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Lectures: 4 SWS
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problems in the exercise sessions, then the grade of
the final exam can be improved by 0.3 (or 0.4). 
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0. Organizational matters



Valuation: 8 ECTS (4 + 2 SWS)

Office hours: by appointment (albers@informatik.tu-muenchen.de)
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0. Organizational matters



Problem sets: Made available on Monday by 08:00 
on the course webpage.
Must be turned in one week later before the lecture.

Exam: Written exam; no auxiliary means are permitted, except
for one hand-written sheet of paper

Prerequisites: Grundlagen: Algorithmen und Datenstrukturen (GAD)
Diskrete Wahrscheinlichkeitstheorie (DWT)

Effiziente Algorithmen und Datenstrukturen 
(advantageous but not required)
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0. Organizational matters



 [BY] A. Borodin und R. El-Yaniv. Online Computation and

Competitive Analysis. Cambridge University Press, Cambridge, 

1998. ISBN 0-521-56392-5

 [V] V.V. Vazirani. Approximation Algorithms. Springer Verlag, Berlin, 

2001. ISBN 3-540-65367-8

 Handouts
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0. Literature



Online algorithms

• Scheduling

• Paging

• List update 

• Randomization

• Data compression

• Robotics

• Matching
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0. Content



Approximation algorithms

• Traveling Saleman Problem

• Knapsack Problem

• Scheduling (makespan minimization)

• SAT (Satisfiability)

• Set Cover 

• Hitting Set

• Shortest Superstring
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0. Content



Online and approximation algorithms

Optimization problems for which the computation of an 

optimal solution is hard or impossible.

Have to resort to approximations: 

Design algorithms with a provably good performance. 
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1. Introduction



Relevant input arrives incrementally over time. Online algorithm has to

make decisions without knowledge of any future input.

1. Ski rental problem: Student wishes to pick up the sport of skiing.

Renting equipment: 10$ per season

Buying equipment: 100$

Do not know how long (how many seasons) the student will

enjoy skiing. 

2. Currency conversion: Wish to convert 1000$ into Yen over a certain

time horizon. 
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1.1 Online problems



3. Paging/caching: Two-level memory system
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1. Online problems

GC ED B

F

A

IH GC B E OA L large slow memory

small fast memory

Request: Access to page in memory system

Page fault: requested page not in fast memory; must be loaded into 

fast memory

Goal: Minimize the number of page faults

σ =  A C B E D A F … 

D



4. Data structures: List update problem  

Unsorted linear list
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1.1 Online problems

Request: Access to item in the list

Cost: Accessing the i-th item in the list incurs a cost of i.

Goal: Minimize cost paid in serving σ. 

σ =  A A C B E D A  … 

B C E A DL:

Rearrangements: After an access, requested item may be moved at 

no extra cost to any position closer to the front of the list 

(free exchanges). At any time two adjacent items may be 

exchanged at a cost of 1. 



5. Robotics: Navigation   
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1.1 Online problems

Unknown scene: Robot has to find a short path from s to t.

s
t



6. Scheduling: Makespan minimization
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1.1 Online problems

m identical parallel machines

Input portion: Job Ji with individual processing time pi. 

Goal: Minimize the completion time of the last job in the schedule. 

1

m

time



Assuming P ≠ NP, NP-hard optimization problems cannot be solved 

optimally in polynomial time. 

1. Scheduling: Makespan minimization (see above)

Entire job sequence is known in advance. Famous optimization 

problem studied by Ronald Graham in 1966. 

2. Traveling Salesman Problem: n cities, c(i,j) = cost/distance to travel 

from city i to city j, 1≤ i,j ≤ n.

Goal:  Find tour that visits each city exactly once and minimizes 

the total cost.  
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1.2 NP-hard optimization problems




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1.2 NP-hard optimization problems




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1.2 NP-hard optimization problems



Formal model: 

Each request σ(t) has to be served without knowledge of any future

requests.  

Goal: Optimize a desired objective, typically the total cost incurred in

serving σ. 
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2.  Online algorithms 

σ = σ(1) σ(2) σ(3) …. σ(t) σ(t+1) … 

A Online algorithm 

has to serve σ.



Online algorithm A is compared to an optimal offline algorithm OPT that 

knows the entire input σ in advance and can serve is optimally, 

with minimum cost. 

A OPT

Cost: A(σ) OPT(σ)

Online algorithm A is called c-competitive if there exists a constant a, 

which is independent of σ, such that    

A(σ) ≤  c ∙ OPT(σ) + a   

holds for all σ.
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2.  Competitive analysis 



Makespan minimization: m identical parallel machines.

n jobs J1 , … , Jn .     pt = processing time of Jt , 1 ≤ t  ≤ n 

Goal: Minimize the makespan

Algorithm Greedy: Schedule each job on the machine currently having

the smallest load. 

Algorithm is also referred to as List Scheduling.

Theorem: Greedy is (2-1/m)-competitive.

Theorem: The competitive ratio of Greedy is not smaller than 2-1/m.

See e.g. [BY], page 205.
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2.1 Scheduling 



Two-level memory system
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2.2 Paging

GC ED B

F

A

IH GC B E OA L large slow memory

small fast memory

Request: Access to page in memory system

Page fault: requested page not in fast memory; must be loaded into 

fast memory

Goal: Minimize the number of page faults

σ =  A C B E D A F … 

D



Popular online algorithms

 LRU (Least Recently Used): On a page fault evict the page from fast 

memory that has been requested least recently. 

 FIFO (First-In First-Out): Evict the page that has been in fast 

memory longest.

Let k be the number of pages that can simultaneously reside in fast 

memory.

Theorem: LRU and FIFO are k-competitive. 

Theorem: Let A be a deterministic online paging algorithm. If A is

c-competitive, then c ≥ k. 
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2.2 Paging 



Marking algorithms: Serve a request sequence in phases. First phase 

starts with the first request. Any other phase starts with the first 

request following the end of the previous phase.  

At the beginning of a phase all pages are unmarked. Whenever 

a page is requested, it is marked. On a fault evict an arbitrary

unmarked page in fast memory. If no such page is available, 

the phase ends and all marks are erased. 

Flush-When-Full: If there is a page fault and there is no empty slot in 

fast memory, evict all pages. 
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2.2 Paging 



Offline algorithm

 MIN: On a page fault evict the page whose next request is farthest in 

the future. 

Theorem: MIN is an optimal offline algorithm for the paging problem, 

i.e. it achieves the smallest number of page faults/page

replacements.

See [BY], pages 33 – 38.
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2.2 Paging 



An algorithm is a demand paging algorithm if it only replaces a page in 

fast memory if there is a page fault. 

Fact: Any paging algorithm can be turned into a demand paging 

algorithm such that, for any request sequence, the number of 

memory replacements does not increase. 
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2.2 Paging 



General concept to analyze the cost of a sequence of operations

executed, for instance, on a data structure. 

Wish to show: An individual operation can be expensive, but the

average cost of an operation is small.

Amortization: Distribute cost of a sequence of operations properly

among the operations.

Example: Binary counter with increment operation. Cost of an operation

is equal to the number of bit flips. 
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2.3 Amortized analysis 



26WS04/05

2.3 Amortized analysis, binary counter 

.
Operation Counter value Cost

00000

1 00001 1

2 00010 2

3 00011 1

4 00100 3

5 00101 1

6 00110 2

7 00111

8 01000

9 01001

10 01010

11 01011

12 01100

13 01101




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2.3 Amortized analysis 




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2.3 Amortized competitive analysis 
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2.4 List update problem

Request: Access to item in the list

Cost: Accessing the i-th item in the list incurs a cost of i.

Goal: Minimize cost paid in serving σ. 

σ =  A A C B E D A  … 

B C E A DL:

Rearrangements: After an access, requested item may be moved at 

no extra cost to any position closer to the front of the list

(free exchanges). At any time two adjacent items may be

exchanged at a cost of 1. 

Unsorted, linear linked list of items



Online algorithms

 Move-To-Front (MTF): Move requested item to the front of the list.

 Transpose: Exchange requested item with immediate predecessor

in the list.

 Frequency Count: Store a frequency counter for each item in the

list. Whenever an item is requested, increase its counter by

one. Always maintain the items of the list in order of non-

increasing counter values. 

Theorem: MTF is 2-competitive.

Theorem: Transpose and Frequency Count are not c-competitive, for

any constant c. 

Theorem: Let A be a deterministic list update algorithm. If A is

c-competitive, for all list lengths, then c ≥ 2. 

See [BY], pages 7 – 13.
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2.4 List update problem 



A = randomized online algorithm

A(σ) random variable, for any σ

Competitive ratio of A defined w.r.t. an adversary ADV who

 generates σ

 also serves σ

ADV knows the description of A

Critical question: Does ADV know the outcome of the random choices

made by A?
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2.5 Randomized online algorithms 



Oblivious adversary:

Does not know the outcome of the random choices made by A. 

Generates the entire σ in advance.   
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2.5 Randomized online algorithms 

σ = σ(1) σ(2) σ(3) …. σ(m)

A

ADV



Adaptive adversary:

Does know the outcome of the random choices made by A on the first

t-1 requests when generating σ(t).

