We want to solve the following linear program:

- $\min v = c^t x$ subject to Ax = 0 and $x \in \Delta$.
- ► Here $\Delta = \{x \in \mathbb{R}^n \mid e^t x = 1, x \ge 0\}$ with $e^t = (1, ..., 1)$ denotes the standard simplex in \mathbb{R}^n .

Further assumptions:

- $\sim \sim \sim \sim m$ is an $m \times m$ matrix with rank m .
- $\Delta c = 0$, i.e., the center of the simplex is feasible.
- The optimum solution is 0.

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 223/491

We want to solve the following linear program:

- $\min v = c^t x$ subject to Ax = 0 and $x \in \Delta$.
- ► Here $\Delta = \{x \in \mathbb{R}^n \mid e^t x = 1, x \ge 0\}$ with $e^t = (1, ..., 1)$ denotes the standard simplex in \mathbb{R}^n .

Further assumptions:

3. A is an *m* > *m*-matrix with rank *m*.

- $2 \lambda c = 0$, i.e., the center of the simplex is feasible.
- 3 The optimum solution is 0.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 223/491

We want to solve the following linear program:

- $\min v = c^t x$ subject to Ax = 0 and $x \in \Delta$.
- ► Here $\Delta = \{x \in \mathbb{R}^n \mid e^t x = 1, x \ge 0\}$ with $e^t = (1, ..., 1)$ denotes the standard simplex in \mathbb{R}^n .

Further assumptions:

- **1.** *A* is an $m \times n$ -matrix with rank *m*.
- Ae = 0, i.e., the center of the simplex is feasible.
 The optimum solution is 0.

We want to solve the following linear program:

- $\min v = c^t x$ subject to Ax = 0 and $x \in \Delta$.
- ► Here $\Delta = \{x \in \mathbb{R}^n \mid e^t x = 1, x \ge 0\}$ with $e^t = (1, ..., 1)$ denotes the standard simplex in \mathbb{R}^n .

Further assumptions:

- **1.** A is an $m \times n$ -matrix with rank m.
- **2.** Ae = 0, i.e., the center of the simplex is feasible.
- **3.** The optimum solution is 0.

We want to solve the following linear program:

- $\min v = c^t x$ subject to Ax = 0 and $x \in \Delta$.
- ► Here $\Delta = \{x \in \mathbb{R}^n \mid e^t x = 1, x \ge 0\}$ with $e^t = (1, ..., 1)$ denotes the standard simplex in \mathbb{R}^n .

Further assumptions:

- **1.** A is an $m \times n$ -matrix with rank m.
- **2.** Ae = 0, i.e., the center of the simplex is feasible.
- **3.** The optimum solution is 0.

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- Multiply object and do a minimization. A minimization problem
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. — optimum is 3.
- Add a new variable pair (copie) (both restricted to be positive) and the constraint (copie) is the solution in simplexe
- Add = (2.1.3) by == -b) to every constraint. == vector b is 0.
- If A does not have full row rank we can delete constraints (or conclude that the LP is infeasible).

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- ► Multiply c by -1 and do a minimization. ⇒ minimization problem
- We can check for feasibility by using the two phase algorithm. ⇒ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. ⇒ optimum is 0
- Add a new variable pair x_ℓ, x'_ℓ (both restricted to be positive) and the constraint ∑_i x_i = 1. ⇒ solution in simplex
- Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. \Rightarrow vector b is 0
- If A does not have full row rank we can delete constraints (or conclude that the LP is infeasible).
 - \Rightarrow A has full row rank

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- Multiply c by −1 and do a minimization. ⇒ minimization problem
- We can check for feasibility by using the two phase algorithm. ⇒ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. ⇒ optimum is 0
- Add a new variable pair x_ℓ, x'_ℓ (both restricted to be positive) and the constraint ∑_i x_i = 1. ⇒ solution in simplex
- Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. \Rightarrow vector b is 0
- If A does not have full row rank we can delete constraints (or conclude that the LP is infeasible).
 - \Rightarrow A has full row rank

