
Traveling Salesman

Given a set of cities ({1, . . . , n}) and a symmetric matrix

C = (cij), cij ≥ 0 that specifies for every pair (i, j) ∈ [n]× [n]
the cost for travelling from city i to city j. Find a permutation π
of the cities such that the round-trip cost

cπ(1)π(n) +
n−1∑
i=1

cπ(i)π(i+1)

is minimized.

EADS II

© Harald Räcke 325



Traveling Salesman

Theorem 2

There does not exist an O(2n)-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V , E) decide whether there

exists a simple cycle that contains all nodes in G.

ñ Given an instance to HAMPATH we create an instance for

TSP.
ñ If (i, j) ∉ E then set cij to n2n otw. set cij to 1. This

instance has polynomial size.
ñ There exists a Hamiltonian Path iff there exists a tour with

cost n. Otw. any tour has cost strictly larger than 2n.
ñ An O(2n)-approximation algorithm could decide btw. these

cases. Hence, cannot exist unless P = NP .

EADS II 16 TSP

© Harald Räcke 326



Metric Traveling Salesman

In the metric version we assume for every triple

i, j, k ∈ {1, . . . , n}
cij ≤ cij + cjk .

It is convenient to view the input as a complete undirected graph

G = (V , E), where cij for an edge (i, j) defines the distance

between nodes i and j.

EADS II 16 TSP

© Harald Räcke 327



TSP: Lower Bound I

Lemma 3

The cost OPTTSP(G) of an optimum traveling salesman tour is at

least as large as the weight OPTMST(G) of a minimum spanning

tree in G.

Proof:

ñ Take the optimum TSP-tour.

ñ Delete one edge.

ñ This gives a spanning tree of cost at most OPTTSP(G).

EADS II 16 TSP

© Harald Räcke 328



TSP: Greedy Algorithm

ñ Start with a tour on a subset S containing a single node.

ñ Take the node v closest to S. Add it S and expand the

existing tour on S to include v.

ñ Repeat until all nodes have been processed.

EADS II 16 TSP

© Harald Räcke 329



TSP: Greedy Algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

The gray edges form an MST, because exactly these edges are

taken in Prims algorithm.

EADS II 16 TSP

© Harald Räcke 330



TSP: Greedy Algorithm

Lemma 4

The Greedy algorithm is a 2-approximation algorithm.

Let Si be the set at the start of the i-th iteration, and let vi
denote the node added during the iteration.

Further let si ∈ Si be the node closest to vi ∈ Si.

Let ri denote the successor of si in the tour before inserting vi.

We replace the edge (si, ri) in the tour by the two edges (si, vi)
and (vi, ri).

This increases the cost by

csi,vi + cvi,ri − csi,ri ≤ 2csi,vi

EADS II 16 TSP

© Harald Räcke 331



TSP: Greedy Algorithm

The edges (si, vi) considered during the Greedy algorithm are

exactly the edges considered during PRIMs MST algorithm.

Hence, ∑
i
csi,vi = OPTMST(G)

which with the previous lower bound gives a 2-approximation.

EADS II 16 TSP

© Harald Räcke 332



TSP: A different approach

Suppose that we are given an Eulerian graph G′ = (V , E′, c′) of

G = (V , E, c) such that for any edge (i, j) ∈ E′ c′(i, j) ≥ c(i, j).

Then we can find a TSP-tour of cost at most∑
e∈E′

c′(e)

ñ Find an Euler tour of G′.
ñ Fix a permutation of the cities (i.e., a TSP-tour) by traversing

the Euler tour and only note the first occurrence of a city.

ñ The cost of this TSP tour is at most the cost of the Euler tour

because of triangle inequality.

This technique is known as short cutting the Euler tour.

EADS II 16 TSP

© Harald Räcke 333



TSP: A different approach

2

1

4

9

5

12

7

13

8

10

11

3

6

1
2

3

4

5
6

7

8

9

10

11

1
2

13

1
4

1
5

16

1
7

18
19

EADS II 16 TSP

© Harald Räcke 334



TSP: A different approach

Consider the following graph:

ñ Compute an MST of G.

ñ Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most

2 ·OPTMST(G).

Hence, short-cutting gives a tour of cost no more than

2 ·OPTMST(G) which means we have a 2-approximation.

EADS II 16 TSP

© Harald Räcke 335



TSP: Can we do better?

1

2

3

4

5

6

7

8

9

10

11

12

13

EADS II 16 TSP

© Harald Räcke 336



TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd

degree vertices in the MST (note that there are an even number

of them).

EADS II 16 TSP

© Harald Räcke 337



TSP: Can we do better?
An optimal tour on the odd-degree vertices has cost at most

OPTTSP(G).

However, the edges of this tour give rise to two disjoint

matchings. One of these matchings must have weight less than

OPTTSP(G)/2.

Adding this matching to the MST gives an Eulerian graph with

edge weight at most

OPTMST(G)+OPTTSP(G)/2 ≤
3
2

OPTTSP(G) ,

Short cutting gives a 3
2 -approximation for metric TSP.

This is the best that is known.

EADS II 16 TSP

© Harald Räcke 338



Christofides. Tight Example

ñ optimal tour: n edges.

ñ MST: n− 1 edges.

ñ weight of matching (n+ 1)/2− 1

ñ MST+matching ≈ 3/2 ·n

EADS II 16 TSP

© Harald Räcke 339



Tree shortcutting. Tight Example

ε ε ε ε ε

ñ edges have Euclidean distance.

EADS II 16 TSP

© Harald Räcke 340


	TSP

