Flows

Definition 2

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f : V \times V \mapsto \mathbb{R}_0^+$ that satisfies

1. For each edge (x, y)

$$0 \le f_{xy} \le c_{xy}$$
.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} .$$

(flow conservation constraints)

Flows

Definition 3

The value of an (s, t)-flow f is defined as

$$val(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} .$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

max
$$\sum_{z} f_{sz} - \sum_{z} f_{zs}$$
s.t. $\forall (z, w) \in V \times V$
$$f_{zw} \leq c_{zw} \quad \ell_{zw}$$

$$\forall w \neq s, t \quad \sum_{z} f_{zw} - \sum_{z} f_{wz} = 0 \qquad p_{w}$$

$$f_{zw} \geq 0$$

$$\begin{array}{llll} \min & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \left(x, y \neq s, t \right) \colon & 1 \ell_{xy} - 1 p_x + 1 p_y \; \geq \; 0 \\ & f_{sy} \left(y \neq s, t \right) \colon & 1 \ell_{sy} \; + 1 p_y \; \geq \; 1 \\ & f_{xs} \left(x \neq s, t \right) \colon & 1 \ell_{xs} - 1 p_x \; \; \geq \; -1 \\ & f_{ty} \left(y \neq s, t \right) \colon & 1 \ell_{ty} \; + 1 p_y \; \geq \; 0 \\ & f_{xt} \left(x \neq s, t \right) \colon & 1 \ell_{xt} - 1 p_x \; \; \geq \; 0 \\ & f_{st} \colon & 1 \ell_{st} \; \; \geq \; 1 \\ & f_{ts} \colon & 1 \ell_{ts} \; \; \geq \; -1 \\ & \ell_{xy} \; \; \geq \; 0 \end{array}$$

```
\begin{array}{llll} & & \sum_{(xy)} c_{xy} \ell_{xy} \\ & \text{s.t.} & f_{xy} \; (x,y \neq s,t) \colon & 1\ell_{xy} - 1p_x + 1p_y \; \geq \; 0 \\ & f_{sy} \; (y \neq s,t) \colon & 1\ell_{sy} - \; 1 + 1p_y \; \geq \; 0 \\ & f_{xs} \; (x \neq s,t) \colon & 1\ell_{xs} - 1p_x + \; 1 \; \geq \; 0 \\ & f_{ty} \; (y \neq s,t) \colon & 1\ell_{ty} - \; 0 + 1p_y \; \geq \; 0 \\ & f_{xt} \; (x \neq s,t) \colon & 1\ell_{xt} - 1p_x + \; 0 \; \geq \; 0 \\ & f_{st} \colon & 1\ell_{st} - \; 1 + \; 0 \; \geq \; 0 \\ & f_{ts} \colon & 1\ell_{st} - \; 0 + \; 1 \; \geq \; 0 \\ & f_{ts} \colon & 1\ell_{ts} - \; 0 + \; 1 \; \geq \; 0 \end{array}
```

$$\begin{array}{llll} & & \sum_{(xy)} c_{xy} \ell_{xy} \\ & \text{s.t.} & f_{xy} \; (x,y \neq s,t) \colon & 1\ell_{xy} - 1p_x + 1p_y \; \geq \; 0 \\ & f_{sy} \; (y \neq s,t) \colon & 1\ell_{sy} - \; p_s + 1p_y \; \geq \; 0 \\ & f_{xs} \; (x \neq s,t) \colon & 1\ell_{xs} - 1p_x + \; p_s \; \geq \; 0 \\ & f_{ty} \; (y \neq s,t) \colon & 1\ell_{ty} - \; p_t + 1p_y \; \geq \; 0 \\ & f_{xt} \; (x \neq s,t) \colon & 1\ell_{xt} - 1p_x + \; p_t \; \geq \; 0 \\ & f_{st} \colon & 1\ell_{st} - \; p_s + \; p_t \; \geq \; 0 \\ & f_{ts} \colon & 1\ell_{ts} - \; p_t + \; p_s \; \geq \; 0 \\ & \ell_{xy} \; \geq \; 0 \end{array}$$

with $p_t = 0$ and $p_s = 1$.

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_X = 1$ or $p_X = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.