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- Multiply c by −1 and do a minimization. ⇒ minimization problem
- We can check for feasibility by using the two phase algorithm. ⇒ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. ⇒ optimum is 0
- Add a new variable pair x_ℓ, x'_ℓ (both restricted to be positive) and the constraint ∑_i x_i = 1. ⇒ solution in simplex
- Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. \Rightarrow vector b is 0
- If A does not have full row rank we can delete constraints (or conclude that the LP is infeasible).
 - \Rightarrow A has full row rank

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- Multiply c by −1 and do a minimization. ⇒ minimization problem
- We can check for feasibility by using the two phase algorithm. ⇒ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. ⇒ optimum is 0
- ► Add a new variable pair x_{ℓ} , x'_{ℓ} (both restricted to be positive) and the constraint $\sum_{i} x_{i} = 1$. \Rightarrow solution in simplex
- Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. \Rightarrow vector b is 0
- If A does not have full row rank we can delete constraints (or conclude that the LP is infeasible).
 A has full row rank

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- Multiply c by −1 and do a minimization. ⇒ minimization problem
- We can check for feasibility by using the two phase algorithm. ⇒ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. ⇒ optimum is 0
- Add a new variable pair x_{ℓ} , x'_{ℓ} (both restricted to be positive) and the constraint $\sum_{i} x_{i} = 1$. \Rightarrow solution in simplex
- Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. \Rightarrow vector b is 0
- If A does not have full row rank we can delete constraints (or conclude that the LP is infeasible).
 ⇒ A has full row rank

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- Multiply c by −1 and do a minimization. ⇒ minimization problem
- We can check for feasibility by using the two phase algorithm. ⇒ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. ⇒ optimum is 0
- Add a new variable pair x_{ℓ} , x'_{ℓ} (both restricted to be positive) and the constraint $\sum_{i} x_{i} = 1$. \Rightarrow solution in simplex
- Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. \Rightarrow vector b is 0
- If A does not have full row rank we can delete constraints (or conclude that the LP is infeasible).
 - \Rightarrow A has full row rank

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- ► Multiply c by -1 and do a minimization. ⇒ minimization problem
- We can check for feasibility by using the two phase algorithm. ⇒ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. ⇒ optimum is 0
- Add a new variable pair x_{ℓ} , x'_{ℓ} (both restricted to be positive) and the constraint $\sum_{i} x_{i} = 1$. \Rightarrow solution in simplex
- Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. \Rightarrow vector b is 0
- If A does not have full row rank we can delete constraints (or conclude that the LP is infeasible).
 - \Rightarrow A has full row rank

The algorithm computes strictly feasible interior points $x^{(0)} = \frac{e}{n}, x^{(1)}, x^{(2)}, \dots$ with

 $c^t x^{(k)} \leq 2^{-\Theta(L)} c^t x^{(0)}$

For $k = \Theta(L)$. A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) I can "snap" to an optimum vertex.

10 Karmarkars Algorithm

The algorithm computes strictly feasible interior points $x^{(0)} = \frac{e}{n}, x^{(1)}, x^{(2)}, \dots$ with

 $c^t x^{(k)} \leq 2^{-\Theta(L)} c^t x^{(0)}$

For $k = \Theta(L)$. A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) I can "snap" to an optimum vertex.

Iteration:

- 1. Distort the problem by mapping the simplex onto itself so that the current point \bar{x} moves to the center.
- 2. Project the optimization direction c onto the feasible region. Determine a distance to travel along this direction such that you do not leave the simplex (and you do not touch the border). \hat{x}_{new} is the point you reached.
- **3.** Do a backtransformation to transform \hat{x} into your new point \bar{x}_{new} .

Iteration:

- 1. Distort the problem by mapping the simplex onto itself so that the current point \bar{x} moves to the center.
- 2. Project the optimization direction c onto the feasible region. Determine a distance to travel along this direction such that you do not leave the simplex (and you do not touch the border). \hat{x}_{new} is the point you reached.
- **3.** Do a backtransformation to transform \hat{x} into your new point \bar{x}_{new} .

