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Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:
min Dliel WiXi
s.t. Vu Zi:uESi x;i=1
x;i =0
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Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal: Dual:
min Dliel WiXi max 2ueU Yu
S.LVU Diyes, Xi =1 s.t. Vi Xyiyes, Yu < Wi
x;i =0 YVu = 0
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Technique 2: Rounding the Dual Solution.

Rounding Algorithm:
Let I denote the index set of sets for which the dual constraint is
tight. This means foralli eI

> yu=w;

uuUeS;
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Technique 2: Rounding the Dual Solution.

Lemma 3
The resulting index set is an f-approximation.

m EADS II 13.2 Rounding the Dual
©Harald Racke



Technique 2: Rounding the Dual Solution.
Lemma 3
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.
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Technique 2: Rounding the Dual Solution.

Lemma 3
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.

» This means >, cs, Yu < w; for all sets S; that contain u.
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Technique 2: Rounding the Dual Solution.

Lemma 3
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.
» This means >, cs, Yu < w; for all sets S; that contain u.

» But then y, could be increased in the dual solution without
violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.
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Technique 2: Rounding the Dual Solution.

Proof:

iel
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Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel uues;

m EADS I 13.2 Rounding the Dual
©Harald Racke



Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel uues;

=>iel:uesS}  yu
u
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Technique 2: Rounding the Dual Solution.

Proof:

2wi=2, 2 Yu
iel iel uues;

=>iel:uesS}  yu
u

= quyu
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Technique 2: Rounding the Dual Solution.

Proof:

Qwi=> > Yu
iel iel uues;
=>iel:uesS}  yu
u
Squyu
u

Sfzyu
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Technique 2: Rounding the Dual Solution.

Proof:

Qwi=> > Yu
iel iel uues;
=>iel:uesS}  yu
u
Squyu
u
Sfzyu
u

< fcost(x™*)
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Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel uues;
=>Hiel:ueSi} - yu
u
= quyu
m
= fzyu
u

< fcost(x™*)
< f-OPT
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.
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algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

» Suppose that we take Sj in the first algorithm. l.e., i € I.
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second

algorithm. Then
Icr .

This means I’ is never better than I.

» Suppose that we take Sj in the first algorithm. l.e., i € I.

» This means x; > %
» Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

v

v

This means x; > %

v

Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.

v

Hence, the second algorithm will also choose S;.

Suppose that we take S; in the first algorithm. l.e., i € I.
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