

EADS II 17.4 © Harald Räcke

17.4 Advanced Rounding for Bin Packing

Configuration LP

A possible packing of a bin can be described by an *m*-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

 $\sum_i t_i \cdot s_i \leq 1 \ .$

We call a vector that fulfills the above constraint a configuration.

Configuration LP

Change of Notation:

- Group pieces of identical size.
- Let s₁ denote the largest size, and let b₁ denote the number of pieces of size s₁.
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- ▶ ...
- s_m smallest size and b_m number of pieces of size s_m .

הם הר	EADS II © Harald Räcke
	© Harald Räcke

17.4 Advanced Rounding for Bin Packing

370

EADS II © Harald Räcke 17.4 Advanced Rounding for Bin Packing

369

How to solve this L	P?	
later		
	17.4 Advanced Rounding for Bin Packing	
UUU©Harald Räcke		373

Harmonic Grouping Sort items according to size (monotonically decreasing). From the grouping we obtain instance I' as follows: ▶ Process items in this order; close the current group if size Round all items in a group to the size of the largest group of items in the group is at least 2 (or larger). Then open new member. • Delete all items from group G_1 and G_r . • I.e., *G*¹ is the smallest cardinality set of largest items s.t. For groups G_2, \ldots, G_{r-1} delete $n_i - n_{i-1}$ items. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} . • Observe that $n_i \ge n_{i-1}$. • Only the size of items in the last group G_r may sum up to EADS II © Harald Räcke

We can assume that each item has size at least 1/SIZE(I). EADS II © Harald Räcke 17.4 Advanced Rounding for Bin Packing 374

Harmonic Grouping

group.

less than 2.

375

17.4 Advanced Rounding for Bin Packing

Lemma 10

The number of different sizes in I' is at most SIZE(I)/2.

- Each group that survives (recall that G₁ and G_r are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most SIZE(I)/2.
- All items in a group have the same size in I'.

	17.4 Advanced Rounding for Bin Packing	
UUU © Harald Räcke		377

1: **if** SIZE(I) < 10 **then**

- 2: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $O(\log(SIZE(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

Lemma 11

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- ► The total size of items in G₁ and G_r is at most 6 as a group has total size at most 3.
- Consider a group G_i that has strictly more items than G_{i-1} .
- It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

Summing over all *i* that have n_i > n_{i-1} gives a bound of at most

$$\sum_{j=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) \quad .$$

(note that $n_r \leq \text{SIZE}(I)$ since we assume that the size of each item is at least 1/SIZE(I)).

Analysis

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mbox{OPT}_{\mbox{LP}}$ many bins.

Pieces of type 1 are packed into at most

$\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$

many bins where L is the number of recursion levels.

	17.4 Advanced Rounding for Bin Packing		
🛛 🕒 🛛 🖉 © Harald Räcke		381	

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

min		$\sum_{j=1}^{N} x_j$		
s.t.	$\forall i \in \{1 \dots m\}$	$\sum_{j=1}^{N} T_{ji} x_j$	\geq	b_i
	$\forall j \in \{1, \dots, N\}$	x_j		

Dual	max s.t.	$\forall j \in \{1, \dots, N\}$ $\forall i \in \{1, \dots, m\}$	$\frac{\sum_{i=1}^{m} y_i b_i}{\sum_{i=1}^{m} T_{ji} y_i}$	≤	1	
		$\forall i \in \{1, \dots, m\}$	<i>Y</i> i	≥	0	
EADS II © Harald Räcke	2	17.4 Advanced Roundin	g for Bin Packing			38

Analysis

We can show that $SIZE(I_2) \le SIZE(I)/2$. Hence, the number of recursion levels is only $O(\log(SIZE(I_{original})))$ in total.

- ▶ The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (\leq SIZE(I)/2).
- ► The total size of items in I_2 can be at most $\sum_{j=1}^{N} x_j \lfloor x_j \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

EADS II © Harald Räcke 17.4 Advanced Rounding for Bin Packing

382

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1 - \epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual′

max		$\sum_{i=1}^{m} y_i b_i$		
s.t.	$\forall j \in \{1, \dots, N\}$		\leq	$1 + \epsilon'$
	$\forall i \in \{1, \ldots, m\}$	Yi		_

Primal'

min		$(1+\epsilon')\sum_{j=1}^N x_j$		
s.t.	$\forall i \in \{1 \dots m\}$	$\sum_{j=1}^{N} T_{ji} x_j$	\geq	b_i
	$\forall j \in \{1, \dots, N\}$			0

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$OPT \le z \le (1 + \epsilon')OPT$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL'' is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

This gives that overall we need at most

$(1 + \epsilon') \text{OPT}_{\text{LP}}(I) + \mathcal{O}(\log^2(\text{SIZE}(I)))$

bins.

We can choose $\epsilon' = \frac{1}{OPT}$ as $OPT \le \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.