Iteration:

- 1. Distort the problem by mapping the simplex onto itself so that the current point \bar{x} moves to the center.
- 2. Project the optimization direction c onto the feasible region. Determine a distance to travel along this direction such that you do not leave the simplex (and you do not touch the border). \hat{x}_{new} is the point you reached.
- 3. Do a backtransformation to transform \hat{x} into your new point \bar{x}_{new} .

Let $\bar{Y} = \text{diag}(\bar{x})$ the diagonal matrix with entries \bar{x} on the diagonal.

Define

$$F_{\bar{x}}: x \mapsto rac{ar{Y}^{-1}x}{e^tar{Y}^{-1}x}$$
.

The inverse function is

$$F_{\bar{x}}^{-1}: \hat{x} \mapsto \frac{\bar{Y}\hat{x}}{e^t\bar{Y}\hat{x}}$$
.

Note that $\bar{x} > 0$ in every coordinate. Therefore the above is well defined.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 227/491

Let $\bar{Y} = \text{diag}(\bar{x})$ the diagonal matrix with entries \bar{x} on the diagonal.

Define

$$F_{\bar{X}}: x \mapsto rac{ar{Y}^{-1}x}{e^tar{Y}^{-1}x}$$
.

The inverse function is

$$F_{\bar{x}}^{-1}: \hat{x} \mapsto \frac{\bar{Y}\hat{x}}{e^t\bar{Y}\hat{x}}$$
.

Note that $\bar{x} > 0$ in every coordinate. Therefore the above is well defined.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 227/491

Let $\bar{Y} = \text{diag}(\bar{x})$ the diagonal matrix with entries \bar{x} on the diagonal.

Define

$$F_{\bar{x}}: x \mapsto rac{ar{Y}^{-1}x}{e^tar{Y}^{-1}x}$$
.

The inverse function is

$$F_{\bar{x}}^{-1}: \hat{x} \mapsto \frac{\bar{Y}\hat{x}}{e^t \bar{Y}\hat{x}}$$
.

Note that $\bar{x} > 0$ in every coordinate. Therefore the above is well defined.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 227/491

Let $\bar{Y} = \text{diag}(\bar{x})$ the diagonal matrix with entries \bar{x} on the diagonal.

Define

$$F_{\bar{X}}: x \mapsto rac{ar{Y}^{-1}x}{e^tar{Y}^{-1}x}$$
.

The inverse function is

$$F_{\bar{x}}^{-1}: \hat{x} \mapsto \frac{\bar{Y}\hat{x}}{e^t \bar{Y}\hat{x}}$$
.

Note that $\bar{x} > 0$ in every coordinate. Therefore the above is well defined.

 $F_{\bar{x}}^{-1}$ really is the inverse of $F_{\bar{x}}$:

$$F_{\bar{x}}(F_{\bar{x}}^{-1}(\hat{x})) = \frac{\bar{Y}^{-1} \frac{\bar{Y}\hat{x}}{e^t \bar{Y}\hat{x}}}{e^t \bar{Y}^{-1} \frac{\bar{Y}\hat{x}}{e^t \bar{Y}\hat{x}}} = \frac{\hat{x}}{e^t \hat{x}} = \hat{x}$$

because $\hat{x} \in \Delta$.

Note that in particular every $\hat{x} \in \Delta$ has a preimage (Urbild) under $F_{\bar{x}}$.

 \bar{x} is mapped to e/n

$$F_{\bar{\mathbf{X}}}(\bar{\mathbf{X}}) = \frac{\bar{Y}^{-1}\bar{\mathbf{X}}}{e^t\bar{Y}^{-1}\bar{\mathbf{X}}} = \frac{e}{e^te} = \frac{e}{n}$$

10 Karmarkars Algorithm

《聞》《園》《夏》 229/491

A unit vectors *e_i* is mapped to itself:

$$F_{\bar{x}}(\boldsymbol{e}_{i}) = \frac{\bar{Y}^{-1}\boldsymbol{e}_{i}}{\boldsymbol{e}^{t}\bar{Y}^{-1}\boldsymbol{e}_{i}} = \frac{(0,\ldots,0,1/\bar{x}_{i},0,\ldots,0)^{t}}{\boldsymbol{e}^{t}(0,\ldots,0,1/\bar{x}_{i},0,\ldots,0)^{t}} = \boldsymbol{e}_{i}$$

