Strong Duality

Theorem 2 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z*

and w* denote the optimal solution to P and D, respectively.
Then

zm=w
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Lemma 3 (Weierstrass)
Let X be a compact set and let f(x) be a continuous function on
X. Then min{ f(x) : x € X} exists.
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Lemma 4 (Projection Lemma)

Let X < R™ be a non-empty convex set, and let v ¢ X. Then
there exist x* € X with minimum distance from y. Moreover for
all x € X we have (y — x*)T(x — x*) <0.
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Proof of the Projection Lemma
» Define f(x) = ||y — x|
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Proof of the Projection Lemma

» Define f(x) = ||y — x|
» We want to apply Weierstrass but X may not be bounded.

EADS Il 5.4 Strong Duality B &
©Harald Racke



Proof of the Projection Lemma

» Define f(x) = ||lv — x|l.
» We want to apply Weierstrass but X may not be bounded.
» X =+ (0. Hence, there exists x’ € X.
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Proof of the Projection Lemma
Define f(x) = [ly — x|l

\4

X # (. Hence, there exists x’ € X.
Define X' = {x e X | [[y — x|l < [l — x'|I}. This set is
closed and bounded.

vV v VY

We want to apply Weierstrass but X may not be bounded.
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Proof of the Projection Lemma
Define f(x) = [ly — x|l

\4

X # (. Hence, there exists x’ € X.

Define X' = {x e X | [[y — x|l < [l — x'|I}. This set is
closed and bounded.

Applying Weierstrass gives the existence.

vV v VY

v

We want to apply Weierstrass but X may not be bounded.
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Proof of the Projection Lemma (continued)
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|2 < ||y — x||2 for all x € X.
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

m EADS Il 5.4 Strong Duality B =)
©Harald Racke



Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

Iy = x*|1%
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*)I12 < ly —x* —e(x —x*)|?
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*)I12 < ly —x* —e(x —x*)|?

=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*)I12 < ly —x* —e(x —x*)|?

=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)

Hence, (y — x*)T(x — x*) < %ellx —x*|2.
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Proof of the Projection Lemma (continued)
x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*)I12 < ly —x* —e(x —x*)|?
=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)

Hence, (y — x*)T(x — x*) < %ellx —x*|2.

Letting € — 0 gives the result.
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Theorem 5 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let y ¢ X.
Then there exists a separating hyperplane {x € R: alx = «}

where a € R™, o € R that separates y from X. (a’y < «;
alx = « for all x € X)
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

',H={x|aTx=0(}
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.

» Choose a = (x* — y) and & = al x*.
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.

» Choose a = (x* — y) and & = al x*.
» Forx e X:al(x —x*) =0, and, hence, a’x > «.

,:H={x|aTx=o<}
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.
» Choose a = (x* — y) and & = al x*.

» Forx e X:al(x —x*) =0, and, hence, a’x > «.

v

Also, aTy =al(x* —a) =« — ||al® < «

,:H={x|aTx=o<}
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Lemma 6 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R*"withAx =b, x>0
2. 3y e R with ATy =0,bTy <0
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Lemma 6 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" with Ax = b, x =0
2. 3y e R with ATy =0,bTy <0
Assume X satisfies 1. and y satisfies 2. Then

0>y'h=yTAx >0
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Lemma 6 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R*"withAx =b, x>0
2. 3y e R with ATy =0,bTy <0

Assume X satisfies 1. and y satisfies 2. Then

0>y'h=yTAx >0

Hence, at most one of the statements can hold.
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Proof of Farkas Lemma



Proof of Farkas Lemma

Now, assume that 1. does not hold.



Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x > 0} so that S closed, convex, b ¢ S.

We want to show that there is y with ATy >0, bTy < 0.



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy >0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.
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Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy >0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

0eS=a<0=>yTb<0



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy >0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

0eS=a<0=>yTb<0

yTAx = « for all x = 0.



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy >0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

0eS=a<0=>yTb<0

yTAx = « for all x = 0. Hence, yTA > 0 as we can choose x
arbitrarily large.



