Traveling Salesman

Given a set of cities ({1,...,7}) and a symmetric matrix

C = (cij), cij = 0 that specifies for every pair (i, j) € [n] x [n]
the cost for travelling from city i to city j. Find a permutation 1t
of the cities such that the round-trip cost

n-1

Cn()m(n) + z Crr(i)m(i+1)
i=1

is minimized.

‘m EADS Il = =
©Harald Racke



Traveling Salesman

Theorem 2
There does not exist an O (2™)-approximation algorithm for TSP.

‘m\ EADS Il 16 TSP & =
©Harald Racke



Traveling Salesman

Theorem 2
There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

m EADS Il 16 TSP & =
©Harald Racke



Traveling Salesman

Theorem 2

There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

m EADS Il 16 TSP & =
©Harald Racke



Traveling Salesman

Theorem 2

There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

» If (i, ) ¢ E then set ¢;j to n2" otw. set ¢;j to 1. This
instance has polynomial size.

m EADS Il 16 TSP & =
©Harald Racke



Traveling Salesman

Theorem 2

There does not exist an O (2")-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

» If (i,) ¢ E then set ¢;; to n2" otw. set ¢;; to 1. This
instance has polynomial size.

» There exists a Hamiltonian Path iff there exists a tour with
cost n. Otw. any tour has cost strictly larger than 2".

m EADS Il 16 TSP & =
©Harald Racke



Traveling Salesman

Theorem 2

There does not exist an O (2")-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

» If (i,) ¢ E then set ¢;; to n2" otw. set ¢;; to 1. This
instance has polynomial size.

» There exists a Hamiltonian Path iff there exists a tour with
cost n. Otw. any tour has cost strictly larger than 2".

» An O(2")-approximation algorithm could decide btw. these
cases. Hence, cannot exist unless P = NP.

m EADS Il 16 TSP & =
©Harald Racke



Metric Traveling Salesman

In the metric version we assume for every triple
i,j,ke{l,...,n}
Cij = Cjj + Cjk -

©Harald Racke



Metric Traveling Salesman

In the metric version we assume for every triple
i,j,ke{l,...,n}
Cij = Cjj + Cjk -

It is convenient to view the input as a complete undirected graph
G = (V,E), where ¢;; for an edge (i, j) defines the distance
between nodes i and j.

m EADS Il 16 TSP & =
©Harald Racke



TSP: Lower Bound |

Lemma 3

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

‘m EADS Il 16 TSP & =
©Harald Racke



TSP: Lower Bound |

Lemma 3

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.

'm EADS Il 16 TSP & =
©Harald Racke



TSP: Lower Bound |

Lemma 3

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.
» Delete one edge.

m EADS Il 16 TSP & =
©Harald Racke



TSP: Lower Bound |

Lemma 3

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.
» Delete one edge.

» This gives a spanning tree of cost at most OPTsp(G).

m EADS Il 16 TSP & =
©Harald Racke



TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.

‘m\ EADS Il 16 TSP &
©Harald Racke



TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.

» Take the node v closest to S. Add it S and expand the
existing tour on S to include v.

‘m EADS Il 16 TSP &
©Harald Racke



TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.

» Take the node v closest to S. Add it S and expand the
existing tour on S to include v.

» Repeat until all nodes have been processed.

m EADS Il 16 TSP &
©Harald Racke



TSP: Greedy Algorithm

@

.
‘m EADS Il
©Harald Racke

16 TSP



TSP: Greedy Algorithm

@

.
‘m EADS Il
©Harald Racke

16 TSP



TSP: Greedy Algorithm

@

.
‘m EADS Il
©Harald Racke

16 TSP



TSP: Greedy Algorithm

@

.
‘m EADS Il
©Harald Racke

16 TSP



TSP: Greedy Algorithm

@

.
‘m EADS Il
©Harald Racke

16 TSP



TSP: Greedy Algorithm

@

.
m EADS Il
©Harald Racke

16 TSP



TSP: Greedy Algorithm

@

G

.
m EADS Il
©Harald Racke

16 TSP



TSP: Greedy Algorithm

@

® ®@
@)
\}.