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 230/491

All nodes of the simplex are mapped to the simplex:

$$F_{\tilde{\mathbf{X}}}(\mathbf{X}) = \frac{\tilde{Y}^{-1}\mathbf{X}}{e^t \tilde{Y}^{-1}\mathbf{X}} = \frac{\left(\frac{x_1}{\tilde{x}_1}, \dots, \frac{x_n}{\tilde{x}_n}\right)^t}{e^t \left(\frac{x_1}{\tilde{x}_1}, \dots, \frac{x_n}{\tilde{x}_n}\right)^t} = \frac{\left(\frac{x_1}{\tilde{x}_1}, \dots, \frac{x_n}{\tilde{x}_n}\right)^t}{\sum_i \frac{x_i}{\tilde{x}_i}} \in \Delta$$

10 Karmarkars Algorithm

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶ 231/491

- $F_{\bar{\chi}}^{-1}$ really is the inverse of $F_{\bar{\chi}}$.
- \bar{x} is mapped to e/n.
- A unit vectors e_i is mapped to itself.
- All nodes of the simplex are mapped to the simplex.

- $F_{\bar{\chi}}^{-1}$ really is the inverse of $F_{\bar{\chi}}$.
- \bar{x} is mapped to e/n.
- ► A unit vectors *e_i* is mapped to itself.
- All nodes of the simplex are mapped to the simplex.

- $F_{\bar{X}}^{-1}$ really is the inverse of $F_{\bar{X}}$.
- \bar{x} is mapped to e/n.
- A unit vectors e_i is mapped to itself.
- All nodes of the simplex are mapped to the simplex.

- $F_{\bar{X}}^{-1}$ really is the inverse of $F_{\bar{X}}$.
- \bar{x} is mapped to e/n.
- ► A unit vectors *e*^{*i*} is mapped to itself.
- All nodes of the simplex are mapped to the simplex.

We have the problem

 $\min\{c^t x \mid Ax = 0; x \in \Delta\}$

We have the problem

 $\min\{c^{t}x \mid Ax = 0; x \in \Delta\}$ = $\min\{c^{t}F_{\hat{x}}^{-1}(\hat{x}) \mid AF_{\hat{x}}^{-1}(\hat{x}) = 0; F_{\hat{x}}^{-1}(\hat{x}) \in \Delta\}$

We have the problem

$$\min\{c^{t}x \mid Ax = 0; x \in \Delta\}$$

= $\min\{c^{t}F_{\bar{x}}^{-1}(\hat{x}) \mid AF_{\bar{x}}^{-1}(\hat{x}) = 0; F_{\bar{x}}^{-1}(\hat{x}) \in \Delta\}$
= $\min\{c^{t}F_{\bar{x}}^{-1}(\hat{x}) \mid AF_{\bar{x}}^{-1}(\hat{x}) = 0; \hat{x} \in \Delta\}$

We have the problem

$$\min\{c^{t}x \mid Ax = 0; x \in \Delta\}$$

= $\min\{c^{t}F_{\bar{x}}^{-1}(\hat{x}) \mid AF_{\bar{x}}^{-1}(\hat{x}) = 0; F_{\bar{x}}^{-1}(\hat{x}) \in \Delta\}$
= $\min\{c^{t}F_{\bar{x}}^{-1}(\hat{x}) \mid AF_{\bar{x}}^{-1}(\hat{x}) = 0; \hat{x} \in \Delta\}$
= $\min\{\frac{c^{t}\bar{Y}\hat{x}}{e^{t}\bar{Y}\hat{x}} \mid \frac{A\bar{Y}\hat{x}}{e^{t}\bar{Y}\hat{x}} = 0; \hat{x} \in \Delta\}$

