Flows

Definition 2

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f : V \times V \mapsto \mathbb{R}_0^+$ that satisfies

1. For each edge (x, y)

$$0 \leq f_{XY} \leq c_{XY} \ .$$

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} \; .$$

(flow conservation constraints)

EADS II © Harald Räcke

114

LP-Formulation of Maxflow						
ſ	max \sum_{z}	$f_{sz} - \sum_{z} f_{zs}$				
	s.t. $\forall (z, w) \in V \times V$ $f_{zw} \leq c_{zw} \ell_{zw}$					
	$\forall w \neq s, t \sum_{z} f_{z}$	$f_{zw} - \sum_z f_{wz} = 0 \qquad p_w$				
	$f_{zw} \ge 0$					
	min	$\sum c \ell$				
		$\sum_{(xy)} c_{xy} \ell_{xy}$				
	s.t. $f_{xy}(x, y \neq s, t)$:	-				
		$1\ell_{sy}$ $+1p_{y} \ge 1$				
	$f_{xs} (x \neq s, t)$:	$1\ell_{xs}-1p_x \geq -1$				
	$f_{ty} (y \neq s, t)$:	$1\ell_{ty} + 1p_{y} \ge 0$				
	f_{xt} ($x \neq s, t$):	$1\ell_{xt} - 1p_x \ge 0$				
	f_{st} :	$1\ell_{st} \geq 1$				
		$1\ell_{ts} \geq -1$				
	013 -	$\ell_{XY} \ge 0$				
EADS © Har	II 5.6 Computi ald Räcke	ing Duals				

Flows

Definition 3

The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} \; .$$

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

EADS II © Harald Räcke 5.6 Computing Duals

115

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

LP-Formulation of Maxflow

min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
s.t.	f_{xy} :	$1\ell_{xy}-1p_x+1p_y$	\geq	0
		ℓ_{xy}	\geq	0
		p_s	=	1
		p_t	=	0

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \leq \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \leq d(x,y) + d(y,t) \Rightarrow d(x,t) \leq \ell_{xy} + d(y,t))$.

הר	ПП	EADS II © Harald	
	IJЦ	©Harald	Räcke

5.6 Computing Duals

120