.
m EADS Il
©Harald Racke

16 TSP



TSP: Greedy Algorithm

@

©Harald Racke

16 TSP



TSP: Greedy Algorithm

@

® ®
.
66

©Harald Racke

16 TSP



TSP: Greedy Algorithm

@

©Harald Racke

16 TSP



TSP: Greedy Algorithm

@

©Harald Racke

16 TSP



TSP: Greedy Algorithm

@

©Harald Racke

16 TSP



TSP: Greedy Algorithm

@

©Harald Racke

16 TSP



TSP: Greedy Algorithm

@ ® @

©Harald Racke



TSP: Greedy Algorithm

@ ® @

©Harald Racke



TSP: Greedy Algorithm

@ ® @

©Harald Racke



TSP: Greedy Algorithm

@ ® @

©Harald Racke



TSP: Greedy Algorithm

@ ® @

©Harald Racke



TSP: Greedy Algorithm

©Harald Racke



TSP: Greedy Algorithm

@

©Harald Racke



TSP: Greedy Algorithm

@

©Harald Racke



TSP: Greedy Algorithm

@

©Harald Racke



TSP: Greedy Algorithm

@

©Harald Racke



TSP: Greedy Algorithm

@

©Harald Racke



TSP: Greedy Algorithm

@

©Harald Racke



TSP: Greedy Algorithm

©Harald Racke



TSP: Greedy Algorithm

©Harald Racke



TSP: Greedy Algorithm

The gray edges form an MST, because exactly these edges are
taken in Prims algorithm.

m EADS Il 16 TSP &
©Harald Racke



TSP: Greedy Algorithm

Lemma 4
The Greedy algorithm is a 2-approximation algorithm.

©Harald Racke



TSP: Greedy Algorithm

Lemma 4
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

m EADS Il 16 TSP &
©Harald Racke



TSP: Greedy Algorithm

Lemma 4
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € Sj.

m EADS Il 16 TSP &
©Harald Racke



TSP: Greedy Algorithm

Lemma 4
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.

Let 7; denote the successor of s; in the tour before inserting v;.

m EADS Il 16 TSP & =
©Harald Racke



TSP: Greedy Algorithm

Lemma 4
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.

Let 7; denote the successor of s; in the tour before inserting v;.

We replace the edge (s;,7;) in the tour by the two edges (s;, v;)
and (Ui,Tl').

m EADS Il 16 TSP & =
©Harald Racke



TSP: Greedy Algorithm

Lemma 4
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.

Let 7; denote the successor of s; in the tour before inserting v;.

We replace the edge (s;,7;) in the tour by the two edges (s;, v;)
and (Ui,Tl').

This increases the cost by

Csi,vg T Cuyry = Copry = ZCSi,Ui

m EADS Il 16 TSP & =
©Harald Racke



TSP: Greedy Algorithm

The edges (s;, Vi) considered during the Greedy algorithm are
exactly the edges considered during PRIMs MST algorithm.

‘m EADS Il 16 TSP &
©Harald Racke



TSP: Greedy Algorithm

The edges (s;, Vi) considered during the Greedy algorithm are
exactly the edges considered during PRIMs MST algorithm.

Hence,
> Csivi = OPTusT(G)

1

which with the previous lower bound gives a 2-approximation.

m EADS Il 16 TSP & =
©Harald Racke



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

‘M\ EADS Il 16 TSP &
©Harald Racke



TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

‘m EADS Il 16 TSP &
©Harald Racke



TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

» Find an Euler tour of G'.

‘m EADS Il 16 TSP &
©Harald Racke



TSP: A different approach
Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

» Find an Euler tour of G'.

» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.

m EADS Il 16 TSP & =
©Harald Racke



TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of
G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c(e)

ecE’

> Find an Euler tour of G'.

» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.

» The cost of this TSP tour is at most the cost of the Euler tour
because of triangle inequality.

m EADS Il 16 TSP &
©Harald Racke



TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of
G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

> Find an Euler tour of G'.
» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.