We have the problem

$$\min\{c^{t}x \mid Ax = 0; x \in \Delta\}$$

= $\min\{c^{t}F_{\bar{x}}^{-1}(\hat{x}) \mid AF_{\bar{x}}^{-1}(\hat{x}) = 0; F_{\bar{x}}^{-1}(\hat{x}) \in \Delta\}$
= $\min\{c^{t}F_{\bar{x}}^{-1}(\hat{x}) \mid AF_{\bar{x}}^{-1}(\hat{x}) = 0; \hat{x} \in \Delta\}$
= $\min\{\frac{c^{t}\bar{Y}\hat{x}}{e^{t}\bar{Y}\hat{x}} \mid \frac{A\bar{Y}\hat{x}}{e^{t}\bar{Y}\hat{x}} = 0; \hat{x} \in \Delta\}$

Since the optimum solution is 0 this problem is the same as

$$\min\{\hat{c}^t\hat{x} \mid \hat{A}\hat{x} = 0, \hat{x} \in \Delta\}$$

with $\hat{c} = \bar{Y}^t c = \bar{Y}c$ and $\hat{A} = A\bar{Y}$.

▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 233/491 We still need to make e/n feasible.

- We know that our LP is feasible. Let \bar{x} be a feasible point.
- Apply $F_{\bar{X}}$, and solve

 $\min\{\hat{c}^t x \mid \hat{A}x = 0; x \in \Delta\}$

The feasible point is moved to the center.

When computing \hat{x}_{new} we do not want to leave the simplex or touch its boundary (why?).

For this we compute the radius of a ball that completely lies in the simplex.

$$B\left(\frac{e}{n},\rho\right) = \left\{x \in \mathbb{R}^n \mid \left\|x - \frac{e}{n}\right\| \le \rho\right\}$$
.

We are looking for the largest radius r such that

$$B\left(\frac{e}{n},r\right)\cap\left\{x\mid e^{t}x=1\right\}\subseteq\Delta.$$

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 235/491

When computing \hat{x}_{new} we do not want to leave the simplex or touch its boundary (why?).

For this we compute the radius of a ball that completely lies in the simplex.

$$B\left(\frac{e}{n},\rho\right) = \left\{x \in \mathbb{R}^n \mid \left\|x - \frac{e}{n}\right\| \le \rho\right\}$$
.

We are looking for the largest radius r such that

$$B\left(\frac{e}{n},r\right)\cap\left\{x\mid e^{t}x=1\right\}\subseteq\Delta.$$

10 Karmarkars Algorithm

◆ 個 ▶ < 필 ▶ < 필 ▶ 235/491

When computing \hat{x}_{new} we do not want to leave the simplex or touch its boundary (why?).

For this we compute the radius of a ball that completely lies in the simplex.

$$B\left(\frac{e}{n},
ho
ight) = \left\{x \in \mathbb{R}^n \mid \left\|x - \frac{e}{n}\right\| \le
ho
ight\}$$
.

We are looking for the largest radius r such that

$$B\left(\frac{e}{n},r\right)\cap\left\{x\mid e^{t}x=1\right\}\subseteq\Delta.$$

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 235/491

When computing \hat{x}_{new} we do not want to leave the simplex or touch its boundary (why?).

For this we compute the radius of a ball that completely lies in the simplex.

$$B\left(\frac{e}{n},\rho\right) = \left\{x \in \mathbb{R}^n \mid \left\|x - \frac{e}{n}\right\| \le \rho\right\}$$
.

We are looking for the largest radius r such that

$$B\left(\frac{e}{n},r\right)\cap\left\{x\mid e^{t}x=1\right\}\subseteq\Delta.$$

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 235/491

This holds for $r = \|\frac{e}{n} - (e - e_1)\frac{1}{n-1}\|$. (*r* is the distance between the center e/n and the center of the (n-1)-dimensional simplex obtained by intersecting a side ($x_i = 0$) of the unit cube with Δ .)

This gives $r = \frac{1}{\sqrt{n(n-1)}}$.

