Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min Zlle WiXi
s.t. VueU Xiyes;xi = 1
Vie{l,...,k} x; € [0,1]

Let fy, be the number of sets that the element u is contained in
(the frequency of u). Let f = maxy, {fy,} be the maximum
frequency.
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Technique 1: Round the LP solution.

Rounding Algorithm:
Set all x;-values with x; > % to 1. Set all other x;-values to O.
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Technique 1: Round the LP solution.

Lemma 2
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.

v

We know that >, cq, x; = 1.

v

The sum contains at most f;, < f elements.

v

Therefore one of the sets that contain u must have x; > 1/f.

v

This set will be selected. Hence, u is covered.
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
> wi < > wilf - xq)

iel i=1
= f - cost(x)
<f-OPT.

m EADS II 13.1 Deterministic Rounding
©Harald Racke

287



Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal: Dual:
min Dliel WiXi max 2uet Yu
S.LVU Diyes, Xi =1 s.t. Vi Xyiyes, Yu < Wi
Xi > Yu =0
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Technique 2: Rounding the Dual Solution.

Rounding Algorithm:
Let I denote the index set of sets for which the dual constraint is
tight. This means foralli €1

> yu=w;

uuUeS;
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Technique 2: Rounding the Dual Solution.

Lemma 3
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.
» This means >, cs, Yu < w; for all sets S; that contain u.

» But then y, could be increased in the dual solution without
violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.
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Technique 2: Rounding the Dual Solution.

Proof:

Ddwi=> > yu
iel iel u:ues;
=>Hiel:ueSi} - yu
u
Squyu
u
Sfzyu
u

< fcost(x™*)
< f-OPT
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second

algorithm. Then
Icr .

This means I’ is never better than I.

v

v

This means x; > %

v

Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.

v

Hence, the second algorithm will also choose S;.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

Zyu < cost(x™) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.

Of course, we also need that I is a cover.
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Technique 3: The Primal Dual Method

Tt

Algorithm 1 PrimalDual

1y <0

210

3: while exists u ¢ J;jc; S; do

4 increase dual variable y,, until constraint for some
new set Sy becomes tight

I-1u{l}

v
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Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

]

S~ §; forall j

while I not a set cover do
{ — arg minj:gﬁtol%l
I-1u{¥}
LSQJW—LSQJ'—Sg for all j

A vl AW N~

In every round the Greedy algorithm takes the set that covers
remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still
uncovered elements in the set is minimized.
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Technique 4: The Greedy Algorithm

Lemma 4
Given positive numbers a1, ...,ay, and by,..., by, and
Sc{l,...,k} then

zleS

; a;
1’1’111’1 = max—
2165 bz bi
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

. Wj 2.jeopT W OPT OPT
min =% < L= <
i 1Sl Xjeorr|Sil XjeorrISjI Ny

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.

Let S‘j be a subset that minimizes this ratio. Hence,

& OPT
wj/ISJ-I < ng -
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Technique 4: The Greedy Algorithm

Adding this set to our solution means nyp,; = ny — |§J-|.

_ISHIOPT _ np—myy
B ny ny

- OPT

wj
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Technique 4: The Greedy Algorithm

> w; = Z ""” . OPT

< 1

+
ng—l

k
_OPTZ—

=H, -OPT < OPT(Inn+1) .
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Technique 4: The Greedy Algorithm

A tight example:
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Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
JUES; JUES;

= Yjues; X

it <l

=e

Probability that u € U is not covered (after £ rounds):

1
Pr[u not covered after £ round] < ol
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! |
i

Lemma 5
With high probability O (logn) rounds suffice.

With high probability:

For any constant & the number of rounds is at most @ (logn)
with probability at least 1 — n~¢.
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Proof: We have

Pr[#rounds > (x + 1) Inn] < ne~(x+Dnn _
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Expected Cost

» Version A.

Repeat for s = (¢ + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n~% = O(Inn)-OPT
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Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

= é(]i[cost] — Pr[no success] - E[cost | no success])
Pr[succ.]
1
< mE[COSt] < m((x + 1) Inn - COSt(LP)

<2(x+1)Inn - OPT

form=>=2and x> 1.
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Randomized rounding gives an @ (logn) approximation. The
running time is polynomial with high probability.

Theorem 6 (without proof)
There is no approximation algorithm for set cover with
approximation guarantee better than %logn unless NP has

quasi-polynomial time algorithms (algorithms with running time
opoly(logn) ).
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Integrality Gap

The integrality gap of the SetCover LP is Q(logn).

>

| 2

n=2k_-1
Elements are all vectors X over GF[2] of length k (excluding
zero vector).

Every vector y defines a set as follows

Sy =1{x|xTy =1}

each set contains 2¥~1 vectors; each vector is contained in
2k=1 sets

Xi= zk%l = % is fractional solution.
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Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of Q(logn).
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Techniques:

Tt

>

>

>

Deterministic Rounding
Rounding of the Dual
Primal Dual

Greedy

Randomized Rounding
Local Search

Rounding Data + Dynamic Programming
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