Strong Duality

Theorem 2 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

 $z^* = w^*$

הח EADS II	
UUU © Harald Räcke	85

Let X be a compact set and let f(x) be a continuous function on X. Then $\min\{f(x) : x \in X\}$ exists.

Proof of the Projection Lemma

- Define f(x) = ||y x||.
- We want to apply Weierstrass but *X* may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.

Proof of the Projection Lemma (continued)

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\begin{split} \|y - x^*\|^2 &\leq \|y - x^* - \epsilon(x - x^*)\|^2 \\ &= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*) \end{split}$$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

Letting $\epsilon \rightarrow 0$ gives the result.

EADS II © Harald Räcke	5.4 Strong Duality B

89

Proof of the Hyperplane Lemma

- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$

Theorem 5 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^T y < \alpha;$ $a^T x \ge \alpha$ for all $x \in X$)

EADS II 5.4 Strong Duality B © Harald Räcke 90

Lemma 6 (Farkas Lemma) Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds. 1. $\exists x \in \mathbb{R}^n$ with $Ax = b, x \ge 0$ 2. $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0, b^T y < 0$ Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then $0 > y^T b = y^T A x \ge 0$ Hence, at most one of the statements can hold. $M = \sum_{x \in X^m} \sum_{x \in X^m} \sum_{y \in X^$

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

 $y^T A x \ge \alpha$ for all $x \ge 0$. Hence, $y^T A \ge 0$ as we can choose x arbitrarily large.

Proof of Strong Duality

 $P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

 $D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$

Theorem 8 (Strong Duality)

EADS II

UIIII © Harald Räcke

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

z = w.

5.4 Strong Duality B

Lemma 7 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

Rewrite the conditions:

1. $\exists x \in \mathbb{R}^n$ with $\begin{bmatrix} A \\ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$
2. $\exists y \in \mathbb{R}^m$ with $\begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0$, $b^T y < 0$

EADS II © Harald Räcke

5.4 Strong Duality B

Proof of Strong Duality $z \le w$: follows from weak duality $z \ge w$: We show $z < \alpha$ implies $w < \alpha$. $\begin{aligned} \exists x \in \mathbb{R}^{n} \\ s.t. & Ax \le b \\ & -c^{T}x \le -\alpha \\ & x \ge 0 \end{aligned}$ $\begin{aligned} \exists y \in \mathbb{R}^{m}; v \in \mathbb{R} \\ s.t. & A^{T}y - cv \ge 0 \\ & b^{T}y - \alpha v < 0 \\ & y, v \ge 0 \end{aligned}$

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

```
EADS II
© Harald Räcke
```

95

94

Proof of Strong Duality

 $\exists y \in \mathbb{R}^m; v \in \mathbb{R}$ s.t. $A^T y - v \ge 0$ $b^T y - \alpha v < 0$ $y, v \ge 0$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^{m}$$

s.t. $A^{T}y \geq 0$
 $b^{T}y < 0$
 $y \geq 0$

is feasible. By Farkas lemma this gives that LP P is infeasible. Contradiction to the assumption of the lemma.

החווחר	EADS II
	EADS II © Harald Räcke

5.4 Strong Duality B

97

Fundamental QuestionsDefinition 9 (Linear Programming Problem (LP))Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?Questions:Is LP in NP?Is LP in co-NP? yes!Is LP in P?Proof:Given a primal maximization problem P and a parameter α .

- Suppose that $\alpha > \operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost < α.

99

Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then γ is feasible for the dual but $b^T \gamma < \alpha$. This means that $w < \alpha$.

EADS II ©Harald Räcke 5.4 Strong Duality B

98

