Complexity

LP Feasibility Problem (LP feasibility)
» Given A € Z"™" b € 7Z". Does there exist x € R with
Ax =b, x =0?
» Note that allowing A, b to contain rational numbers does
not make a difference, as we can multiply every number by
a suitable large constant so that everything becomes
integral but the feasible region does not change.

Is this problem in NP or even in P?
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The Bit Model

Input size
» The number of bits to represent a number a € Z is

[log,(lal)]+1

> Let for an m X n matrix M, L(M) denote the number of bits
required to encode all the numbers in M.

L(M) := > [ogy (Imijl) + 11
i,j
> In the following we assume that input matrices are encoded
in a standard way, where each number is encoded in binary
and then suitable separators are added in order to separate
distinct number from each other.

» Then the input length is O(L([A|b])).

> In the following we sometimes refer to L := L([A|b]) as the
input size (even though the real input size is something in
O(L([AIb]))).

> In order to show that LP-decision is in NP we show that if
there is a solution x then there exists a small solution for
which feasibility can be verified in polynomial time
(polynomial in L([A|b])).

9 The Ellipsoid Algorithm
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Suppose that Ax = b; x > 0 is feasible.

Then there exists a basic feasible solution. This means a set B of
basic variables such that

XB = Alslb

and all other entries in x are O.

9 The Ellipsoid Algorithm
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Size of a Basic Feasible Solution

Lemma 2

Let M € Z"™*™ be an invertable matrix and let b € 7. Further
define L' = L([M | b]) + nlog, n. Then a solution to Mx = b has
rational components x j of the form % where |D;| < 2L and
ID| < 2L,

Proof:
Cramers rules says that we can compute x; as

 det(M))
Xi T det(M)

where M; is the matrix obtained from M by replacing the j-th
column by the vector b.

9 The Ellipsoid Algorithm
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Bounding the Determinant

Let X = Ap. Then

ldet(X)| = | > sgn(m) [] Xirg)
TeESY 1<i<n
< > J] Xirw!

meSy 1<i<n

< n! . 2LUAIPD) < ol o oL

Analogously for det(M;).

EADS 11 9 The Ellipsoid Algorithm
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This means if Ax = b, x > 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the
input-length L.

For a given vector x of polynomial length we can check for
feasibility in polynomial time.

Hence, LP feasibility is in NP.

9 The Ellipsoid Algorithm

©Harald Racke

177

Reducing LP-solving to LP decision.

Given an LP max{c’x | Ax = b;x = 0} do a binary search for the
optimum solution

(Add constraint cTx — 5 = M; § = 0 or (c'x = M). Then checking
for feasibility shows whether optimum solution is larger or
smaller than M).

If the LP is feasible then the binary search finishes in at most

2n22t’ ,
log, (71/2L, ) =0(") ,
as the range of the search is at most —n22L' ..., n22L" and the

1 1
det(A) = I7*

distance between two adjacent values is at least

Here we use L’ = L([A | b | c]) + nlog, n (it also includes the
encoding size of c).




How do we detect whether the LP is unbounded?

Let Mmax = n22L" be an upper bound on the objective value of a
basic feasible solution.

We can add a constraint ¢’ x > M.y + 1 and check for feasibility.
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Ellipsoid Method
> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains K N H.

> REPEAT

EADS Il 9 The Ellipsoid Algorithm
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Issues/Questions:
» How do you choose the first Ellipsoid? What is its volume?
» What if the polytop K is unbounded?

» How do you measure progress? By how much does the
volume decrease in each iteration?

» When can you stop? What is the minimum volume of a
non-empty polytop?

m EADS Il 9 The Ellipsoid Algorithm
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Definition 3
A mapping f: R" — R" with f(x) = Lx + t, where L is an
invertible matrix is called an affine transformation.
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©Harald Racke

182




Definition 4
A ball in R™ with center ¢ and radius 7 is given by

B(c,v) ={x]| (x-0c)T(x-¢c) <7r?}

={x|D(x-0)F/r*<1}

B(0,1) is called the unit ball.