Adaptive online adversary: Serves σ online.

Adaptive offline adversary: Serves σ offline. 
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2.5 Randomized online algorithms 

σ = σ(1) σ(2) σ(3) …. σ(t-1)

A

ADV

σ(t)



Oblivious adversary: Does not know the outcome of A‘s random

choices; serves σ offline. A is c-competitive against oblivious

adversaries, if there exists a constant a such that

E[A(σ)] ≤  c ∙ ADV(σ) + a   

holds for all σ generated by oblivious adversaries. 

Constant a must be independent of input σ. 

Adaptive online adversary: Knows the outcome of A‘s random

choices on first t-1 requests when generating σ(t); serves σ

online. A is c-competitive against adaptive online adversaries, if

there exists a constant a such that

E[A(σ)] ≤  c ∙ E[ADV(σ)] + a   

holds for all σ generated by adaptive online adversaries. 

Constant a must be independent of input σ. 
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2.5 Three types of adversaries 



Adaptive offline adversary: Knows the outcome of A‘s random

choices on first t-1 requests when generating σ(t); serves σ

offline. A is c-competitive against adaptive offline adversaries, if

there exists a constant a such that

E[A(σ)] ≤  c ∙ E[OPT(σ)] + a   

holds for all σ generated by adaptive offline adversaries. 

Constant a must independent of input σ. 
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2.5 Three types of adversaries 



Theorem: If there exists a randomized online algorithm that is

c-competitive against adaptive offline adversaries, then there

also exists a c-competitive deterministic online algorithm. 

Theorem: If A is c-competitive against adaptive online adversaries and

there exists a d-competitive algorithm against oblivious

adversaries, then there exists a cd-competitive algorithm

against adpative offline adversaries.

Corollary: If A is c-competitive against adaptive online adversaries, 

then there exists a c2-competitive deterministic algorithm. 

36SS 2015

2.5 Relating the adversaries 




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2.6 Randomized paging 



Theorem: Let A be a randomized online paging algorithm. If A is c-

competitive against oblivious adversaries, then c ≥ Hk.

See e.g. [BY], pages 49-53.  

38SS 2015

2.6 Randomized paging 




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2.6 Randomized paging 




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2.6 Randomized paging 



Theorem: Let A be a randomized online paging algorithm. If A is c-

competitive against oblivious adversaries, then c ≥ Hk.

See e.g. [BY], pages 120-122.  
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2.6 Randomized paging 



Online algorithm

 Random: On a fault evict a page chosen uniformly at random from

among the pages in fast memory. 

Theorem: Random is k-competitive against adaptive online 

adversaries. 

Theorem: Let A be a randomized online paging algorithm. If A is c-

competitive against adaptive online adversaries, then c ≥ k.

See e.g. [BY], page 47.  
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2.6 Randomized paging 



Deficiencies of competitive analysis: 

 Competitive ratio of LRU/FIFO much higher than ratios observed in 

practice (typically in the range [1,2]).

 In practice LRU much better than FIFO

Reason: Request sequences in practice exhibit locality of reference, i.e.

(short) subsequences reference few distinct pages.
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2.7 Refinements of competitive paging 



1. Access graph model: G(V,E) undirected graph. Each node

represents a memory page. Page p can be referenced after q if p 

and q are adjacent in the access graph. 
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2.7 Refined models 

Competitive factors depend on G.



2. Markov paging: n pages

qij = probability that request to page i is followed by request to

page j 

Page fault rate of A on σ = # page faults incurred by A on σ / |σ|
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2.7 Refined models

𝑞11 … 𝑞1𝑛
⋮ ⋱ ⋮

𝑞𝑛1 … 𝑞𝑛𝑛
Q= 



2. Denning‘s working set model: n pages

Concave function
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2.7 Refined models 
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2.7 Refined models 

SPARC, GCC, 196 pages
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2.7 Refined models 

SPARC, COMPRESS, 229 pages



Program executed on CPU characterized by concave function f.

It generates σ that are consistent with f. 

Max-Model: σ consistent with f if, for all n ∈ ℕ, the number of distinct

pages referenced in any window of length n is at most f(n). 

Average-Model: σ consistent with f if, for all n ∈ ℕ, the average number

of distinct pages referenced in windows of length n is at most

f(n). 
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2.7 Refined models 



 ∀ concave f:  page fault rate of LRU ≤ 

page fault rate of any online alg. A

 ∃ concave f:  page fault rate of LRU < page fault rate of FIFO

 page fault rate of LRU ≤ 
𝑘−1

𝑓−1 𝑘+1 −2
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2.7 Refined models 
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2.8 Randomized list update 

Algorithm Random Move-To-Front (RMTF): With probability ½, move

requested item to the front of the list.  

Theorem: The competitive ratio of RMTF is not smaller than 2, for a 

general list length n. 

See [BY], page 27.
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2.8 Randomized list update 

σ =  X X Z Y V U X … 

Y Z V X UL:

Unsorted, linear linked list of items

1                0                1                1                0

Algorithm BIT: Maintain bit b(x), for each item x in the list. Bits are

initialized independently and uniformly at random to 0/1. 

Whenever an item is requested, its bit is complemented. If

value changes to 1, item is moved to the front of the list. 

Theorem: BIT is 1.75-competitive against oblivious adversaries. 

See [BY], pages 24-26.
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2.8 Randomized list update 

σ =  …     X  U  Y  V  V W  W X   … 

W V U Y XL:

Algorithm TIMESTAMP(p): Let 0 ≤ p ≤ 1. Serve a request to item x as

follows. 

With probability p move x to the front of the list.

With probability 1-p, insert x in front of the first item in the list

that has been referenced at most once since the last request

to x. 

Theorem: TIMESTAMP(p), with p = (3- 5)/2, achieves a competitive

ratio of (1+ 5)/2 ≈ 1.62 against oblivious adversaries. 

Z
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2.8 Randomized list update 

Algorithm Combination: With probability 4/5 serve a request sequence

using BIT and with probability 1/5 serve is using

TIMESTAMP(0). 

Theorem: Combination is 1.6-competitive against oblivious

adversaries. 

Theorem: Let A be a randomized online algorithm for list update. If A is

c-competitive against adaptive online adversaries, for a general

list length, then c ≥ 2. 
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2.9 Data compression

S =  …     x1 x1 x2 x1 x2 x3 x3 x2 … 

x3 x4 x2 x5 x1L:

String S to be represented in a more compact way using fewer bits.  

Symbols of S are elements of an alphabet Σ, e.g. Σ = {x1, …, xn}. 

Encoding: Convert string S of symbols into string I of integers. 

Encoder maintains a linear list L of all the elements of Σ. It reads the

symbols of S sequentially. Whenever symbol xi has to be encoded, 

encoder looks up the current position of in L, outputs this position and

updates the list using a given algorithm. 

Generates compression because frequenctly occuring symbols are

stored near the front of the list and can be encoded using small

integers/ few bits. 

x6

I =  …     5 1 4  2 … 
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2.9 Data compression

S =  …     x1 x1 x2 x1 x2 x3 x3 x2 … 

x3 x4 x2 x5 x1L:

Decoding: Decoder also maintains a linear list L of all the elements of

Σ. It reads the integers of I sequentially. Whenever integer j has to be

decoded, it looks up the symbol currently stored at position j in L, 

outputs this symbol and updates the list using the same algorithm as

the encoder.  

x6

I =  …     5 1 4  2 … 
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2.9 Data compression

Integers of I have to encoded using a variable-length prefix code. 

A prefix code satisfies the „prefix property“: 

No code word is the prefix of another code word. 

Possible encoding of j :   2 log 𝑗 + 1 bits suffice

 log 𝑗 0′s followed by

 binary representation of j, which requires log 𝑗 + 1 bits
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2.9 Data compression

Two schemes

 Byte-based compression: Each byte in the input string represents

a symbol.

 Word-based compresion: Each „natural language“ word

represents a symbol. 

The following tables report on experiments done using the

Calgary corpus (benchmark library for data compression).



2.9 Byte-based compression
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File TS

Bytes              % Orig. 

MTF

Bytes              % Orig. Size in Bytes

bib 99121 89.09 106478              95.70 111261

book1 581758              75.67 644423 83.83 768771

book2 473734 77.55 515257 84.35 610856

geo 92770  90.60 107437            104.92 102400 

news 310003 82.21 333737              88.50 377109 

obj1 18210 84.68 19366 90.06 21504 

obj2 229284             92.90 250994            101.69 246814

paper1 42719             80.36 46143 86.80 53161

paper2 63654              77.44 69441 84.48 82199

pic 113001       22.02 119168              23.22 513216 

progc 33123               83.62 35156              88.75 39611 

progl 52490               73.26 55183               77.02 71646

progp 37266               75.47 40044               81.10 49379

trans 79258 84.59 82058               87.58 93695



2.9 Word-based compression
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File TS

Bytes              % Orig. 