Lemma 7 (Farkas Lemma; different version)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx <b,x =0
2. 3y e R™ withATy =0,bTy <0,y =0
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Lemma 7 (Farkas Lemma; different version)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx <b,x =0
2. 3y e R™ withATy =0,bTy <0,y =0

Rewrite the conditions:

1. 3x € R™ with [AI]-[)SC]=b,sz,szO

T

A
2. dy € R™ with [

I]yzo,bTy<0
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Proof of Strong Duality

P: z=max{cTx | Ax < b,x >0}

D: w=min{bTy |ATy > ¢,y =0}

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e.,
P and D are non-empty). Then

zZ=Ww .
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Proof of Strong Duality

m EADS Il 5.4 Strong Duality B
©Harald Racke



Proof of Strong Duality

z < w: follows from weak duality
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Proof of Strong Duality

w: follows from weak duality

N
IA

zZ = W:
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Proof of Strong Duality

w: follows from weak duality

N
IA

zZ > w:
We show z < o implies w < «.
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Proof of Strong Duality

w: follows from weak duality

N
IA

zZ > w:
We show z < o implies w < «.

dx € R"
s.t. Ax =< b
-cTx < -«
x = 0
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Proof of Strong Duality

N
IA

w: follows from weak duality

zZ > w:
We show z < o implies w < «.

dx € R" dy e R"™;v eR
s.t. Ax =< b s.t.
-cTx < -«
x = 0

ATy —cv
bTy — v
y,v

vV A IV

)
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Proof of Strong Duality

N
IA

w: follows from weak duality

zZ > w:
We show z < o implies w < «.

dx € R" dy e R"™;v eR
s.t. Ax < b s.t. ATy —cv
-cTx < -« bTy — v
x = 0 Y,V

vV A IV

)

From the definition of o« we know that the first system is
infeasible; hence the second must be feasible.
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Proof of Strong Duality

dy e R"™;v e R

st. Aly—wv
bTy — o
Y,V

vV A IV

e}
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Proof of Strong Duality

dy e R"™;v e R

st. Aly—wv
bTy — o
Y,V

vV A IV

e}

If the solution y,v has v = 0 we have that

dy e R™
st. ATy = 0
bTy < 0
y = 0

is feasible.
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Proof of Strong Duality

dy e R"™;v e R

st. Aly—-v > 0
bTy —ov < 0
y,v = 0

If the solution y,v has v = 0 we have that

dy e R™
s.t. ATy = 0
bTy < 0
y = 0

is feasible. By Farkas lemma this gives that LP P is infeasible.

Contradiction to the assumption of the lemma.
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Proof of Strong Duality
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Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.
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Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.
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Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.
We can rescale this solution (scaling both y and v) s.t. v = 1.

Then v is feasible for the dual but bTy < «. This means that
w < K.
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Fundamental Questions

Definition 9 (Linear Programming Problem (LP))

Let A e Q™" be Q™ ce Q" e Q. Does there exist
xeQ"'st. Ax=b,x=0,c'x=a?

Questions:
> |Is LP in NP?
» |Is LP in co-NP? yes!
> Is LPin P?
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Fundamental Questions

Definition 9 (Linear Programming Problem (LP))
Let A e Q™" be Q™ ce Q" e Q. Does there exist
xeQ"'st. Ax=b,x=0,c'x=a?

Questions:
> |Is LP in NP?
» |Is LP in co-NP? yes!
> Is LPin P?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).
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Fundamental Questions

Definition 9 (Linear Programming Problem (LP))
Let A e Q™" be Q™ ce Q" e Q. Does there exist
xeQ"'st. Ax=b,x=0,c'x=a?

Questions:
> |Is LP in NP?
» |Is LP in co-NP? yes!
> Is LPin P?

Proof:

» Given a primal maximization problem P and a parameter «.

Suppose that « > opt(P).

» We can prove this by providing an optimal basis for the dual.
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Fundamental Questions

Definition 9 (Linear Programming Problem (LP))
Let A e Q™" be Q™ ce Q" e Q. Does there exist
xeQ"st. Ax =b,x>0,cTx>x?

Questions:
> |Is LP in NP?
» |Is LP in co-NP? yes!
> Is LPin P?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).

» We can prove this by providing an optimal basis for the dual.

» A verifier can check that the associated dual solution fulfills
all dual constraints and that it has dual cost < «.
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