curves and Singularities, Cambridge University Press,
1984

2. Bungartz, H.-J.: Dünne Gitter und deren Anwendung bei der adaptiven Lösung der
dreidimensionalen Poisson-Gleichung. Dissertation, Institut für Informatik, Technis-
che Universitait München, 1992

3. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms, Springer-
Verlag, Berlin, 1996

4. Chibisov, D., Ganzha, V. G., Mayr, E. W., Vorozhtsov, E.V.: Generation of orthog-
onal grids on curvilinear trimmed regions in constant time. In: Proc. CASC’2005,
LNCS 3718, Springer-Verlag, Berlin, Heidelberg, 2005, 105–114

5. Ganzha, V. G., Vorozhtsov, E.V.: Numerical Solution for Partial Differential Equa-
tions: Problem Solving Using Mathematica, CRC Press, Boca Raton, Ann Arbor,
1996

6. Knupp, P., Steinberg, S.: Fundamentals of Grid Generation. CRC Press, Boca Ra-
ton, Ann Arbor, 1994

7. Peaceman, D. W. and Rachford, H.H., jr.: The numerical solution of parabolic and
elliptic differential equations, J. of SIAM 3(1955) 28–41

8. Zenger, C.: Sparse grids. In: Parallel Algorithms for Partial Differential Equations,
Proc. Sixth GAMM-Seminar, Kiel, 1990, Hackbusch, W. (ed.), Vol. 31 of Notes on
Num. Fluid Mech. Vieweg-Verlag, Braunschweig/ Wiesbaden (1991) 241–251

