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» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R% and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (mnfld)) ~ (m+ d)". (slightly better bounds on
the running time exist, but will not be discussed here).

> If d is much smaller than m one can do a lot better.

> In the following we develop an algorithm with running time
O(d!-m), i.e., linear in m.
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8 Seidels LP-algorithm

Setting:

» We assume an LP of the form

min cTx
s.t. Ax =
x =

» We assume that the LP is bounded.
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Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x > 0

how can we obtain an LP of the required form?

» Compute a lower bound on cTx for any basic feasible
solution.
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Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

Add slack variables to A; denote the resulting matrix with A.

If B is an optimal basis then xp with Azxp = b, gives an optimal
assignment to the basis variables (non-basic variables are 0).
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Theorem 2 (Cramers Rule)

Let M be a matrix with det(M) + 0. Then the solution to the
system Mx = b is given by

o det(MA,-)
Xi = det(M)

where M; is the matrix obtained from M by replacing the j-th
column by the vector b.
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Proof:

» Define | o |
XJ: 31"'ej—1xej+1"'en

Note that expanding along the j-th column gives that
det(Xj) = Xj.

» Further, we have

| o |
MXj = Mey --- Mej 1 Mx Mejq - - - Mey = M;

» Hence,
det(Mj)

Xj = det(XJ) = W
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Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from A by replacing the j-th
column with vector b.

Observe that

[det(C)] > sgn(m) [ Cirgi)

TESH 1<i<m

> I1 [Cinl

meSy 1<i<m

IA

<m!-ZM .
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Bounding the Determinant

Alternatively, Hadamards inequality gives

det(C)| < [ [ ICxill < [[(vm2Z)
i=1

i-1
<mm/Zzm
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Hadamards Inequality

Hadamards inequality says that the volume of the red
parallelepiped (Spat) is smaller than the volume in the black
cube (if [[e1ll = llarll, lle2ll = llazll, llesll = llasl)).

m EADS II 8 Seidels LP-algorithm
©Harald Racke

160



Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on c¢Tx for any basic feasible
solution. Add the constraint c’x = —-mZ(m!- Z™) — 1.

Note that this constraint is superfluous unless the LP is
unbounded.



Ensuring Conditions

Compute an optimum basis for the new LP.

» If the costis cTx = —(mZ)(m!- Z™) — 1 we know that the
original LP is unbounded.

» Otw. we have an optimum basis.
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In the following we use # to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set F{ of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x = -(mz)(m!-z2mM) - 1.
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Algorithm 1 SeidelLP(H,d)

A w N - O 0

NP2 R T

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if X* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., a,Tlx = by,
solve agx = by, for some variable xy;

: eliminate xp in constraints from H and in implicit constr.;

* — SeidellP(H,d — 1)

. if X* = infeasible then

return infeasible

. else
15:

add the value of xp to X* and return the solution




8 Seidels LP-algorithm

Tt

» If d =1 we can solve the 1-dimensional problem in time
O(m).

» If d > 1 and m = 0 we take time O(d) to return
d-dimensional vector x.

» The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

» If we are unlucky and x* does not fulfill 1 we need time
O(d(m+1)) =O0(dm) to eliminate xy. Then we make a
recursive call that takes time T'(m —1,d — 1).

» The probability of being unlucky is at most d/m as there
are at most d constraints whose removal will decrease the
objective function
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8 Seidels LP-algorithm

This gives the recurrence

O(m) ifd=1
o(d) ifd>1landm =20
o@d +Tm-1,d)+
4(O(dm)+Tim-1,d-1)) otw.

T(m,d) =

Note that T'(m, d) denotes the expected running time.
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Let C be the largest constant in the O-notations.

Cm ifd=1

cd ifd>1land m =0
Cd+T(m-1,d)+

%(Cder Tim-1,d-1)) otw.

T(m,d) =

Note that T (m, d) denotes the expected running time.
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8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.

d=1:
T(m,1) <Cm < Cf(1)max{l,m} for f(1) > 1

d>1,m=0:
T(0,d) <0(d) <Cd < Cf(d)max{l,m} for f(d) = d

d>1m-=1:
T(1,d) = O(d) + T(0,d) + d(0(d) + T(0,d ~ 1))
<Cd+Cd+Cd>+dCf(d—-1)
< Cf(d)max{1,m} for f(d) =3d*> +df(d—1)
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d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

T(m,d) = O(d) + T(m - 1,d) + %(O(dm) +T(m-1,d-1))
<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)
<2Cd*+Cf(d)(m—1) +dCf(d—1)
<Cf(dym

if f(d)>df(d—1)+2d>.
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8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d
Then
F(d) =3d2+df(d—1)

=3d®+d[3(d-1)?+(d-1)f(d-
=3d?+d[3(d-1?+(d-1)[3(d-
=3d°+3d(d-1)*>+3d(d-1)(d -

+3dd-1)(d-2)-...-4-3-2-

v

£ @d-1? (@d-2)
‘3d( Td-1 T a-2)
- O(d)

. i2 .
since Zizl T isa constant.
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