MTF

Bytes              % Orig. Size in Bytes

bib 34117 30.66 35407               31.82 111261

book1 286691              37.29 296172               38.53 768771

book2 260602              42.66 267257               43.75 610856

news 116782 30.97 117876 31.26 377109 

paper1 15195 28.58 15429 29.02 53161

paper2 24862 30.25 25577                31.12 82199

progc 10160 25.65 10338 26.10 39611 

progl 14931 20.84 14754 20.59 71646

progp 7395 14.98 7409                15.00 49379



Transformation: Given S, compute all cyclic shifts and sort them

lexicographically. 

In the resulting matrix M, extract last column and encode it using

MTF encoding. Add index I of row containing original string. 

0 a a b r a c

1 a b r a c a

2 a c a a b r

3 b r a c a a

4 c a a b r a

5 r a c a a b                                (c a r a a b, I=1)

2.9 Burrows-Wheeler transformation
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Back-transformation: Sort characters lexicographically, gives first and

last columns of M. 

Fill remaining columns by repeatedly shifting last column in 

front of the first one and sorting lexicographically.

0 a a b r a c

1 a b r a c a

2 a c a a b r

3 b r a c a a

4 c a a b r a

5 r a c a a b                                (c a r a a b, I=1)

2.9 Burrows-Wheeler transformation
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Back-transformation using linear space: 

 M‘= matrix M in which columns are cyclically rotated by one

position to the right.

 Compute vector T that indicates how rows of M and M‘ correspond, 

i.e. row j of M‘ is row T[j] in M.    Example: T = [4 , 0 , 5 , 1 , 2 , 3]

0 a a b r a c c a a b r a 

1 a b r a c a a a b r a c 

2 a c a a b r r a c a a b 

3 b r a c a a a b r a c a 

4 c a a b r a a c a a b r 

5 r a c a a b b r a c a a

2.9 Burrows-Wheeler transformation
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M M‘



Back-transformation using linear space: 

 L :   vector, first column of M‘  =  last column of M

 L[ T[j] ]  is cyclic predecessor of L[ j ]

For i=0,  , N-1, there holds S[N-1-i] = L[ Ti [I] ]

2.9 Burrows-Wheeler transformation
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2.9 Burrows-Wheeler transformation
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File
Bytes              % Orig. bits/char Size in Bytes

bib 28740 25.83 2.07 111261

book1 238989              31.08 2.49 768771

book2 162612 26.62 2.13 610856

geo 56974  55.63 4.45 102400 

news 122175 32.39 2.59 377109 

obj1 10694 49.73 3.89 21504 

obj2 81337             32.95 2.64 246814

paper1 16965             31.91 2.55 53161

paper2 25832               31.24 2.51 82199

pic 53562       10.43 0.83 513216 

progc 12786               32.27 2.58 39611 

progl 16131               22.51 1.80 71646

progp 11043               22.36 1.79 49379

trans 18383 19.62 1.57 93695



Program mean

bits per character

compress 3.36

gzip 2.71

BW-Trans 2.43

comp-2 2.47

2.9 Burrows-Wheeler transformation
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compress: version 4.32 of LZW-based tool

gzip:          version 1.24 of Gaily‘s LZ77-based tool

comp-2:    Nelson‘s comp-2 coder
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2.9 Data compression

Assume that S is generated by a memoryless source P= (p1, …, pn)

In a string generated according to P, each symbol is equal to xi with

probability pi. 

The entropy of P is defined as

H(P)=  𝑖=1
𝑛 𝑝𝑖 log(1/𝑝𝑖 )

It is a lower bound on the expected number of bits needed to

encoded one symbol in a string generated according to P. 
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2.9 Huffman code

Constructs optimal prefix codes.

Code tree constructed using greedy approach.

Maintain forest of code trees.

 Initially, each symbol xi represents a tree consisting of one node

with accumulated probability pi. 

 While there exist at least two trees, choose T1, T2 having the

smallest accumulated probabilies and merge them by adding a 

new root. New accumulated probability is the sum of those of

T1, T2.
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2.9 Data compression

EMTF (P) = expected number of bits needed to encode one symbol

using MTF encoding

Theorem: For each memoryless source P, there holds

EMTF (P) ≤ 1 + 2 H(P). 

See: J.L. Bentley, D.D. Sleator, R.E. Tarjan, V.K. Wei. A locally

adaptive data compression scheme. CACM 29(4), 320-330, 1986. 



3 Problems: Navigation, Exploration, Localization

70SS 2015

2.10 Robotics

s



Navigation: Find a short path from s to t.    
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2.10 Robotics

Robot always knows its current position and the position of t. 

Does not know in advance the position/extent of the obstacles.

Tactile robot: Can touch/sense the obstacles. 

s
t



The material on navigation is taken from the following two papers.

 A. Blum, P. Raghavan, B. Schieber. Navigating in unfamiliar

geometric Terrain. SIAM J. Comput. 26(1):110-137, 1997. 

 R.A. Baeza-Yates, J.C. Culberson, G.J.E. Rawlins. Searching in 

the plane. Inf. Comput. 106(2):234-252, 1993.
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2.10 Robot navigation



Tactile robot has to find a target t on a line. The position of t is not

known in advance. 

2.10 Navigation on the line

73SS 2015

ts



Reach some point on a vertical wall that is a distance of n away. 

Assumption: Obstacles have width of at least 1 and are aligned with

axes.

2.10 Wall problem
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s

n



Theorem: Every deterministic online algorithm has a competitive ratio

of Ω 𝑛 .

Upper bound: Design an algorithm with competitive ratio of O 𝑛 .

Idea:  Try to reach wall within a small window around the origin. 

Double window size whenever the optimal offline algorithm

OPT would also have a high cost within the window, i.e. if

OPT‘s cost within the window of size W has cost W. 

2.10 Wall problem
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2.10 Wall problem
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Window of size W:   W0 = n   (boundaries y = +W/2 y = -W/2) 

τ := W/ 𝑛

Sweep direction = north/south

Sweep counter (initially 0)

Always walk in +x direction until obstacle is reached. 

Rule 1: Distance to next corner ≤ τ

Walk around obstacle and back to original y-coordinate. 

2.10 Wall problem

77SS 2015



Rule 2: yn > W/2 and ys < -W/2  (yn and ys are y-coordinates of northern 

and southern corners of obstacle)

W := 4 min {yn , |ys|}

Walk to next corner within the window. 

Sweep counter := 0

Sweep direction := north if at ys, and south yn

2.10 Wall problem
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ys



Rule 3: Distance to nearest corner > τ but yn ≤ W/2 or ys ≥ -W/2  

Walk in sweep direction and then around obstacle.

If window boundary is reached, increase sweep counter by 1

and change sweep direction. If sweep counter reaches 𝑛 ,

double window size and set sweep counter to 0. 

2.10 Wall problem
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Analysis: Wf = last window size

Lemma: Robot walks a total distance of O( 𝑛 Wf).

Lemma: Length of shortest path is Ω(Wf).

2.10 Wall problem
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Square room s = lower left corner t = (n,n) center of room

Rectangular obstacles aligned with axes; unit circle can be

inscribed into any of them. No obstacle touches a wall.   

81SS 2015

2.11 Room problem

s

t



Greedy <+x,+y>: Walk due east, if possible, and due north otherwise.

Paths <+x,-y>, <-x,+y> and <-x,-y> are defined analogously. 

Brute-force <+x>: Walk due east. When hitting an obstacle walk to

nearest corner, then around obstacle. Return to original 

y-coordinate.

Monotone path from (x1,y1) to (x2,y2): x- and y-coordinates do not 

change their monotonicity along the path.   

2.10 Paths
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Invariant:  Robot always knows a monotone path from (x0,n) to (n,y0) 

that touches no obstacle. Initially x0 = y0= 0.

In each iteration x0 or y0 increases by at least 𝑛 . 

1.   Walk to t‘= (x0+ 𝑛 , y0+ 𝑛 ) 

Specifically, walk along monotone path to y-coordinate y0+ 𝑛 , 

then brute-force <+x>. If t‘ is below the monotone path, then walk to

point with y-coordinate y0+ 𝑛 on the monotone path. If t‘ is in an 

obstacle, take its north-east corner.

2.  Walk Greedy <+x,+y> until x- or y-coordinate is n. Assume that point

(  𝑥, n) is reached. 

3. Walk Greedy <+x,-y> until a point (n,  𝑦) or old monotone path is

reached. Gives new monotone path. Set (x0,y0) := (  𝑥,  𝑦)

2.10 Algorithm for room problem
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4. If  x0 < n - 𝑛 and y0 < n - 𝑛 , then goto Step 1. 

If y0 ≥ n - 𝑛 , walk to (x0,n)  and then brute-force <+x>.

If x0 ≥ n - 𝑛 , walk to (n,y0)  and then brute-force <+y>.

Theorem: The above algorithm is O( 𝑛 )-competitive. 

The algorithm can be generalized to rooms of dimension 2N x 2n, 

where N ≥ n and t = (N,n).

In Step 1, set t‘= (x0+ 𝑛 r, y0+ 𝑛 ) where r=N/n. In Step 4 an x-

threshold of n - 𝑛 r and is considered.

2.10 Algorithm for room problem
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2.11 Bipartite matching

Input: G = (U ∪ V, E) undirected bipartite graph. 

