Die Produktkonstruktion für DFAs

Zwei DFAs laufen parallel und synchron, ein Eingabewort wird akzeptiert gdw beide Automaten es akzeptieren.

Satz 45

Seien $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$ und $M_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$ zwei DFAs. Dann ist der Produkt-Automat

$$M := (Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F_1 \times F_2)$$

mit $\delta((q_1,q_2),a):=(\delta_1(q_1,a),\delta_2(q_2,a))$ für alle $q_1\in Q_1,q_2\in Q_2$ und $a\in \Sigma$ ein DFA, $der L(M_1) \cap L(M_2)$ erkennt.

Induktion über |w|. Es gilt:

$$w \in L(M) \Leftrightarrow \hat{\delta}((s_1, s_2), w) \in F_1 \times F_2$$

$$\Leftrightarrow (\hat{\delta}_1(s_1, w), \hat{\delta}_2(s_2, w)) \in F_1 \times F_2$$

$$\Leftrightarrow \hat{\delta}_1(s_1, w) \in F_1 \wedge \hat{\delta}_2(s_2, w) \in F_2$$

$$\Leftrightarrow w \in L(M_1) \wedge w \in L(M_2$$

$$\Leftrightarrow w \in L(M_1) \cap L(M_2).$$

Frage: Funktioniert die Produktkonstruktion für den Durchschnitt auch bei NFAs?

Die Umkehrung(Spiegelung) eines Wortes $w = a_1 \cdots a_n$ ist

$$w^R := a_n \cdots a_1$$
.

Die Umkehrung einer Sprache L ist

$$L^R := \{w^R; w \in L\}.$$

Satz 47

Ist L eine reguläre Sprache, dann auch L^R .

Sei $M=(Q,\Sigma,\delta,q_0,F)$ ein DFA mit L=L(M). Wir konstruieren einen ϵ -NFA $N = (Q \uplus \{q_0'\}, \Sigma, \delta', q_0', \{q_0\})$ wie folgt:

- wir kehren alle Übergänge um, d.h., $\delta(q, a) = p$ gdw $q \in \delta'(p)$;
- wir fügen einen neuen Startzustand q'_0 hinzu, mit ϵ -Übergängen zu allen $f \in F$;
- wir machen q_0 zum (alleinigen) Endzustand von N.

Indem man die Folge der Übergänge von M bei einer beliebigen Eingabe $w \in \Sigma^*$ rückwärts verfolgt, ist nun leicht zu sehen, dass

$$L(N) = L^R$$
.

Substitution (mit regulären Mengen) ist eine Abbildung, die jedem $a \in \Sigma$ eine reguläre Sprache h(a) zuordnet. Diese Abbildung wird kanonisch auf Σ^* erweitert. Ein Homomorphismus ist eine Substitution, so dass für alle $a \in \Sigma$ die Menge h(a)genau ein Wort enthält, also |h(a)| = 1.

Satz 49

Reguläre Sprachen sind unter (regulärer) Substitution, Homomorphismus und inversem Homomorphismus abgeschlossen.

Wir zeigen (nur) die Behauptung für den inversen Homomorphismus.

Sei $h: \Delta \to \Sigma^*$ ein Homomorphismus, und sei $R \subseteq \Sigma^*$ regulär.

Zu zeigen: $h^{-1}(R) \subseteq \Delta^*$ ist regulär.

Sei $A = (Q, \Sigma, \delta, q_0, F), L(A) = R$.

Betrachte $A' = (Q, \Delta, \delta', q_0, F)$, mit

$$\delta'(q, a) = \hat{\delta}(q, h(a)) \quad \forall q \in Q, a \in \Delta.$$

Also gilt

$$\hat{\delta}'(q_0, w) = \hat{\delta}(q_0, h(w)) \in F \Leftrightarrow h(w) \in R \Leftrightarrow w \in h^{-1}(R)$$

Seien $L_1, L_2 \subseteq \Sigma^*$. Dann ist der Rechtsquotient

$$L_1/L_2 := \{x \in \Sigma^*; \ (\exists y \in L_2)[xy \in L_1]\}.$$

Satz 51

Seien $R, L \subseteq \Sigma^*$, R regulär. Dann ist R/L regulär.

Beweis:

Sei A DFA mit L(A) = R, $A = (Q, \Sigma, \delta, q_0, F)$.

$$F' := \{q \in Q; (\exists y \in L) [\hat{\delta}(q, y) \in F]\}$$

 $A' := (Q, \Sigma, \delta, q_0, F')$

Dann ist L(A') = R/L.

