Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

» Suppose that we take S; in the first algorithm. l.e., i € I.

» This means x; > %

» Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.

» Hence, the second algorithm will also choose S;.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.

Of course, we also need that I is a cover.
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Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual

1 y<0

2.1 <0

3: while exists u ¢ J;c; S; do
4

new set Sy becomes tight
5: I —TuU{¥}

increase dual variable y,, until constraint for some
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Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

1: 10

2:Sj—5S; forallj

3: while I not a set cover do
4: { — arg minjzbaﬁo g—jl

5: I-Tu{f}

6: Sj—Sj—5Spy forallj

In every round the Greedy algorithm takes the set that covers
remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still
uncovered elements in the set is minimized.
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Technique 4: The Greedy Algorithm

Lemma 4
Given positive numbers a,,...,ay and by, ..., by, and
Sc{l,...,k} then
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n1 = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

Wi 2. jeopT W) OPT OPT
min —= < J = <
J |SJ" zjeOPT|Sj| zjgopT|Sj| Ny

since an optimal algorithm can cover the remaining n, elements
with cost OPT.

Let 5’]- be a subset that minimizes this ratio. Hence,
5 OPT
wi/lSil =5,
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Technique 4: The Greedy Algorithm

Adding this set to our solution means ny,; = ny — \ﬁjl.

IS;IOPT  mn,-n,
wj < J _ ¢ {+1
ny ny

- OPT
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Technique 4: The Greedy Algorithm

s
nyg—n

Swy = > ML opr

; ny

jel =1

s
1 1 1
<OPT > |— + +---+>
o\ ny—1 Npyq +1

k1
=O0PT > =
; 1
i=1
=H, -OPT <OPT(Inn +1) .
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Technique 4: The Greedy Algorithm

00 LA AYAYARS
qoﬂouoﬂooﬂoﬂoﬂw

AA AR A AR
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Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S; uniformly at random with probability 1 — x; (for all ).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
[T A-xj) < J] e
JUES; JUEeS;

e* Zj:ues

i< el

Probability that u € U is not covered (after £ rounds):

1
Pr[u not covered after £ round] < ol
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Pr[3u € U not covered after £ round]

= Pr{u; not covered V uy not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i

Lemma 5
With high probability O (log n) rounds suffice.

With high probability:

For any constant & the number of rounds is at most @ (logn)
with probability at least 1 — n=%.
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