There holds U ∩ V = Ø and E ⊆ U x V.

Output: Matching M of maximum cardinality

M ⊆ E is a matching if no vertex is adjacent to two edges of M.

U V
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2.11 Bipartite matching

Input: G = (U  V, E) 

Output: Matching M of maximum cardinality 

U V
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2.11 Online bipartite matching

U given initially       v  V arrive one by one

v  V arrives:  neighbors in U are known; 

has to be matched immediately

R.M. Karp, U.V. Vazirani, V.V. Vazirani: An optimal algorithm for on-line 

bipartite matching. STOC 1990: 352-358.

U V
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2.11 Applications

 Switch routing: U = set of ports   V = data packets  

 Market clearing: U = set of sellers    V = set of buyers 

 Online advertising: U = advertiser          V= users

switchports
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2.11 Adwords problem

Advertisers Users with queries
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2.11 Adwords problem

• U = set of advertisers        Bu= daily budget of advertiser u

• V = sequence of queries v

• cuv= cost paid by u when ad shown to v (bid)

Goal: Maximize revenue, while respecting budgets.

Unit budgets, unit cost    Online bipartite matching  



Maximization problem

A OPT

Cost: A(σ) OPT(σ)

Online algorithm A is called c-competitive if there exists a constant a, 

which is independent of σ, such that

A(σ) ≥  c ∙ OPT(σ) + a   

holds for all σ.

92SS 2015

2.11  Competitive analysis
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2.11 Greedy algorithms

An algorithm has the greedy property if an arriving vertex v ∈ V is matched if

there is an unmatched adjacent vertex u ∈ U available.

Theorem: Let A be a greedy algorithm. Then its competitive ratio is at least ½

Proof: G = (U  V, E) 

MOPT = optimum matching

2|MOPT| =  number of matched vertices in MOPT

(u,v)  MOPT arbitrary

In A’s matching at least one of the two vertices is matched

Number of vertices in A’s matching at least |MOPT| 
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2.11 Deterministic online algorithms

Theorem: Let A be any deterministic algorithm. If A is c-competitive, 

then c  ≤ ½

Proof: G = (U  V, E)               |U| = |V| = 2n  even

v1 ,…, vn incident to all u  U

vn+i : If vi matched by A to uj , then vn+i is incident to uj only; 

otherwise to all u  U 

nvi

Vn+i

uj 
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2.11 Deterministic online algorithms

Theorem: Let A be any deterministic algorithm. If A is c-competitive, 

then c  ≤ ½

Proof: A : |MA| ≤ n   Among vi and vn+i only one can be matched

OPT : |MOPT| = 2n vn+1 ,…, v2n with 1 neighbor are matched to them. 

All other v can be matched arbitrarily.

n/2vi

Vn/2+i
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2.11 Ranking algorithm

Init: Choose permutation π of U uniformly at random.

Arrival of v  V:  N(v) = set of unmatched neighbors.

If N(v) ≠ Ø, match v with uN(v) of smallest rank, i.e. π(u)-value

u3

u1

u5

u4

u2
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2.11 Analysis of Ranking

Theorem: Ranking achieves a competitive ratio of 1-1/e ≈ 0.632 against

oblivious adversaries.

Outline of analysis:

1. It suffices to consider G = (U  V, E)  having a perfect matching 

(each vertex is matched).

2. Analyze Ranking on G with perfect matching. 
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2.11 Reduction to G with perfect matching

G = (U  V, E) π = permutation of U               w  U  V 

H = G \ {w}

w  U → permutation obtained from π by deleting w

w  V → π

M= Ranking(G, π) MH = Ranking(H, πH) 

Lemma: |M| ≥ |MH |

πH =
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2.11 Lemma: |M| ≥ |MH|

Case 1: w  U                        x = x1

yi  matched xi in Ranking (G,π) 

xi+1  matched yi in Ranking (H, πH)

Process stops with

xk  not matched in Ranking (G, π) 

→ |MH | = |M|

yk  not matched in Ranking (H, πH)

→ |MH | = |M| - 1

x1

x2

y1

y2

x3
y3
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2.11 Lemma: |M| ≥ |M’|

Case 1: w  U                        w = x1

yi  matched xi in Ranking (G,π) 

xi+1  matched yi in Ranking (H, πH)

Process stops with

xk  not matched in Ranking (G, π) 

→ |MH | = |M|

yk  not matched in Ranking (H, πH)

→ |MH | = |M| - 1

x1

x2

y1

y2

x3
y3



101

2.11 Reduction to G with perfect matching

Corollary: Comp. ratio of Ranking assumed on G having a perfect matching.

Proof: G = (U  V, E)  arbitrary

MOPT = optimum matching

H = obtained from G by deleting all vertices not in MOPT

 π |Ranking(G, π)| ≥ |Ranking(H, πH)| 

E[|Ranking(G)|}  ≥  E[|Ranking(H)|] 

MOPT = optimum matching for G and H 
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2.11 Analysis on G with perfect matching

|U| = |V| = n           t  {1, … n} 

pt = probability (over all π) that vertex of rank t in U is matched

E[|Ranking(G)|] = 1≤t≤n pt 

Main Lemma: 1 - pt ≤ 1/n · 1≤s≤t ps 

1

n

t
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2.11 Main theorem

Thm:  Ranking achieves competitive ratio of 1-1/e.

Proof: E[|Ranking(G)|] / |OPT(G)| = 1/n · 1≤t ≤n pt 

Determine infimum of  1/n · 1≤t ≤n pt 

Main Lemma implies     1 + St-1 ≤  St (1 + 1/n)            St = 1≤s≤ t ps 

St = 1≤s≤ t (1-1/(n+1))s         solves inequality with equality

Main Lemma: 1 - pt ≤ 1/n · 1≤s ≤t ps 
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2.11 Main theorem
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2.11 Establishing Main Lemma

G = (UV,E)      |U| = |V| = n

M* = perfect matching                u = m* (v)   vertex to which v is matched in M*

Fix  π and (u,v) such that u has rank t in π and  u = m* (v) 

πi = permutation in which u is reinserted so that its rank is i 1≤ i ≤ n

i

ut
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2.11 Claim

Claim: If u not matched in Ranking (π), then for i = 1,…, n,                             

v is matched in Ranking (πi)  to ui of rank at most t in πi. 

ut

ui

v v

Ranking(π) Ranking(πi)
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2.11 Proof Claim

X = { unmatched vertices with rank < t in π when Ranking executed with π }

Xi = { unmatched vertices with rank < t in π when Ranking executed with πi }

Invariant: X   Xi at any time before arrival of v

m(v) = partner of v in Ranking(π), rank < t in π

Invariant  when v arrives, m(v)  Xi

m(v) has rank ≤ t in πi
ut

v

m(v)
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2.11 Proof of invariant

X   Xi holds before arrival of a y V

x = partner of y in Ranking (π)                     xi = partner of y in Ranking (πi )

Suppose  x ≠ xi and xi has rank < t in π

xi  has smaller rank than x in π hence xi   X
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2.11 Establishing Main Lemma

Main Lemma: 1 - pt ≤ 1/n · 1≤s ≤t ps

Proof: For each  π construct  Sπ

u = vertex of rank t in π v  vertex such that u = m* (v) 

Sπ = { (v, πi ) | 1 ≤ i ≤ n }

Sπ is marked if, for i = 1,…, n, v is matched in Ranking (πi) to ui of rank at 

most  t in πi.

Claim   u not matched in Ranking(π), then Sπ is marked

Claim: If u not matched in Ranking (π), then for i = 1,…, n,                             

v is matched in Ranking (πi)  to ui of rank at most t in πi.
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2.11 Establishing Main Lemma

Main Lemma: 1 - pt ≤ 1/n · 1≤s ≤t ps

Proof: For each  π construct  Sπ

u = vertex of rank t in π v  vertex such that u = m* (v) 

Sπ = { (v, πi ) | 1 ≤ i ≤ n }

Sπ is marked if, for i = 1,…, n, v is matched in Ranking (πi) to ui of rank at 

most  t in πi.

Claim   u not matched in Ranking(π), then Sπ is marked

1 - pt ≤ # marked sets Sπ / n! = πP |Sπ|/ (n·n!)

P = {π | Sπ is marked }
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2.11 Establishing Main Lemma

Proposition: Elements in Sπ with π  P are distinct

1 - pt ≤  πP |Sπ|/ (n·n!) = |UπP Sπ|/ (n·n!) 

For any π’, count occurrences of π’ in |UπP Sπ| :   (v1,π’) (v2,π’) (v3,π’) …

#occurrences of π’ in |UπP Sπ| ≤  #v being matched to vertex of rank ≤ t in π’

= |R (π’)|

R (π’) = { vertices of rank ≤ t in U being matched in Ranking(π’) }
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2.11 Establishing Main Lemma

R (π) = { vertices of rank ≤ t in U being matched in Ranking(π) }

1 - pt ≤ |UπP Sπ|/ (n·n!)   ≤ π’ |R (π’)| / (n·n!)

= 1/n · π |R (π)| / n!  