9 The Ellipsoid Algorithm
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Definition 5
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"|L1(y-t) €B(0,1)}

—{yeR" | (y-0)TL VL Y y-1) <1}
={yeR'|(y-IQ Ny -t) <1}

where Q = LLT is an invertible matrix.

EADS 11 9 The Ellipsoid Algorithm
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

> Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.

9 The Ellipsoid Algorithm
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The Easy Case

» The new center lies on axis x1. Hence, ¢’ = te; for t > 0.

» The vectors e, e2,... have to fulﬁlllthe ellipsoid constraint
with equality. Hence (e; — ¢)TQ’" (e; —¢') = 1.

©Harald Racke
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The Easy Case

. oA, L, -,
» The obtain the matrix Q" = for our ellipsoid E’ note that E
is axis-parallel.
> Let a denote the radius along the x-axis and let b denote
the (common) radius for the other axes.

» The matrix

a 0 ... 0
., b
i’ =
: . . 0
0O ... 0 b

maps the unit ball (via function f’(x) = 1'x) to an
axis-parallel ellipsoid with radius a in direction x; and b in
all other directions.
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The Easy Case

> As O = I/1'" the matrix O’

EADS 11 9 The Ellipsoid A
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is of the form

0 0
1
b2
' 0
1
0 2
Igorithm
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The Easy Case

> (e — é')TQﬁ] (ep — ¢') =1 gives

1—t\/ % 0O ... O 1-t

0 0 2 - | 9 .
0 :

0 0 0 bilz 0

» This gives (1 — 1) = a’.
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The Easy Case

» For i = 1 the equation (e; — c"’)TQ’_l(el- —¢’) =1 gives

—tT 1
PO
1 0 L
bZ

0 0

1

(@]
= o

» This gives % + 5z = 1, and hence

=1 =1-

t2 1-2t

(1-1)2 (1-1t)2
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Summary

So far we have

1-t
=1-t d b=———
a an T
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The Easy Case

We still have many choices for t:

Choose t such that the volume of E’ is minimal!!!

EADS 11 9 The Ellipsoid Algorithm
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The Easy Case

We want to choose t such that the volume of £’ is minimal.

Lemma 6
Let L be an dffine transformation and K < R™. Then

vol(L(K)) = |det(L)]| - vol(K) .

m EADS Il 9 The Ellipsoid Algorithm
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n-dimensional volume

m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke 194




The Easy Case

» We want to choose t such that the volume of £’ is minimal.
vol(E’) = vol(B(0,1)) - |det(L")] ,

where 0" = 11",

» We have
1
Lo 0 a 0 0
- o L o . 0
Pt o _ b and L' = _
0 0 3 0 0 b

» Note that a and b in the above equations depend on t, by
the previous equations.
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L))]
=vol(B(0,1)) - ab™!

1-—-t >‘I’L—1
v1-2t
1-on

=vol(B(0,1)) - (1 = ¢) - (

=vol(B(0,1)) -

EADS 11 9 The Ellipsoid Algorithm
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The Easy Case

dvol(E’) _£< (1-0n )

dt  dt \(VI-2p)n! 1 — ot
-7 (D o T

: derivative of numerator ‘ l denominator ] 1
N = denominator -t

An- DAL
=5 (T=26m (1
. ((n— DA -¢t)—-n(1 —2t)>

= % W1=20 3. a-pnt. ((n + 1)t - 1)
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The Easy Case

» We obtain the minimum for t = ﬁ
» For this value we obtain
1-t¢ n

n
a=1-t= and b = =
n+1 1-2t n2 -1

To see the equation for b, observe that

1
h2 _ (1 -1)? _ (1—m)2 (%)2 n?
1-2t 1— -2 n-1 n2 -1

n+1 n+1
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The Easy Case

Let yn = % = ab™ ! be the ratio by which the volume
changes:
2
2 n 2 n n—1
Yu = <n+1> <n2—1>
1 2 1 n-1
= (1- 14—
( n+1 < (n—l)(n+1)>

where we used (1 + x)? < e?* for x € R and a > 0.

