
Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

1: I ← �
2: Ŝj ← Sj for all j
3: while I not a set cover do

4: ` ← arg minj:Ŝj≠0
wj
|Ŝj|

5: I ← I ∪ {`}
6: Ŝj ← Ŝj − S` for all j

In every round the Greedy algorithm takes the set that covers

remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still

uncovered elements in the set is minimized.
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Technique 4: The Greedy Algorithm

Lemma 4

Given positive numbers a1, . . . , ak and b1, . . . , bk, and

S ⊆ {1, . . . , k} then

min
i

ai
bi
≤
∑
i∈S ai∑
i∈S bi

≤max
i

ai
bi
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Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.
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Technique 4: The Greedy Algorithm

Adding this set to our solution means n`+1 = n` − |Ŝj|.

wj ≤
|Ŝj|OPT

n`
= n` −n`+1

n`
·OPT
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Technique 4: The Greedy Algorithm

∑
j∈I
wj ≤

s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
k∑
i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .
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Technique 4: The Greedy Algorithm

A tight example:
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