= 1/n · 1≤s ≤t ps
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2.11 Proof of claim

Claim: Elements in all sets Sπ with π  P are distinct.

For a fixed π, elements of Sπ = { (v, πi ) | 1 ≤ i ≤ n } are distinct

Suppose    (v, πi ) = (v, π’j )            where    (v, πi )  Sπ (v, π’j )  Sπ’

Let u vertex such that u = m*(v)

Removing u in πi and π’j and reinserting it at position t, we obtain identical 

permutation, i.e. π = π’
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2.12 Energy-efficient algorithms

• Power-down mechanisms: Transistion an idle system into low-power 

stand-by or sleep states

• Dynamic speed scaling: Modern microprocessors can run at variable 

speed/frequency. Required power at speed s is P(s) = sα , where α >1. 

More generally P(s) may be an arbitrary convex function.

• Networking: Optimize transmission energy in the network
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2.12 Energy-efficient algorithms

Power-down mechanisms: 

• System with an active state and several low-power states.

• Each state has an individual power consumption rate. 

• Transitions between the various states also consume energy. 

• Goal: Minimize energy consumption in an idle period.  

Example: Advanced Configuration and Power Interface (ACPI)

Open standard for device configuration and power management

by the operating systems. 1 active state; 4 sleep states; 1 soft-off state; 

1 mechanical-off state 
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2.12 Energy-efficient algorithms

General system: 

• S = (s0, …, sl)  l+1 states;   s0 = active state

• R = (r0, …, rl)   power consumption rates per time unit; ri > rj for 0 ≤ i < j ≤ l 

• D = (dij)0≤ i,j ≤ l dij = energy needed to transition from si to sj

Triangle inequality:  dij ≤ dik + dkj for all i, j, k 
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2.12 Properties

Lemma: During any idle period, the following properties hold. 

(a) System never powers up and then down again. 

(b) If the system powers up, then it powers to s0. 

Lemma: We may assume w.l.o.g. that di0 = 0. If di0 > 0, for some i, then the

following system of transitions energies is equivalent.  

d‘ij = dij + + dj0 - di0 for i < j  

d‘ij = 0                         for i > j  

Let D(i) = d0i
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2.12 Offline algorithm

OPT(t) = mini {D(i) + rit}                      S(t) = optimal state for time t 

State 0 State 1
State 2

State 3

b1 b2 b3

bi = first time when si becomes optimal state
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2.12 Properties

Algorithm LEA (Lower Envelope Algorithm): At any time t, use state S(t),        

i.e. the state used by the optimal offline algorithm if the idle period has

total length t. 

Theorem: LEA achieves a competitive ratio of 3 + 2 2 ≈ 5.82, for general

state systems.

Theorem: Given S,R and D, an online algorithm with a competitive ratio of

c*+ ɛ can be constructed. Here c* is the best competitive ratio possible

for the system.

Material taken from: J.  Augustine, S. Irani, C. Swamy: Optimal power-down 

strategies. SIAM J. Comput. 37(5):1499-1516, 2008.
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2.13 Financial Games 

Online search: Find maximum/minimum in a sequence of prices that are

revealed sequentially. 

Period i: Price pi is revealed.  If pi is accepted, then the reward is pi; 

otherwise the game continues. 

Application: job search, selling of a house.

One-way trading: An initial wealth of D0, given in one currency has to be traded

to some other asset or currency. 

Period i: Price/exchange rate pi is revealed.  Trader must decide on the

fraction of the remaining initial wealth to be exchanged. 
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2.13 Financial Games 

Portfolio selection: s securities (assets) such as stocks, bonds, foreign

currencies or commodities

Period i: price vector 𝑝𝑖= (pi1, …, pis)

pij = # units of the j-th asset that can be bought for 1$ 

vector of price changes 𝑥𝑖= (xi1, …, xis)

xij= pij/ pi+1,j

Portfolio: specifies a distribution of the wealth on the s assets just 

before period i

𝑏𝑖= (bi1, …, bis)     and Σbij=1

At the end of first period the wealth per initial 1$ is  𝑗=1
𝑠 𝑏1𝑗 𝑥1𝑗
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2.13 Relation between search and trading 

Theorem: a) Let A1 be a randomized algorithm for one-way trading. Then there

exists a deterministic algorithm A2 for one-way trading such that

A2(σ) = E[A1(σ)], for all price sequences σ. 

b) Let A2 be a deterministic algorithm for one-way trading. Then there exists a 

randomized search A3 such that E[A3(σ)] = A2(σ), for all σ. 
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2.13 Search problems 

Will concentrate on search problems. 

Prices in [m,M] 0< m ≤ M      φ := M/m

Discrete time, finite time horizon, n periods; both m and M are known to player.

Online algorithm is c-competitive if there exists a constant a such that

c A(σ) +a ≥ OPT(σ)

for all price sequences.
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2.13 Algorithms

Algorithm Reservation Price Policy (RPP): Accept first price of value at least 

p* := 𝑀𝑚. Here p* is called the reservation price.

Theorem: RPP is φ-competitive. 

Algorithm EXPO: Let φ = 2k for some positive integer k. 

RPPi = deterministic RPP with price m 2i. 

With probability 1/k, choose RPPi for i=1, …, k.

Theorem: EXPO is c(φ)log φ-competitive, where c(φ) tends to 1 as φ → ∞.

Material taken from [BY], pages 265-268.
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2.13 k-server problem 

Metric space M; k mobile servers; request sequence σ.

Request: x ∈ M; one of the k servers must be moved to x, if the point is not 

already covered. Moving a server from y to x cost dist(y,x).

Goal: Minimize total distance traveled by all the servers in processing σ.

Special cases: Paging; caching fonts in printers; vehicle routing. 

Results: General metric spaces: 

Deterministic:  k ≤ c ≤ 2k-1      

Randomized: Ω(log k) ≤ c ≤ Õ(log2k log3n), where n is size of M.

Special metric spaces: 

Competitive ratio of k for lines, trees, spaces of size N=k+1 and 

resistive spaces.
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2.13 k-server problem 

Theorem: Let M be a metric space consisting of at least k+1 points and let A be 

a deterministic online algorithm. If A is c-competitive, then c ≥ k.

Trees: Will restrict ourselves on metric spaces that are trees.

Consider a request at point r. Server si is a neighbor if no other server is 

located between si and r. 

Algorithm Coverage: In response to a request at r, move all neighboring 

servers with equal speed in the direction of r until one server reaches r.

Theorem: Coverage is k-competitive. 
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2.14 Metrical task systems

(ℳ,ℛ) ℳ= (M,dist) metric space ℛ = set of allowed tasks

M: set of states in which an algorithm can reside  |M| = N

dist(i,j) = cost of moving from state i to state j

r ∈ ℛ :    r = (r(1), …, r(N))                     

r(i) ∈ ℝ0
+ ∪ {∞} cost of serving task in state i

Algorithm A: Initial state 0.  

Sequence of requests/tasks: σ = r1, …, rn. 

Upon the arrival of ri, A may first change state and then has to serve ri. 

A[i] : state in which ri is served. 

A(σ)  =  𝑖=1
𝑛 𝑑𝑖𝑠𝑡(A i − 1 , A[i]) +  𝑖=1

𝑛 ri(A i )
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2.14 Example: paging 

Pages p1, …, pn fast memory of size k

Sets S1, … Sl, where l = 𝑛
𝑘

subsets of {p1, …, pn} having size k

For each set Si, there is a state si, i = 1, …, 𝑛
𝑘

dist(si,sj) = |Sj\ Si|

Request r = p

r(si) =  
0 if 𝑝 ∈ Si

∞ otherwise
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2.14 Example: list update 

List consisting of n items.

n! states si, where 1 ≤ i ≤n!, for each possible permutation of the n items 

dist(si,sj) = number of paid exchanges needed to transform the two lists

(We may assume w.l.o.g. that algorithm only works with paid 

exchanges.)

Request r = x

r(si) = position of item x in list si.
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2.14 Results 

Deterministic:  c = 2N - 1      

Randomized: Ω(log N / loglog N) ≤  c ≤ O(log2N loglog N)



Approximation Algorithms
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3.1 Basics

NP-hard optimization problems: Computation of approximate solutions

Example: Job scheduling. m identical parallel machines. 

n jobs with processing times p1, …, pn. Assign the jobs to machines so 

that the makespan is as small as possible.

List scheduling: Assign each job to a least loaded machine. 

(2-1/m)-approximation.

General setting: Optimization problem Π, P = set of problem instances

For I ∈ P is F(I) the set of feasible solutions

For s ∈ F(I), w(s) is the value of the solution (objective function value)

Goal: Find s ∈ F(I) such that w(s) is minimal if Π is a minimization problem

(and maximal if Π is a maximization problem). 
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3.1 Basics

An approximation algorithm A for Π is an algorithm that, given an I ∈ P, 

outputs an A(I) = s ∈ F(I) and has a running time which is 

polynomial in the encoding length of I.

Algorithm A achieves an approximation ratio of c if

w(A(I)) ≤ c ∙ OPT(I)      (Π is a minimization problem)

w(A(I)) ≥ c ∙ OPT(I)      (Π is a maximization problem)

for all I ∈ P. Here OPT(I) denotes the value of an optimal solution. 