R
This gives y, < e 2m+D,

9 The Ellipsoid Algorithm
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.

EADS 11 9 The Ellipsoid Algorithm
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Our progress is the same:

R vol(E") _ vol(E") _ vol(R(E"))
vol(B(0,1))  vol(E)  vol(R(F))

_ VOl(E") _ vol(f(E"))  vol(E")

~ vol(E)  vol(f(E))  vol(E)

Here it is important that mapping a set with affine function
f(x) = Lx +t changes the volume by factor det(L).

9 The Ellipsoid Algorithm
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The Ellipsoid Algorithm
How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;
The halfspace to be intersected: H = {x | a’ (x —¢) < 0};
fHH) = {(f 1 x) [a’ (x —¢) <0}
={f 1N 1al (f(y)—c) <0}
={yla'(f(y)-c) =<0}

={ylal(Ly+c-c) <0}
={yl(@'L)y <0}

This means a@ = LT a.

©Harald Racke
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The Ellipsoid Algorithm

After rotating back (applying R~1) the normal vector of the
halfspace points in negative x1-direction. Hence,

For computing the matrix Q’ of the new ellipsoid we assume in
the following that £/, £’ and E’ refer to the ellispoids centered in
the origin.

EADS 11 9 The Ellipsoid Algorithm
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LTa LTa
-1
= - -~ Z__R
(jzra) =@ ILTal °
Hence,
’ N 1 1 LTa,
" =R-¢ =R - = _
¢ ¢ n+1e] n+1|LTal
¢ =fE)=L-¢"+c
1 LTa
= - L +
n+el LTal €
1
=C—- —— Q&l
n+1 aTQa
Recall that
a? 0 0
A, | 0 b2
S
0 0 b2
This gives
2
~, n T
= I -
Q n271< n+lelel>
because for a = n/n+1 and b = n/\/n2-1
b2 b2 2 _ n® 2n?
n+l n?2-1 n-1)(n+1)2
n’m+1) -2n? nm-1) )

m-1n+12 @Mm-1Dm+1)2

9 The Ellipsoid Algorithm

E' =R(E)
—{R(x) | xTO" 'x <1}
— (v I R'TQ 'Ry <13
=y [ ¥TRTIQ Ry < 1}
={y| yT(@)*ly <1}
B!
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9 The Ellipsoid Algorithm

Hence,
Q" =RQ'RT
2
n
=R- I— erel) - RT
n? -1 ( n+1 ! 1>
2
n 2
= R-RT — —=—(Re1)(Re)T
e 1 (Re1)(Ren)”)
. on? ( 2 LTaaTL>
n2-1 n+1|[LTal?
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9 The Ellipsoid Algorithm

E' =L(E")
— {L(x) | xTQ" 'x <1}
=y I Ly <13
— (v yTaH g Ly <13
={y|yT@Q'L") 'y <1}
o
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9 The Ellipsoid Algorithm

Hence,
Q =LQ'L"
2 T,,T
_. n (7 2 L'aa L) T
n2 -1 n+1 a’Qa
_ n? (Q* 2 QaaTQ)
n2 -1 n+1 alQa
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Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm
1: input: point ¢ € R™, convex set K < R"
2: output: point x € K or “K is empty”

3:Q — 7?7
4: repeat
5: if c € K then return ¢
6: else
7 choose a violated hyperplane a
1 a
8: C «C— Q
n+1 aTQa
2 T
n 2 Qaa'Q
o Q- (- ——
ne—1 n+1 a'Qa
10: endif
11: until 72?

12: return “K is empty”




Repeat: Size of basic solutions

Lemma 7

LetP = {x € R" | Ax < b} be a bounded polyhedron. Let (amax)
be the maximum encoding length of an entry in A, b. Then every
entry xj in a basic solution fulfills |x ;| = % with

DJ',D < 22n(amax)+2nlog2 n

In the following we use § := 22" {dmax)+2nlogo n

Note that here we have P = {x | Ax < b}. The previous lemmas
we had about the size of feasible solutions were slightly
different as they were for different polytopes.

