Complementary Slackness

Lemma 2
Assume a linear program P = max{c'x | Ax < b;x = 0} has
solution x* and its dual D = min{bTy | ATy > ¢;y = 0} has
solution y*.

1. Ifx;-k > 0 then the j-th constraint in D is tight.
If the j-th constraint in D is not tight than xJ’-k = 0.
If y;* > 0 then the i-th constraint in P is tight.

d W N

If the i-th constraint in P is not tight than y;* = 0.

If we say that a variable xj (v{) has slack if x;‘ >0y > 0),
(i.e., the corresponding variable restriction is not tight) and a
contraint has slack if it is not tight, then the above says that for
a primal-dual solution pair it is not possible that a constraint
and its corresponding (dual) variable has slack.
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Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain
cI'x* < y*TAx* < pTy*
Because of strong duality we then get
T = _’)/*TAX* _ bTy*

This gives e.g.

>yTa- cT)J-xjf =0

J
From the constraint of the dual it follows that ' A > ¢T. Hence
the left hand side is a sum over the product of non-negative
numbers. Hence, if e.g. (yTA —cT); > 0 (the j-th constraint in
the dual is not tight) then x; = 0 (2.). The result for (1./3./4.)
follows similarly.
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Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

> Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M

s.t. 5C + 4H + 35M =13
15C + 4H + 20M =23
C,HM >0

Note that brewer won’t sell (at least not all) if e.g.
5C +4H +35M < 13 as then brewing ale would be advantageous.

Interpretation of Dual Variables

Marginal Price:

» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?

» We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €p,
and &y, respectively.

The profit increases to max{c’x | Ax <b + &x = 0}. Because of
strong duality this is equal to

min (bT +€T)y
s.t. ATy
y

vV v

5.5 Interpretation of Dual Variables
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by > ; €;y/".

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.

> If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).

» If the dual variable for some resource is non-zero, then an
increase of this resource increases the profit of the brewer.
Hence, it makes no sense to have left-overs of this resource.
Therefore its slack must be zero.
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Example
A 3
AN < max 13a + 23b
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The change in profit when increasing hops by one unit is
_ T p-1
= CBAB e[/l.

———

y*

Of course, the previous argument about the increase in the
primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of
one resource may not allow the objective value to increase.
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Flows

Definition 3
An (s,1)-flow in a (complete) directed graph G = (V,V x V,c) is
a function f: V xV — R that satisfies

1. For each edge (x,y)

0 < fxy <cCxy .

(capacity constraints)
2. Foreachv e V' \ {s,t}

vax = fov .

(flow conservation constraints)

5.5 Interpretation of Dual Variables
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Flows

Definition 4

The value of an (s, t)-flow f is defined as

val(f) = > fox = > fxs -

X

Maximum Flow Problem:

X

Find an (s, t)-flow with maximum value.

EADS Il 5.5 Interpretation of Dual Variables
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LP-Formulation of Maxflow

LP-Formulation of Maxflow

min

s.t. fxy (x,y #5,1):
fsy (¥ #=5,t):
Sxs (x #s,t):
Sty (¥ #5,t):
It (x #s,t):
Sst:
Sts

Z(xy) nygxy

14y —1px+1p, =

145y~ 1+1p,y
Wys—1ps+ 1
14— 0+1p,
10xi—1px+ O
104— 1+ O
10— 0+ 1

Oxy

vV IV IV IV IV IV

2
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max Zz fsz - szzs
s.t. V(z,w) eV xV Tom = Caw Youw
Vw=S8,t 2 fow—2zfwz = 0 Pw
Sow = 0
min X xy) Cxylxy

st fay (X, =5,8) 1 1lxy—1px+lp, = 0O

Ssy (v #=5,t): 145, +1p, = 1
fxs (x #5,t): 10xs—1px > -1

Sty (v #s,1): 14: +1p, = 0

Fxt (x #5s,t): 105 —1px > 0

St 10 > 1
Sis 10¢s > -1

Oy > 0

EADS 11 5.5 Interpretation of Dual Variables
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LP-Formulation of Maxflow
min Z(xy) nygxy

s.t. fuy (¢, ¥y =5,1) 1 1lxy—1px+lpy, = O

Ssy (¥ £5s,1): 14sy— ps+lpy, = O

Jies (52 32 8,10) 2 10xs—1px+ ps = 0O

Sy (v #s,t): 14— pi+lp, = 0O

Frr (= s,t): 1xi—1px+ pr = O

Sste: Ws— ps+ pr = 0

fis Wi~ pit+ ps =2 0

Uy = 0

with p; = 0 and p; = 1.
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LP-Formulation of Maxflow

min 2 xy) Cxyxy

st fxy: lxy—lpx+lp, = 0
lxy = 0
ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value p, for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < ¥y, + p, then simply follows from triangle
inequality (d(x,t) <d(x,y) +d(y,t) = d(x,t) <y, +d(y,1)).
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px =1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear
programming duality.
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