» The cost of this TSP tour is at most the cost of the Euler tour

because of triangle inequality.

This technique is known as short cutting the Euler tour.

m EADS Il 16 TSP &
©Harald Racke



TSP: A different approach

©Harald Racke



TSP: A different approach

13

QY
~

Y

14

©Harald Racke

16 TSP



TSP: A different approach

13

QY
~

Y

14

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

Q > /

10
1
>
2)

@
H
)
O

o 13
<+

©Harald Racke

16 TSP



TSP: A different approach

Q > /

10
1
>
2)

(@)
o D
O

o 13
<+

©Harald Racke

16 TSP



TSP: A different approach

C 9 :/-\ ]3:
10
<
. —
] o
() >
> (2)
5 D
®

©Harald Racke



TSP: A different approach

C 9 /:/-\ 1

10
(2
1 y
() &
- (2)
o )
®

3,
>
<
s

©Harald Racke



TSP: A different approach

C 9 > ]3:
10
<
G —
] o
() %
> (2)
e
®

©Harald Racke



TSP: A different approach

©Harald Racke



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke

16 TSP



TSP: A different approach

©Harald Racke



TSP: A different approach

©Harald Racke



TSP: A different approach

©Harald Racke



TSP: A different approach

©Harald Racke



TSP: A different approach

©Harald Racke



TSP: A different approach

©Harald Racke



TSP: A different approach

©Harald Racke



TSP: A different approach

Consider the following graph:
» Compute an MST of G.
» Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most
2 - OPTnsT(G).

‘m EADS Il 16 TSP & =
©Harald Racke



TSP: A different approach

Consider the following graph:
» Compute an MST of G.
» Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most
2 - OPTnsT(G).

Hence, short-cutting gives a tour of cost no more than
2 - OPTysT(G) which means we have a 2-approximation.

m EADS Il 16 TSP & =
©Harald Racke



TSP: Can we do better?

@

.
©Harald Racke

16 TSP



TSP: Can we do better?

©Harald Racke

16 TSP



TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

‘M\ EADS Il 16 TSP &
©Harald Racke



TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

‘m EADS Il 16 TSP &
©Harald Racke



TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.
We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd
degree vertices in the MST (note that there are an even number
of them).

m EADS Il 16 TSP & =
©Harald Racke



TSP: Can we do better?

©Harald Racke

16 TSP



TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPT1sp(G).

‘M\ EADS Il 16 TSP &
©Harald Racke



TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most

However, the edges of this tour give rise to two disjoint

matchings. One of these matchings must have weight less than
OPT1sp(G)/2.

m EADS Il 16 TSP & =
©Harald Racke



TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPT1sp(G).

However, the edges of this tour give rise to two disjoint
matchings. One of these matchings must have weight less than
OPT1sp(G)/2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTwmsT(G) + OPT1sp(G) /2 < EOPTTSP(G) ,

m EADS Il 16 TSP & =
©Harald Racke



TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPTr1sp(G).

However, the edges of this tour give rise to two disjoint
matchings. One of these matchings must have weight less than
OPT1sp(G)/2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTwmsT(G) + OPT1sp(G) /2 < EOPTTSP(G) ,

Short cutting gives a %-approximation for metric TSP.

m EADS Il 16 TSP & =
©Harald Racke



TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPT1sp(G).

However, the edges of this tour give rise to two disjoint
matchings. One of these matchings must have weight less than
OPT1sp(G)/2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTwmsT(G) + OPT1sp(G) /2 < EOPTTSP(G) ,

Short cutting gives a %-approximation for metric TSP.

This is the best that is known.

m EADS Il 16 TSP & =
©Harald Racke



Christofides. Tight Example

» optimal tour: n edges.
» MST: n — 1 edges.
» weight of matching (n+1)/2 -1

» MST+matching = 3/2-n

©Harald Racke



Tree shortcutting. Tight Example

€

[T

» edges have Euclidean distance.

©Harald Racke



	TSP

