
17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
pi ≥ µ

∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

EADS II 17.1 Knapsack

© Harald Räcke 345

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a

makespan of
1
m

∑
j≠`

pj + p`

where ` is the last job to complete.

Together with the obervation that if each pi ≥ 1
3C
∗
max then LPT is

optimal this gave a 4/3-approximation.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 346

17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

pj ≤
1
km

∑
i pi

Idea:

1. Find the optimum Makespan for the long jobs by brute

force.

2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 347

We still have the inequality

1
m

∑
j≠`

pj + p`

where ` is the last job (this only requires that all machines are

busy before time S`).

If ` is a long job, then the schedule must be optimal, as it

consists of an optimal schedule of long jobs plus a schedule for

short jobs.

If ` is a short job its length is at most

p` ≤
∑
j pj/(mk)

which is at most C∗max/k.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 348

Hence we get a schedule of length at most(
1+ 1

k

)
C∗max

There are at most km long jobs. Hence, the number of

possibilities of scheduling these jobs on m machines is at most

mkm, which is constant if m is constant. Hence, it is easy to

implement the algorithm in polynomial time.

Theorem 3

The above algorithm gives a polynomial time approximation

scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = d1
ε e.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 349

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1+ 1
k)T or

certifies that no schedule of length at most T exists (assume

T ≥ 1
m
∑
j pj).

We partition the jobs into long jobs and short jobs:

ñ A job is long if its size is larger than T/k.

ñ Otw. it is a short job.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 350

ñ We round all long jobs down to multiples of T/k2.

ñ For these rounded sizes we first find an optimal schedule.

ñ If this schedule does not have length at most T we conclude

that also the original sizes don’t allow such a schedule.

ñ If we have a good schedule we extend it by adding the short

jobs according to the LPT rule.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 351

After the first phase the rounded sizes of the long jobs assigned

to a machine add up to at most T .

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the

rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k2 going from

rounded sizes to original sizes gives that the Makespan is at

most (
1+ 1

k

)
T .

EADS II 17.2 Scheduling Revisited

© Harald Räcke 352

During the second phase there always must exist a machine with

load at most T , since T is larger than the average load.

Assigning the current (short) job to such a machine gives that

the new load is at most

T + T
k
≤
(
1+ 1

k

)
T .

EADS II 17.2 Scheduling Revisited

© Harald Räcke 353

Running Time for scheduling large jobs: There should not be

a job with rounded size more than T as otw. the problem

becomes trivial.

Hence, any large job has rounded size of i
k2T for i ∈ {k, . . . , k2}.

Therefore the number of different inputs is at most nk2

(described by a vector of length k2 where, the i-th entry

describes the number of jobs of size i
k2T). This is polynomial.

The schedule/configuration of a particular machine x can be

described by a vector of length k2 where the i-th entry describes

the number of jobs of rounded size i
k2T assigned to x. There

are only (k+ 1)k2
different vectors.

This means there are a constant number of different machine

configurations.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 354

Let OPT(n1, . . . , nk2) be the number of machines that are

required to schedule input vector (n1, . . . , nk2) with Makespan at

most T .

If OPT(n1, . . . , nk2) ≤ m we can schedule the input.

We have

OPT(n1, . . . , nk2)

=


0 (n1, . . . , nk2) = 0
1+ min

(s1,...,sk2)∈C
OPT(n1 − s1, . . . , nk2 − sk2) (n1, . . . , nk2) Û 0

∞ otw.

where C is the set of all configurations.

Hence, the running time is roughly (k+ 1)k2nk2 ≈ (nk)k2
.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 355

We can turn this into a PTAS by choosing k = d1/εe and using

binary search. This gives a running time that is exponential in

1/ε.

Can we do better?

Scheduling on identical machines with the goal of minimizing

Makespan is a strongly NP-complete problem.

Theorem 4

There is no FPTAS for problems that are strongly NP-hard.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 356

ñ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
ñ We set k := d2nq(n)e ≥ 2 OPT

ñ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

ñ But this means that the algorithm computes the optimal

solution as the optimum is integral.

ñ This means we can solve problem instances if processing

times are polynomially bounded

ñ Running time is O(poly(n, k)) = O(poly(n))
ñ For strongly NP-complete problems this is not possible

unless P=NP

EADS II 17.2 Scheduling Revisited

© Harald Räcke 357

More General
Let OPT(n1, . . . , nA) be the number of machines that are required to
schedule input vector (n1, . . . , nA) with Makespan at most T
(A: number of different sizes).

If OPT(n1, . . . , nA) ≤m we can schedule the input.

OPT(n1, . . . , nA)

=


0 (n1, . . . , nA) = 0
1+ min

(s1,...,sA)∈C
OPT(n1 − s1, . . . , nA − sA) (n1, . . . , nA) Û 0

∞ otw.

where C is the set of all configurations.

|C| ≤ (B + 1)A, where B is the number of jobs that possibly can fit on
the same machine.

The running time is then O((B + 1)AnA) because the dynamic

programming table has just nA entries.

Bin Packing

Given n items with sizes s1, . . . , sn where

1 > s1 ≥ · · · ≥ sn > 0 .

Pack items into a minimum number of bins where each bin can

hold items of total size at most 1.

Theorem 5

There is no ρ-approximation for Bin Packing with ρ < 3/2 unless

P = NP.

EADS II 17.3 Bin Packing

© Harald Räcke 359

Bin Packing

Proof

ñ In the partition problem we are given positive integers

b1, . . . , bn with B =
∑
i bi even. Can we partition the integers

into two sets S and T s.t.∑
i∈S
bi =

∑
i∈T
bi ?

ñ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

ñ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

ñ Hence, such an algorithm can solve Partition.

EADS II 17.3 Bin Packing

© Harald Räcke 360