Sometimes an additive constant of b is allowed in the above inequalities. This 

constant b must be independent of the input. In this case c is referred to as an 

asymptotic approximation ratio. 
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3.1 Basics

Problem Max Cut: Undirected graph G=(V,E), where V is the set of vertices and 

E is the set of edges. Find a partition (S, V\S) of V such that the 

number of edges between S and V\S is maximal. 

S is called a cut.  Edges between S and V\S are called cut edges.

Symmetric difference: S Δ {v}

S Δ {v} = 

S ∪ v if v ∉ S

S \ {v} if v ∈ S

Algorithm Local Improvement (LI): 

S:=∅;

while ∃ v ∈ V such that w(S Δ {v}) > w(S) do S := S Δ {v} endwhile;

output S;

Theorem: LI achieves an approximation ratio of 1/2.
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3.2 Traveling Salesman Problem

Euclidean Traveling Salesman Problems (ETSP): n cities s1, …, sn in ℝ2 .

dist(si,sj) = Euclidean distance between si and sj. Find a tour that visits 

each city exactly once and has minimum length.

Will design algorithms with approximation ratios of 2 and 1.5.

Formally, a tour is a Hamiltonian cycle. G=(V,E) V={v1,…,vn}              

A tour is a permutation π on  {1,..., n} such that 

{vπ(i), vπ(i+1)} ∈ E and {vπ(n), vπ(1)} ∈ E.

Traveling Salesman Problems (TSP): Weighted graph G=(V,E) with V={v1,…,vn} 

and a function w: E → ℝ+ that assigns a length/weight to each edge. Find a 

tour of minimum length, i.e. a permutation π on  {1,..., n} such that 

 𝑖=1
𝑛−1 w({vπ(i), vπ(i+1)})+ w({vπ(n), vπ(1)})    is minimum.

TSP and ETSP are NP-hard
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3.2 Traveling Salesman Problem

Minimum spanning tree: Weighted graph G=(V,E) with w: E → ℝ+ . A minimum 

spanning tree T is a tree such that each v ∈ V is vertex of T and  e∈T w(𝑒) is 

minimum. 

The following algorithm works with multigraph, i.e. several copies of an edge 

may be contained in E. 

Algorithms MST: 

1. Compute a minimum spanning tree for G=(V,E) with V={s1,…,sn} and 

w(si,sj)= Euclidian distance between si and sj. 

2. Construct graph H in which all edges of T are duplicated.

3. Compute an Eulerian cycle C in H (each edge is traversed exactly once).

4. Determine the order sπ(1), …, sπ(n) of the first occurrences of s1,…,sn on C 

and output this sequence sπ(1), …, sπ(n) . 

Theorem: Algorithm MST achieves an approximation ratio of 2.
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3.2 Traveling Salesman Problem

Minimum spanning tree: Weighted graph G=(V,E) with w: E → ℝ+ . A minimum 

spanning tree T is a tree such that each v ∈ V is vertex of T and  e∈T w(𝑒) is 

minimum. 

The following algorithm works with multigraph, i.e. several copies of an edge 

may be contained in E. 

Algorithms MST: 

1. Compute a minimum spanning tree for G=(V,E) with V={s1,…,sn} and 

w(si,sj)= Euclidian distance between si and sj. 

2. Construct graph H in which all edges of T are duplicated.

3. Compute an Eulerian cycle C in H (each edge is traversed exactly once).

4. Determine the order sπ(1), …, sπ(n) of the first occurrences of s1,…,sn on C 

and output this sequence sπ(1), …, sπ(n) . 

Theorem: Algorithm MST achieves an approximation ratio of 2.
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3.2 Traveling Salesman Problem

The purpose of the edge duplication is to ensure that each vertex has even 

degree.

Proposition: In any tree T the number of vertices having odd degree is even. 

Minimum perfect matching: Weighted graph G=(V,E) with w: E → ℝ+ . A perfect 

matching is a subset F ⊆ E such that each vertex v ∈ V is incident to exactly 

one edge of F. Precondition: |V| is even. A perfect matching of minimum total 

weight is called a minimum perfect matching. There exist polynomial time 

algorithms for computing it. 
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3.2 Traveling Salesman Problem

Algorithm Christiofides: 

1. Compute a minimum spanning tree T for s1,…,sn. 

2. In T determine the set V’ of vertices having odd degree and compute a 

minimum perfect matching F for V’. 

3. Add F to T and compute an Eulerian cycle C.

4. Determine the order sπ(1), …, sπ(n) of the first occurrences of s1,…,sn on C 

and output this sequence sπ(1), …, sπ(n) . 

Theorem: Algorithm Christofides achieves an approximation factor of 1.5

Theorem: The approximation ratio of the Christofides algorithm is not smaller 

than 1.5.



140

3.2 Traveling Salesman Problem

Problem Hamiltonian Cycle (HC): G=(V,E) unweighted graph. Does G have a 

Hamiltonian cycle, i.e. a cycle that visits each vertex exactly once?

Theorem: Let c>1. If P≠ NP, then TSP does not have an approximation 

algorithm that achieves a performance factor of c. 
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3.3 Job scheduling 

Makespan minimization: Schedule n jobs with processing times p1, …, pn to m 

identical parallel machines so as to minimize the makespan, i.e. the 

completion time of the last job that finishes in the schedule. 

Algorithm Sorted List Scheduling (SLS): 

1. Sort the n jobs in order of non-increasing processing times p1 ≥ … ≥ pn.

2. Schedule the job sequence using List Scheduling (Greedy).

Theorem: SLS achieves an approximation factor of 4/3. 
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3.3 Approximation schemes 

An approximation scheme for an optimization problem is a set {A(ɛ) | ɛ > 0} of

approximation algorithms for the problem such that A(ɛ) achieves an 

approximation factor of 1+ɛ, in case of a minimization problem, and

1-ɛ in case of a maximization problem.

PTAS = Polynomial Time Approximation Scheme
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3.3 PTAS for Knapsack  

Problem Knapsack: n objects with weights w1, …, wn ∈ ℕ and values

v1, …, vn ∈ ℕ. Knapsack with weight bound b. Find a subset 

I ⊆ {1, …, n} with  i∈ I wi ≤ b such that   i∈ I vi is maximal.

Problem is NP-hard.

For j=1,…,n and any non-negative integer i let

Fj(i) = minimum weight of a subset of {1,…, j} whose total value is at 

least i. If no such subset exists, set Fj(i) :=  ∝. 

Observation: Let OPT be the value of an optimal solution. 

Then OPT = max{i | Fn(i) ≤ b }

Lemma: a) Fj(i) = 0 for i ≤ 0 and j ∈ {1,…,n} 

b) F0(i) = ∝ for i > 0 

c) Fj(i) = min {Fj-1(i), wj + Fj-1(i-vj) }  for i,j > 0 
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3.3 PTAS for Knapsack 

Algorithm Exact Knapsack

Fj(i) for j=0 and i ≤ 0 are known.

1. i:=0;

2. repeat

3. i:= i+1; 

4. for j  := 1 to n do

5. Fj(i) = min { Fj-1(i), wj + Fj-1(i-vj) };

6. endfor;

7. until Fn(i) > b;

8. output i-1;

Theorem: Exact Knapsack has a running time of O(n OPT).
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3.3 PTAS for Knapsack 

Algorithm Scaled Knapsack(ɛ)    ɛ > 0 

1. vmax := max {vj | 1 ≤ j ≤ n };

2. k := max {1, ⌊ɛ vmax / n⌋}

3. for j  := 1 to n do vj(k) = ⌊vj / k⌋ endfor;

4. Using algorithm Exact Knapsack, compute OPT(k) and S(k), i.e. the value

and the subset of objects of an optimal solution for the Knapsack

Problem with values vj(k) and unchanged weights wk and b.

5. output OPT* =  j∈ S(k) vj .

Theorem: Scaled Knapsack(ɛ) achieves an approximation factor of 1- ɛ.

Theorem: Scaled Knapsack(ɛ) has a running time of O(n3/ɛ).
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3.3 PTAS for Makespan Minimization 

m identical parallel machines, n jobs with processing times p1,…, pn.

Algorithm SLS(k)   

1. Sort J1, …, Jn in order of non-increasing processing times such 

that p1 ≥ … ≥ pn.

2. Compute an optimal schedule for the first k jobs. 

3. Schedule the remaining jobs using List Scheduling (Greedy).

Theorem: For constant m and k = (m−1)/ɛ , algorithm SLS(k) is a PTAS. 
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3.3 PTAS for Makespan Minimization 

Will construct PTAS for an arbitrary/variable number of machines.

Problem Bin Packing: n elements a1, …, an ∈ [0,1]. Bins of capacity 1. Pack the

n elements into bins, without exceeding their capacity, so that the

number of used bins is as small as possible. 

Observation: There exists a schedule with makespan t if and only if p1, …, pn

can be packed into m bins of capacity t. 