9 The Ellipsoid Algorithm
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Repeat: Size of basic solutions

Proof:

_ A —-A
LetAz[

I
-A A"
vector after transforming the system to standard form.

] b= (_bb>, be the matrix and right-hand

The determinant of the matrices A and MJ- (matrix obt. when
replacing the j-th column of Ag by b) can become at most

det(Ap), det(M;) < |[fmax]l®"

< (\/ﬁ . 2(amax))2n < p2n{amax)+2nlogy n ’

where fmay is the longest column-vector that can be obtained
after deleting all but 21 rows and columns from A.

This holds because columns from I, selected when going from
A to Ap do not increase the determinant. Only the at most 2n
columns from matrices A and —A that A consists of contribute.

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < §.
Hence, P is contained in the cube —6 < x; < 6.

A vector in this cube has at most distance R := /né from the
origin.

Starting with the ball Ey := B(0,R) ensures that P is completely
contained in the initial ellipsoid. This ellipsoid has volume at
most R"B(0,1) < (nd)"B(0,1).

9 The Ellipsoid Algorithm
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When can we terminate?

Let P:= {x | Ax < b} with A€ Z and b € Z be a bounded
polytop. Let (amax) be the encoding length of the largest entry
in A or b.

Consider the following polyhedron

1

P;\:—{xlesb+21\ : }
1

where A = §2 + 1.
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Lemma 8
Py is feasible if and only if P is feasible.

< obvious!
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Consider the polyhedrons

and

P is feasible if and only if P is feasible, and P, feasible if and
only if Py feasible.

P, is bounded since P, and P are bounded.

_ A -A _ b
LetA—[_A A Im},andb—<_b>.

P, feasible implies that there is a basic feasible solution

represented by

1

1.
xg=Ag'h + XAlgl

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible
for P is that one of the basic variables becomes negative.

Hence, there exists i with

(A'h); < 0 < (Az'h); + %(A’gli)i

©Harald Racke

By Cramers rule we get

1

(Aéll;)l <0 - (A_éll;)l < —m

and
(Ag'D); < det(M;) ,

where ]\7[‘,' is obtained by replacing the j-th column of Ag by 1.

However, we showed that the determinants of Ap and MJ- can
become at most 6.

Since, we chose A = §2 + 1 this gives a contradiction.
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Lemma 9
If Py is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least v"'vol(B(0,1)) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with || /]| < 7. Then

(A(x + )i = (Ax); + (Al); < b; + d{i
< by + ldll - 10l < by + Jn - 2%amax) .y

. 2{@max)
-2 _, 1

Shir s

bi—l-

el

Hence, x + U is feasible for Py which proves the lemma.
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How many iterations do we need until the volume becomes too

small?
e~ 7 - vol(B(0,R)) < vol(B(0,7))
Hence,
) vol(B(0,R))
i>2(n+ Dln(vol(B(O,r)) )
=2n+1)In <n"5” . 63")
=8nn+1)In(d) + 2(n + 1)nln(n)
= O(poly(n, (amax)))
EADS Il 9 The Ellipsoid Algorithm
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Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R", convex set K € R", radii R and
2: with K € B(c,R), and B(x,r) < K for some x
3: output: point x € K or “K is empty”

4. Q — diag(R?,...,R?) //i.e., L = diag(R,...,R)

5. repeat
6 if c € K then return ¢
7 else
8 choose a violated hyperplane a
1 Qa

9: € =E€C=

n+1 /aTQa

2 T

n 2 Qaa'Q
10: — =
Q n2—1<Q n+1 alQa )

11: endif

12: until det(Q) < 72" // i.e., det(L) <"
13: return “K is empty”’

Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,
» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need
» a guarantee that a ball of radius 7 is contained in K,
» an initial ball B(c,R) with radius R that contains K,
» a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) - log(R/7))
iterations. Each iteration is polytime for a polynomial-time
Separation oracle.
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