

Vorlesungsinhalt

Semester: Sommersemester 2015

Vorlesung: Einführung in die Theoretische Informatik (THEO) (4+2, 8 ECTS)

(mit Übungen)

Dozent: Prof. Dr. Ernst W. Mayr

Modul: IN0011

Texte: Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman:

The design and analysis of computer algorithms.

Addison-Wesley Publishing Company, Reading (MA), 1976

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

Cliff Stein:

Introduction to algorithms, 2nd ed.

MIT Press, 2001

Karin Erk, Lutz Priese:

Theoretische Informatik: Eine umfassende Einführung. Springer-Verlag, Berlin-Heidelberg-New York, 2000

Volker Heun:

Grundlegende Algorithmen.

Vieweg, 2000

John E. Hopcroft, R. Motwani, Jeffrey D. Ullman:

Einführung in die Automatentheorie, Formale Sprachen und

Komplexitätstheorie, 2. Aufl.

Pearson Education, 2002

Orig.: Introduction to automata theory, languages, and computation,

2nd ed.

Addison-Wesley Publishing Company, Reading (MA), 2001

Thomas Ottmann, Peter Widmayer:

Algorithmen und Datenstrukturen, 3. Aufl.

Spektrum Akademischer Verlag GmbH, Heidelberg-Berlin, 1996

Uwe Schöning:

Theoretische Informatik - kurzgefasst.

Spektrum Akademischer Verlag GmbH, Heidelberg-Berlin, 1997

Ingo Wegener:

Theoretische Informatik.

B.G. Teubner, Stuttgart, 1993

Vorlesungsinhalt:

- 0. Organisatorisches
 - 1. Ziel der Vorlesung
 - 2. Wesentliche Techniken und Konzepte
 - 3. Literatur
- I. Formale Sprachen und Automaten
 - 1. Beispiele
 - 2. Die Chomsky-Hierarchie
 - 2.1 Phrasenstrukturgrammatik, Chomsky-Grammatik
 - 2.2 Die Chomsky-Hierarchie
 - 2.3 Das Wortproblem
 - 2.4 Ableitungsgraph und Ableitungsbaum
 - 3. Reguläre Sprachen
 - 3.1 Deterministische endliche Automaten
 - 3.2 Nichtdeterministische endliche Automaten
 - 3.3 Äquivalenz von NFA und DFA
 - 3.4 NFAs mit ϵ -Übergängen
 - 3.5 Entfernen von ϵ -Übergängen
 - 3.6 Endliche Automaten und reguläre Sprachen
 - 3.7 Reguläre Ausdrücke
 - 3.8 Abschlusseigenschaften regulärer Sprachen
 - 3.9 Konstruktion minimaler endlicher Automaten
 - 3.10 Entscheidbarkeit
 - 4. Kontextfreie Sprachen und Grammatiken
 - 4.1 Grundlagen und ein Beispiel
 - 4.2 Die Chomsky-Normalform
 - 4.3 Der Cocke-Younger-Kasami-Algorithmus
 - 4.4 Das Pumping-Lemma und Ogdens Lemma für kontextfreie Sprachen
 - 4.5 Algorithmen für kontextfreie Sprachen/Grammatiken
 - 4.6 Greibach-Normalform
 - 4.7 Kellerautomaten
 - 4.8 Kellerautomaten und kontextfreie Sprachen
 - 4.9 Deterministische Kellerautomaten
 - 4.10 LR(k)-Grammatiken
 - 4.11 LL(k)-Grammatiken
 - 4.12 Der Earley-Algorithmus
 - 5. Kontextsensitive und Typ-0-Sprachen
 - 5.1 Turingmaschinen
 - 5.2 Linear beschränkte Automaten
 - 5.3 Chomsky-0-Sprachen
 - 6. Übersicht Chomsky-Hierarchie
 - 6.1 Die Chomsky-Hierarchie

- 6.2 Wortproblem
- 6.3 Abschlusseigenschaften
- 6.4 Entscheidbarkeit

II. Berechenbarkeit, Entscheidbarkeit

- 1. Der Begriff der Berechenbarkeit
 - 1.1 Turing-Berechenbarkeit
 - 1.2 WHILE-Berechenbarkeit
 - 1.3 GOTO-Berechenbarkeit
 - 1.4 Primitiv-rekursive Funktionen
 - 1.5 LOOP-Berechenbarkeit
 - 1.6 μ -rekursive Funktionen
- 2. Entscheidbarkeit, Halteproblem
 - 2.1 Rekursive Aufzählbarkeit
 - 2.2 Halteproblem
 - 2.3 Unentscheidbarkeit
- 3. Anwendung der Unentscheidbarkeitsresultate auf kontextfreie Sprachen

III. Komplexität – Laufzeit und Speicherplatz

- 1. Notation und Grundlagen
- 2. Linearer Speed-up, lineare Bandkompression, Bandreduktion
- 3. Zeit und Platz
- 4. Simulation platzbeschränkter NDTMs
- 5. Komplementabschluss von nichtdeterministischem Platz
- 6. Hierarchiesätze
 - 6.1 Eine Platzhierarchie
 - 6.2 Eine Zeithierarchie