Notation: I = {p1, …, pn}

bins(I,t) = minimum number of bins of capacity t needed to pack I

OPT = min {t | bins(I,t) ≤ m}

LB ≤ OPT ≤ 2 LB                             LB = max {
1

𝑚
 𝑖=1
𝑛 pi, max

1≤𝑖≤𝑛
pi}

Execute binary search on [LB, 2LB] and solve a bin packing problem for each

guess. 
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3.3 PTAS for Makespan Minimization 

Bin packing for a constant number of element sizes. 

k = number of element sizes t = capacity of bins

Problem instance (n1, …, nk) with  𝑗=1
𝑘 n𝑗 = n 

Subproblem specified by (i1, …, ik) where ij is the number of elements of

element size j.  

bins(i1, …, ik) = minimum number of bins to pack (i1, …, ik)
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3.3 PTAS for Makespan Minimization 

Compute Q = { (q1,…,qk) | bins(q1, …, qk) = 1, 0 ≤ qi ≤ ni for i=1, …, k}

Q contains O(nk) elements

Compute k-dimensional table with entries bins(i1, …, ik),  

where (i1, …, ik) ∈ {0,…, n1} x … x {0,…, nk} 

Initialize bins(q)=1  for all q ∈ Q and

compute bins(i1, …, ik) = 1 + minq∈Q bins(i1-q1,…, ik-qk)

Takes O(n2k) time. 

Reduction from scheduling to bin packing: Two types of errors occur.

- Round the element sizes to a bounded number of sizes.

- Stop the binary search to ensure polynomial running time.
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3.3 PTAS for Makespan Minimization 

Basic algorithm:        ɛ = error parameter t ∈ [LB,2LB]  

1. Ignore jobs of processing time smaller than ɛt.

2. Round down the remaining processing times.

pi∈ [tɛ (1+ɛ)i, tɛ(1+ɛ)i+1) i ≥ 0      is rounded to tɛ (1+ɛ)i

tɛ(1+ɛ)i+1 < t     implies i+1 < log1+ɛ 1/ɛ and k = log1+ɛ 1/ɛ job

classes suffice

3. Compute optimal solution to this problem with bin capacity t.                   

Makespan for original job sizes is at most t(1+ɛ).

4. Remaining jobs ignored so far are first assigned to the available capacity in 

the open bins. Then new bins of capacity t(1+ɛ) are used. 

Let α(I,t,ɛ) denote the number of used bins. 
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3.3 PTAS for Makespan Minimization 

Lemma: α(I,t,ɛ) ≤ bins(I,t)

Proof: Obvious if no new bins are opened to assign the small, initially ignored

elements. Each time a new bin is opened, all the open ones are filled

to an extent of at least t. 

Corollary: min {t | α(I,t,ɛ) ≤ m} ≤ OPT.

Execute binary search on [LB,2LB] until the length of the search interval is at 

most ɛLB.      

(1/2)i LB ≤ ɛLB implies i = log2 1/ɛ

Let T be the right interval boundary when the search terminates. 
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3.3 PTAS for Makespan Minimization 

Lemma: T ≤ (1+ ɛ) OPT

Proof: min {t | α(I,t,ɛ) ≤ m} in the interval [T-ɛLB, T].

Hence T ≤ min {t | α(I,t,ɛ) ≤ m} + ɛLB ≤ (1+ ɛ) OPT.

Basic algorithm with t = T produces a makespan of at most (1+ ɛ)T

Theorem: The entire algorithm produces a solution with a makespan of at 

most (1+ ɛ)2T ≤ (1+ 3ɛ) OPT. 

The running time is O(n2k log2 1/ɛ ) where k = log1+ɛ 1/ɛ . 
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3.4 Max-SAT and randomization 

Problem Max-≥kSAT: Clauses C1,…,Cm over Boolean variables x1,…,xn. 

Ci =  li,1 ˅ … ˅ li,k(i) where k(i) ≥ k and

literals li,j ∈ {x1,  x1, …, xn,  x𝑛} for j=1,…,k(i)

Find an assignment to the variables that maximizes the number of

satisfied clauses.

Example: C1 = x1 ˅  x2˅ x3 C2 = x1 ˅  x3 C3 = x2 ˅  x3

Max-≥kSAT is NP-hard
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3.4 Max-SAT and randomization 

Definition: A randomized approximation algorithm is an approximation

algorithm that is allowed to make random choices. In polynomial time a 

random number in the range {1,…,n}, n ∈ ℕ, is chosen, where the

coding length of n is polynomial in the coding length of the input. 

Algorithm A achieves an approximation factor of c if

E[w(A(I))] ≤ c ·OPT(I)                     (in case of a minimization problem)

E[w(A(I))] ≥ c ·OPT(I)                     (in case of a maximization problem)

for all I ∈ P. 
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3.4 Max-SAT and randomization 

Algorithm RandomSAT: 

for i:=1 to n do 

Choose a bit b ∈ {0,1} uniformly at random;

if b=0 then xi := 0 else xi := 1; endif;

endfor;

Output the assignment of the variables x1,…,xn; 

Theorem: The expected number of satisfied clauses achieved by RandomSAT

is at least (1-1/2k)m.
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3.4 Max-SAT and randomization 

Derandomization

E[X|B] = expected value of X if event B holds

Algorithm DetSAT: 

for i:=1 to n do 

Compute E0 = E[ X | xj = bj for j=1,…, i-1  and xi = false];

Compute E1 = E[ X | xj = bj for j=1,…, i-1  and xi = true];

if E0 ≥ E1 then bi := 0 else bi := 1; endif;

endfor;

Output b1,…,bn; 

Theorem: DetSAT satisfies at least E[X] = (1-1/2k)m clauses.

Algorithm achieves the best possible performance. If P ≠ NP, no approximation

factor greater than 1-1/2k + ε, for ε > 0, can be achieved.
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3.4 Max-SAT and randomization 

LP relaxations

Example:  max x+y

s.t. x + 2y ≤ 10

3x - y  ≤ 9

x,y ≥ 0

Consider Max-SAT, which corresponds to Max-≥1SAT 

Formula φ with clauses C1,…,Cm over Boolean variables x1,…,xn. 

For each clause Cj define

Vj,+ = set of unnegated variables in Cj

Vj,- = set of negated variables in Cj
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3.4 Max-SAT and randomization 

Formulation as integer linear program

For each xi introduce variable yi. For each clause Cj introduce variable zj. 

yi=  
1 if xi = true
0 if xi = false

zj=  
1 if Cj satified
0 if Cj not satisfied

max  j=1
m zj

s.t.  i:x
i
∈V

j
,+

yi + i:x
i
∈V

j
,−

(1 − yi ) ≥ zj j=1,…,m 

yi, zj ∈ {0,1}      i=1,…,n     j=1,…,m

Integer linear programming (ILP) is NP-hard

Theorem: (Khachyian 1980) LP is in P. 
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3.4 Max-SAT and randomization 

Relaxed linear program for MaxSAT

max  j=1
m zj

s.t.  i:x
i
∈V

j
,+

yi + i:x
i
∈V

j
,−

(1 − yi ) ≥ zj j=1,…,m 

yi, zj ∈ [0,1]      i=1,…,n     j=1,…,m

Algorithm RRMaxSAT (RandomizedRounding MaxSAT)

Find optimal solution (  𝑦1, … ,  𝑦𝑛) ( 𝑧1, … ,  𝑧m) to the relaxed LP for MaxSAT;

for i:=1 to n do 

Choose a bit b ∈ {0,1} such that b =  
1 with probability  𝑦𝑖

0 with probability 1 −  𝑦𝑖

if b=1 then xi := 1 else xi := 0; endif;

endfor;

Output the assignment of the variables x1,…,xn; 
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3.4 Max-SAT and randomization 

Theorem: RRMaxSAT achieves an approximation factor of 1-1/e ≈ 0.632.

Theorem: Given a formular φ, apply both RandomSAT and RRMaxSAT and

select the better of the two solutions. Then the resulting algorithm achieves an 

approximation factor of ¾.
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3.5 Probabilistic approximation algorithms 

Definition: A probabilistic approximation algorithm for an optimization problem

is an approximation algorithm that outputs a feasible solution with

probability at least ½. 

Problem Hitting Set: Ground set V = {v1,…,vn} and subsets S1,…, Sm ⊆ V. 

Find the smallest set H ⊆ V with H ∩ Si ≠ ∅ for i=1,…,m. 

H is called a hitting set.
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3.5 Probabilistic approximation algorithms 

Formulation as ILP: Variables x1, …, xn

xi=  
1 if vi ∈ HOPT

0 if vi ∉ HOPT

min     i=1
n xi

s.t.  i:v
i
∈S

j
xi ≥ 1 j=1,…,m 

xi ∈ {0,1}      i=1,…,n     relaxed to xi ∈ [0,1] 
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3.5 Probabilistic approximation algorithms 

Algorithm RRHS (RandomizedRounding HittingSet)

Find optimal solution ( 𝑥1, … ,  𝑥𝑛) to the relaxed LP for HittingSet;

H := ∅

for i:=1 to ln(2m) do 

for j:=1 to n do 

Choose a bit b ∈ {0,1} such that b =  
1 with probability  𝑥𝑗
0 with probability 1 −  𝑥𝑗

if b=1 then H :=  H ∪ {vj} endif;

endfor;

Output H; 

Theorem: For each instance of HittingSet there holds:

(1) RRHS finds a feasible solution with probability at least ½.