Lemma 52

Es gibt einen Algorithmus, der für zwei (nichtdeterministische, mit ϵ -Übergängen) endliche Automaten A_1 und A_2 entscheidet, ob sie äquivalent sind, d.h. ob

$$L(A_1) = L(A_2) .$$

Beweis:

Konstruiere einen endlichen Automaten für $(L(A_1) \setminus L(A_2)) \cup (L(A_2) \setminus L(A_1))$ (symmetrische Differenz). Prüfe, ob dieser Automat ein Wort akzeptiert.

Satz 53 (Pumping Lemma für reguläre Sprachen)

Sei $R \subseteq \Sigma^*$ regulär. Dann gibt es ein n > 0, so dass für jedes $z \in R$ mit $|z| \ge n$ es $u, v, w \in \Sigma^*$ gibt, so dass gilt:

- $\mathbf{0}$ z = uvw.
- $|uv| \leq n$,
- **3** $|v| \ge 1$, und
- $\forall i \geq 0: uv^i w \in R.$

Sei $R = L(A), A = (Q, \Sigma, \delta, q_0, F).$

Sei n = |Q|. Sei nun $z \in R$ mit $|z| \ge n$.

Sei $q_0 = q^{(0)}, q^{(1)}, q^{(2)}, \dots, q^{(|z|)}$ die beim Lesen von z durchlaufene Folge von Zuständen von A. Dann muss es $0 \le i < j \le n \le |z|$ geben mit $q^{(i)} = q^{(j)}$.

Seien nun u die ersten i Zeichen von z, v die nächsten j-i Zeichen und w der Rest.

$$\Rightarrow z = uvw, |v| \ge 1, |uv| \le n, uv^l w \in R \quad \forall l \ge 0.$$

Beispiel für die Anwendung des Pumping Lemmas:

Satz 54

 $L = \{0^{m^2}; m \ge 0\}$ ist nicht regulär.

Beweis:

Angenommen, L sei doch regulär.

Sei n wie durch das Pumping Lemma gegeben. Wähle $m \ge n$. Dann gibt es ein r mit $1 \le r \le n$, so dass gilt:

$$0^{m^2+ir} \in L$$
 für alle $i \in \mathbb{N}_0$.

Aber:

$$m^2 < m^2 + r \le m^2 + m < m^2 + 2m + 1 = (m+1)^2$$
!

Denkaufgabe:

 $\{a^ib^i;\ i\geq 0\}$ ist nicht regulär.

Sei $L \subseteq \Sigma^*$ eine Sprache. Definiere die Relation $\equiv_L \subseteq \Sigma^* \times \Sigma^*$ durch

$$x \equiv_L y \Leftrightarrow (\forall z \in \Sigma^*)[xz \in L \Leftrightarrow yz \in L]$$

Lemma 56

 \equiv_L ist eine rechtsinvariante Äquivalenzrelation.

Dabei bedeutet rechtsinvariant:

$$x \equiv_L y \Rightarrow xu \equiv_L yu$$
 für alle u .

Beweis:

Klar!

Satz 57 (Myhill-Nerode)

Sei $L \subseteq \Sigma^*$. Dann sind äquivalent:

- L ist regulär
- **3** L ist die Vereinigung einiger der endlich vielen Äquivalenzklassen von \equiv_L .

$$(1) \Rightarrow (2)$$
:

Sei L = L(A) für einen DFA $A = (Q, \Sigma, \delta, q_0, F)$.

Dann gilt

$$\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y) \quad \Rightarrow \quad x \equiv_L y \ .$$

Also gibt es höchstens so viele Äquivalenzklassen, wie der Automat A Zustände hat.

 $(2) \Rightarrow (3)$:

Sei [x] die Äquivalenzklasse von $x, y \in [x]$ und $x \in L$.

Dann gilt nach der Definition von \equiv_L :

 $y \in L$

$$(3) \Rightarrow (1)$$
:

Definiere $A' = (Q', \Sigma, \delta', q'_0, F')$ mit

$$\begin{array}{rcl} Q' &:=& \{[x]; \ x \in \Sigma^*\} & \left(Q' \text{ endlich!}\right) \\ q_0' &:=& [\epsilon] \\ \delta'([x],a) &:=& [xa] \quad \forall x \in \Sigma^*, a \in \Sigma & \text{ (konsistent!)} \\ F' &:=& \{[x]; \ x \in L\} \end{array}$$

Dann gilt:

$$L(A') = L$$

