Complementary Slackness

Lemma 2
Assume a linear program P = max{c’x | Ax < b;x = 0} has
solution x* and its dual D = min{bTy | ATy = ¢;y = 0} has
solution y*.

1. Ifx;f‘ > 0 then the j-th constraint in D is tight.

. If the j-th constraint in D is not tight than xJ’.k = 0.

2
3. If y/ > 0 then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than v = 0.
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Complementary Slackness

Lemma 2

Assume a linear program P = max{c’x | Ax < b;x = 0} has
solution x* and its dual D = min{bTy | ATy = ¢;y = 0} has
solution y*.

1.

Ifx;f‘ > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than x;k =0.
3.
4. If the i-th constraint in P is not tight than y; = 0.

If v} > 0 then the i-th constraint in P is tight.

If we say that a variable x‘;k (v/) has slack if xj* >0 >0),
(i.e., the corresponding variable restriction is not tight) and a
contraint has slack if it is not tight, then the above says that for
a primal-dual solution pair it is not possible that a constraint
and its corresponding (dual) variable has slack.

‘m EADS Il 5.5 Interpretation of Dual Variables = =
©Harald Racke



Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cI'x* < y*TAx* < bTy*
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Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cI'x* < y*TAx* < bTy*

Because of strong duality we then get

CTX* — y*TAx* — bTy*
This gives e.g.
Z(yTA —chjx; =0
J
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Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain
cIx* < p*TAx* < bTy*
Because of strong duality we then get
cTx* = y*TAx* _ bTy*

This gives e.g.

>yTa- cT)J-x;k =0

J
From the constraint of the dual it follows that ¥ A > ¢T. Hence
the left hand side is a sum over the product of non-negative
numbers. Hence, if e.g. (yTA —cT); > 0 (the j-th constraint in
the dual is not tight) then x; = 0 (2.). The result for (1./3./4.)
follows similarly.
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Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b

s.t. 5a + 15b <480
4da + 4b <160
35a + 20b <1190

a,b =0



Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

> Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M =13
15C + 4H + 20M = 23
C,HM =0



Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b <480
4da + 4b <160
35a + 20b <1190
a,b =0

> Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M

s.t. 5C + 4H + 35M >13
15C + 4H + 20M =23
C,HM =0

Note that brewer won’t sell (at least not all) if e.g.
5C +4H + 35M < 13 as then brewing ale would be advantageous.



Interpretation of Dual Variables

Marginal Price:

» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
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Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €,
and &y, respectively.
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Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?

> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €,

and &y, respectively.
The profit increases to max{c!x | Ax <b + &x = 0}.

‘m EADS Il 5.5 Interpretation of Dual Variables
©Harald Racke



Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €,
and &y, respectively.
The profit increases to max{c’x | Ax <b + &x = 0}. Because of
strong duality this is equal to

min (b7 +€T)y
s.t. ATy
y

2%
(e}
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Interpretation of Dual Variables
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; Ei_’)/l-*.
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; &;y/".

Therefore we can interpret the dual variables as marginal prices.
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; Eiyi*.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.

> If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; siyi*.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.
> If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).
> If the dual variable for some resource is non-zero, then an
increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.
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Example

max 13a + 23b

s.t. 5a+15b + s¢ =480
4a + 4b + Sn =160
35a + 20b + Sm = 1190

a, b,Sc,Sh,Ssm=0

beer

-T ale
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Example
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max 13a + 23b

s.t. 5a+ 15b + s¢ =480
4a + 4b + Sp =160
35a + 20b + sm = 1190

a, b,sc,sn,sm=0
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The change in profit when increasing hops by one unit is
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Example

max 13a + 23b

s.t. 5a+ 15b + s¢ =480
4a + 4b + Sp =160
35a + 20b + sm = 1190

a, b,sc,sn,sm=0

beer

--T ale

The change in profit when increasing hops by one unit is
= chgleh.
——

y*



Of course, the previous argument about the increase in the
primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of
one resource may not allow the objective value to increase.
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Flows

Definition 3
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R that satisfies

1. For each edge (x,y)

(capacity constraints)

m EADS II 5.5 Interpretation of Dual Variables = =
©Harald Racke



Flows

Definition 3
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R that satisfies

1. For each edge (x,y)

(capacity constraints)
2. Foreachv e V' \ {s,t}

vax = fov .

(flow conservation constraints)
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Flows

Definition 4
The value of an (s, t)-flow f is defined as

Val(f) = Zfsx - fos .
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Flows

Definition 4
The value of an (s, t)-flow f is defined as

val(f) = > fox = > fxs -

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

T

max 2z foz =22 fzs
st. V(z,w)eVxV o 2 Cow Yaw
Vw #s,t X fow—2zfwz = 0 Pw
fzw = O
min 2 xy) Cxalxy
s.t. fxy 6,y £5,8)1 1xy—1px+lp, = O
Sfsy (y #s,b): 145, +1py = 1
Sxs (x #5,t): 1xs—1px > -1
Sty (¥ #5,t): 141y +1lpy =2 O
St (x #5,1): 10y —1py > 0
fot: 104 > 1
[ 8 10 > -1
Lscy > 0
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LP-Formulation of Maxflow

.
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LP-Formulation of Maxflow

with p; =0 and p; = 1.

.
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LP-Formulation of Maxflow

.
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LP-Formulation of Maxflow

min Z(xy) Cxylxy

st fry: xy—lpx+lpy, = 0
Oxy =2 0
pPs = 1
pt = O

We can interpret the £, value as assigning a length to every edge.
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LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Oy = 0
Ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).
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LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Yy = 0
Ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < ¥y, + p, then simply follows from triangle
inequality (d(x,t) <d(x,y) +d(y,t) = d(x,t) < #Xy +d(y,t)).
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear
programming duality.
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