(2) E[|RRHS(I)|] ≤ ln(2m) OPT(I).
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3.5 Probabilistic approximation algorithms 

Theorem: Let p be a fixed polynomial and A be a polynomial time 

algorithm that, for each instance I of an optimization problem, 

computes a feasible solution with probability 1/p(|I|). Then, for

each ɛ>0, there exists a polynomial time algorithm Aɛ, that outputs

a feasible solution with probability 1-ɛ. 

Theorem: Let A be a randomized approximation algorithm with

approximation factor c for a minimization problems. The, for any

ɛ>0 and p<1 there exists an approximation algorithm Aɛ,p that, for

each input instance I and probability at least p, computes a 

solution of value at most (1+ɛ)·c·OPT(I). 
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3.6 Set Cover

Problem: Universe U = {u1,…,un}. Sets S1,…,Sm ⊆ U with associated non-

negative costs c(S1),…,c(Sm). Find J ⊆ {1,…,m} such that  j∈J Sj = U and

 j∈J c(Sj) minimal. 

Greedy approach: Repeatedly choose the most cost-effective set. At any time 

let C be the set of covered elements. Cost-effectiveness of S is c(S) / |S-C|.

Algorithm Greedy: 

1. C:= Ø;

2. while C ≠ U do 

3. Determine the current most cost-effective set S and α = c(S) / |S-C|;

4. Choose S and set price(e) := α , for all e ∈ S-C;

5. C  := C ∪ S;

6. endwhile;

7. Output the selected sets; 
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3.6 Set Cover

Theorem: Greedy achieves an approximation factor of Hn =  𝑘=1
𝑛 1/𝑘.

Theorem: The approximation factor of Greedy is not smaller than Hn.
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3.7 Shortest Superstring

Problem: Σ finite alphabet, n strings S = {s1,…, sn}. Find shortest string s such 

that all si of S are substring of s. W.l.o.g. no si is substring of any sj, 

where i ≠ j. 

Example: S = {ate, half, lethal, alpha, alfalfa}       s = lethalalphalfalfate



168

3.7 Shortest Superstring

Reduction to Set Cover: Let si,sj be strings such that the last k characters of

si are equal to the first k characters of sj. 

σijk = composition of si and sj, with an overlap of k characters

M = set of all σijk, for all feasible combinations of i,j and k

U = {s1,…,sn}

Sets: set(π) for all π ∈ M ∪ U where

set(π) = {si ∈ U | si is substring of π}

cost of set(π) is equal to |π|
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3.7 Shortest Superstring

Algorithm (Shortest Superstring via Set Cover):

1. Apply the Greedy algorithm for Set Cover to the above Set Cover 

instance. Let set(π1), … , set(πk) be the selected sets.

2. Concatenate π1, … , πk in an arbitrary order and output the resulting

string. 

Lemma: OPT ≤ OPTSC ≤ 2 OPT, where OPTSC is the optimum solution to the

Set Cover instance. 
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3.8 Duality in linear programming

Optimize linear objective function subject to linear constraints.

Primal Program

min     j=1
n cj xj

s.t.     j=1
n aij xj≥ bi i=1,…,m 

xj≥ 0 j=1,…,n

Dual Program

max  i=1
m bi yi

s.t.     i=1
m aij yi ≤ cj j=1,…,n 

yi≥ 0 i=1,…,m
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3.8 Duality in linear programming

Theorem: LP-Duality

The primal program has a finite optimum if and only if the dual program has a 

finite optimum. 

Vectors x*= (𝑥1
∗, … , 𝑥𝑛

∗ ) and y*= (𝑦1
∗, … , 𝑦𝑚

∗ ) are optimal solutions if and only if

 j=1
n cj𝑥𝑗

∗
=  i=1

m bi𝑦𝑖
∗

.

Theorem: Complementary Slackness

Let x=(𝑥1 , … , 𝑥𝑛 ) and y= (𝑦1 , … , 𝑦𝑚 ) be feasible solutions to the primal and

dual programs, respectively. The solutions x, y are optimal if and only if the

following conditions hold. 

Primal slackness conditions: For each j = 1,…,n there holds

xj = 0  or     i=1
m aij𝑦𝑖 = 𝑐𝑗

Dual slackness conditions: For each i = 1,…,m there holds

yi = 0  or     j=1
n aij𝑥𝑗 =𝑏𝑖
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3.8 Dual fitting technique 

Consider a minimization problem (analogously maximization problem)

1. (P)  Primal program; val(x*) = value of an optimal solution x*.

(D)  Dual program

2. Compute solution x for (P) and vector y for (D), which may be infeasible,

such that val(x) ≤ val‘(y), where val‘(y) is the objective function value of

(D).

3. Divide y by α such that y‘= y / α is feasible for (D). Then val‘(y‘) ≤ val(x*).

4. Technique achieves and approximation factor of α because

val(x) ≤ val‘(y) ≤ val‘(α y‘) ≤ α val‘(y‘) ≤ α val(x*)
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3.8 Set Cover and LP

Problem: Universe U = {u1,…,un}. Sets S1,…,Sm ⊆ U with associated non-

negative costs c(S1),…,c(Sm). Find J ⊆ {1,…,m} such that  j∈J Sj = U and

 j∈J c(Sj) minimal. 

Formulation as LP: Set system Σ = {S1,…,Sm}

(P) min  ΣSΣ c(S) xS

s.t. ΣS: eS xS ≥ 1 e  U 

xS  {0,1} S  Σ relaxed to xS  [0,1]

(D) max ΣeU ye

s.t. .  Σ eS ye ≤ c(S) S  Σ Intuitively: Want to pack elements into

ye≥ 0 e  U sets s.t. cost of the sets is observed. 
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3.8 Set Cover and LP

Greedy approach: Repeatedly choose the most cost-effective set. At any time 

let C be the set of covered elements. Cost-effectiveness of S is c(S) / |S-C|.

Algorithm Greedy: 

1. C:= Ø;

2. while C ≠ U do 

3. Determine the current most cost-effective set S and α = c(S) / |S-C|;

4. Choose S and set price(e) := α , for all e ∈ S-C;

5. C  := C ∪ S;

6. endwhile;

7. Output the selected sets; 

Theorem: Greedy achieves an approximation factor of Hn. 
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3.8 Primal-dual algorithms

Repeatedly modify the primal and dual solutions until relaxed complementary

slackness conditions hold. 

(P) min     j=1
n cj xj (D) max  i=1

m bi yi

s.t.     j=1
n aij xj≥ bi i=1,…,m s.t.     i=1

m aij yi ≤ cj j=1,…,n 

xj≥ 0 j=1,…,n yi≥ 0 i=1,…,m

Relaxed primal slackness conditions:  Let α≥1. For each j = 1,…,n, there holds

xj = 0  or 𝑐𝑗/α ≤  i=1
m aij𝑦𝑖 ≤ 𝑐𝑗

Relaxed dual slackness conditions: Let ß≥1. For each i = 1,…,m, there holds

yi = 0  or bi ≤  j=1
n aij𝑥𝑗 ≤ ß b𝑖
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3.8 Primal-dual algorithms

Lemma: Let x,y be feasible primal and dual solutions satisfying the relaxed 

complementary slackness conditions. Then val(x) ≤ αß val’(y). 

General scheme: 

• Many algorithms work with α = 1 or ß =1.

• Algorithm starts with non-feasible primal „solution“ and feasible dual solution,

e.g. x=0 and y=0.

• In each iteration one improves the feasibility of the primal solution and

the optimality of the dual solution until the primal solution is feasible

and the relaxed complementary slackness conditions hold. 

• Primal solution is always modified such that it remains integral. Modifications

of the primal and dual solutions are done in a synchronized way.
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3.8 Primal-dual algorithm for Set Cover

(P) min  val(x) = ΣSΣ c(S) xS (D) max ΣeU ye

s.t.  ΣS: eS xS ≥ 1 e  U s.t. .  Σ eS ye ≤ c(S) S  Σ

xS  [0,1] S  Σ ye≥ 0 e  U

Choose α = 1 and ß = f     f=frequency of the element occurring most often in 

any set

Set is called dense if Σ eS ye = c(S)

Relaxed primal slackness conditions:  For S  Σ,  xS=0 or Σ eS ye = c(S)

Intuitively, cover contains only dense sets. 

Relaxed dual slackness conditions: For e  U, ye = 0  or 1 ≤ ΣS: eS xS ≤ f

Intuitively, each element is covered at most f times. 
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3.8 Primal-dual algorithm for Set Cover

Algorithm: 

1. Set x=0 and y=0. No element is covered.

2. while there exists an uncovered element e do

(a) Increase ye until a set S is dense;

(b) Add all dense sets S to the cover and set xS=1;

(c) Elements of all sets of (b) are covered; 

endwhile;

3. Output x;

Theorem: The above algorithm achieves an approximation factor of f.

Theorem: The approximation factor of the above algorihm is not smaller than f. 


