

Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_j uniformly at random with probability $1 - x_j$ (for all *j*).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

EADS II © Harald Räcke

13.5 Randomized Rounding

301

Probability that $u \in U$ is not covered (in one round):

Pr[*u* not covered in one round]

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u\in S_j} x_j} \le e^{-1} .$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{a\ell}$$

EADS II ||||||| © Harald Räcke

Expected Cost

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

 $E[\text{cost}] = \Pr[\text{success}] \cdot E[\text{cost} \mid \text{success}]$

+ Pr[no success] · E[cost | no success]

This means

$$E[\operatorname{cost} | \operatorname{success}] = \frac{1}{\Pr[\operatorname{succ.}]} \left(E[\operatorname{cost}] - \Pr[\operatorname{no \ success}] \cdot E[\operatorname{cost} | \operatorname{no \ success}] \right)$$

$$\leq \frac{1}{\Pr[\operatorname{succ.}]} E[\operatorname{cost}] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \operatorname{cost}(\operatorname{LP})$$

$$\leq 2(\alpha + 1) \ln n \cdot \operatorname{OPT}$$

for $n \geq 2$ and $\alpha \geq 1$.

EADS II © Harald Räcke 13.5 Randomized Rounding

306

Expected Cost

Version A.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

 $E[\text{cost}] \le (\alpha+1) \ln n \cdot \text{cost}(LP) + (n \cdot \text{OPT}) n^{-\alpha} = \mathcal{O}(\ln n) \cdot \text{OPT}$

EADS II © Harald Räcke

13.5 Randomized Rounding

305

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 6 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2^{\text{poly}(\log n)}$).

EADS II © Harald Räcke 13.5 Randomized Rounding

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

- ▶ $n = 2^k 1$
- Elements are all vectors \vec{x} over GF[2] of length k (excluding zero vector).
- Every vector \vec{y} defines a set as follows

 $S_{\vec{y}} := \{ \vec{x} \mid \vec{x}^T \vec{y} = 1 \}$

- each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
- $x_i = \frac{1}{2^{k-1}} = \frac{2}{n+1}$ is fractional solution.

EADS II	13.5 Randomized Rounding	
🛛 💾 🛛 🖉 © Harald Räcke		308

Integrality Gap					
Every collection of $p < k$ sets does not cover all elements.					
Hence, we get a gap of $\Omega(\log n)$.					
EADS II 13.5 Randomized Rounding	309				

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy

EADS II © Harald Räcke

- Randomized Rounding
- Local Search
- Rounding Data + Dynamic Programming

13.5 Randomized Rounding

310