
Complementary Slackness

Lemma 2

Assume a linear program P =max{cTx | Ax ≤ b;x ≥ 0} has

solution x∗ and its dual D =min{bTy | ATy ≥ c;y ≥ 0} has

solution y∗.

1. If x∗j > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than x∗j = 0.

3. If y∗i > 0 then the i-th constraint in P is tight.

4. If the i-th constraint in P is not tight than y∗i = 0.

If we say that a variable x∗j (y∗i ) has slack if x∗j > 0 (y∗i > 0),

(i.e., the corresponding variable restriction is not tight) and a

contraint has slack if it is not tight, then the above says that for

a primal-dual solution pair it is not possible that a constraint

and its corresponding (dual) variable has slack.
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Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cTx∗ ≤ y∗TAx∗ ≤ bTy∗

Because of strong duality we then get

cTx∗ = y∗TAx∗ = bTy∗

This gives e.g. ∑
j
(yTA− cT )jx∗j = 0

From the constraint of the dual it follows that yTA ≥ cT . Hence

the left hand side is a sum over the product of non-negative

numbers. Hence, if e.g. (yTA− cT )j > 0 (the j-th constraint in

the dual is not tight) then xj = 0 (2.). The result for (1./3./4.)

follows similarly.
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Interpretation of Dual Variables

ñ Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160
35a + 20b ≤ 1190

a,b ≥ 0

ñ Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M ≥ 13

15C + 4H + 20M ≥ 23
C,H,M ≥ 0

Note that brewer won’t sell (at least not all) if e.g.
5C +4H+35M < 13 as then brewing ale would be advantageous.



Interpretation of Dual Variables

Marginal Price:

ñ How much money is the brewer willing to pay for additional

amount of Corn, Hops, or Malt?

ñ We are interested in the marginal price, i.e., what happens if

we increase the amount of Corn, Hops, and Malt by εC , εH ,

and εM , respectively.

The profit increases to max{cTx | Ax ≤ b+ ε;x ≥ 0}. Because of

strong duality this is equal to

min (bT + εT )y
s.t. ATy ≥ c

y ≥ 0
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Interpretation of Dual Variables

If ε is “small” enough then the optimum dual solution y∗ might

not change. Therefore the profit increases by
∑
i εiy∗i .

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness

becomes obvious.

ñ If the brewer has slack of some resource (e.g. corn) then he

is not willing to pay anything for it (corresponding dual

variable is zero).

ñ If the dual variable for some resource is non-zero, then an

increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.
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Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

sc -direc.

sh -direc.{a, b, sm}

The change in profit when increasing hops by one unit is

= cTBA−1
B eh.cTBA
−1
B︸ ︷︷ ︸

y∗

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0



Of course, the previous argument about the increase in the

primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of

one resource may not allow the objective value to increase.
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Flows

Definition 3

An (s, t)-flow in a (complete) directed graph G = (V , V × V, c) is

a function f : V × V , R+0 that satisfies

1. For each edge (x,y)

0 ≤ fxy ≤ cxy .

(capacity constraints)

2. For each v ∈ V \ {s, t}∑
x
fvx =

∑
x
fxv .

(flow conservation constraints)
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Flows

Definition 4

The value of an (s, t)-flow f is defined as

val(f ) =
∑
x
fsx −

∑
x
fxs .

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

max
∑
z fsz −

∑
z fzs

s.t. ∀(z,w) ∈ V × V fzw ≤ czw `zw
∀w ≠ s, t

∑
z fzw −

∑
z fwz = 0 pw
fzw ≥ 0

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy +1py ≥ 1

fxs (x ≠ s, t) : 1`xs−1px ≥ −1

fty (y ≠ s, t) : 1`ty +1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px ≥ 0

fst : 1`st ≥ 1

fts : 1`ts ≥ −1

`xy ≥ 0
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LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy− 1+1py ≥ 0

fxs (x ≠ s, t) : 1`xs−1px+ 1 ≥ 0

fty (y ≠ s, t) : 1`ty− 0+1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px+ 0 ≥ 0

fst : 1`st− 1+ 0 ≥ 0

fts : 1`ts− 0+ 1 ≥ 0

`xy ≥ 0
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LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy− ps+1py ≥ 0

fxs (x ≠ s, t) : 1`xs−1px+ ps ≥ 0

fty (y ≠ s, t) : 1`ty− pt+1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px+ pt ≥ 0

fst : 1`st− ps+ pt ≥ 0

fts : 1`ts− pt+ ps ≥ 0

`xy ≥ 0

with pt = 0 and ps = 1.

EADS II 5.5 Interpretation of Dual Variables

© Harald Räcke 111



LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy : 1`xy−1px+1py ≥ 0

`xy ≥ 0

ps = 1

pt = 0

We can interpret the `xy value as assigning a length to every edge.

The value px for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px ≤ `xy + py then simply follows from triangle
inequality (d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).
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One can show that there is an optimum LP-solution for the dual

problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a

cut in the graph with vertices having value 1 on one side and the

other vertices on the other side. The objective function then

evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear

programming duality.
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