Now we consider the problem

 $\min\{\hat{c}^t x \mid \hat{A}x = 0, x \in B(e/n, r) \cap \Delta\}$

This holds for $r = \|\frac{e}{n} - (e - e_1)\frac{1}{n-1}\|$. (*r* is the distance between the center e/n and the center of the (n-1)-dimensional simplex obtained by intersecting a side ($x_i = 0$) of the unit cube with Δ .)

This gives $r = \frac{1}{\sqrt{n(n-1)}}$.

Now we consider the problem

 $\min\{\hat{c}^t x \mid \hat{A}x = 0, x \in B(e/n, r) \cap \Delta\}$

This holds for $r = \|\frac{e}{n} - (e - e_1)\frac{1}{n-1}\|$. (*r* is the distance between the center e/n and the center of the (n-1)-dimensional simplex obtained by intersecting a side ($x_i = 0$) of the unit cube with Δ .)

This gives $r = \frac{1}{\sqrt{n(n-1)}}$.

Now we consider the problem

 $\min\{\hat{c}^t x \mid \hat{A}x = 0, x \in B(e/n, r) \cap \Delta\}$

This holds for $r = \|\frac{e}{n} - (e - e_1)\frac{1}{n-1}\|$. (*r* is the distance between the center e/n and the center of the (n-1)-dimensional simplex obtained by intersecting a side ($x_i = 0$) of the unit cube with Δ .)

This gives $r = \frac{1}{\sqrt{n(n-1)}}$.

Now we consider the problem

 $\min\{\hat{c}^t x \mid \hat{A}x = 0, x \in B(e/n, r) \cap \Delta\}$

The Simplex

10 Karmarkars Algorithm

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶ 237/491

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A}\hat{x} = 0$ or the constraint $\hat{x} \in \Delta$.

Therefore we first project \hat{c} on the nullspace of

$$B = \begin{pmatrix} \hat{A} \\ e^t \end{pmatrix}$$

We use

 $P = I - B^t (BB^t)^{-1} B$

Then

 $\hat{d} = P\hat{c}$

is the required projection.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶ 238/491

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A}\hat{x} = 0$ or the constraint $\hat{x} \in \Delta$.

Therefore we first project \hat{c} on the nullspace of

 $B = \begin{pmatrix} \hat{A} \\ e^t \end{pmatrix}$

We use

 $P = I - B^t (BB^t)^{-1} B$

Then

 $\hat{d} = P\hat{c}$

is the required projection.

10 Karmarkars Algorithm

▲ **@ ▶** ▲ 臣 ▶ ▲ 臣 ▶ 238/491

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A}\hat{x} = 0$ or the constraint $\hat{x} \in \Delta$.

Therefore we first project \hat{c} on the nullspace of

 $B = \begin{pmatrix} \hat{A} \\ e^t \end{pmatrix}$

We use

 $P = I - B^t (BB^t)^{-1} B$

Then

 $\hat{d} = P\hat{c}$

is the required projection.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 238/491

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A}\hat{x} = 0$ or the constraint $\hat{x} \in \Delta$.

Therefore we first project \hat{c} on the nullspace of

$$B = \begin{pmatrix} \hat{A} \\ e^t \end{pmatrix}$$

We use

 $P = I - B^t (BB^t)^{-1} B$

Then

 $\hat{d} = P\hat{c}$

is the required projection.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 238/491

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A}\hat{x} = 0$ or the constraint $\hat{x} \in \Delta$.

Therefore we first project \hat{c} on the nullspace of

$$B = \begin{pmatrix} \hat{A} \\ e^t \end{pmatrix}$$

We use

 $P = I - B^t (BB^t)^{-1} B$

Then

 $\hat{d}=P\hat{c}$

is the required projection.

EADS II ©Harald Räcke 10 Karmarkars Algorithm

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶
238/491

We get the new point

$$\hat{x}(\rho) = \frac{e}{n} - \rho \frac{\hat{d}}{\|\hat{d}\|}$$

for $\rho < r$.

Choose $\rho = \alpha r$ with $\alpha = 1/4$.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 239/491

We get the new point

$$\hat{x}(\rho) = \frac{e}{n} - \rho \frac{\hat{d}}{\|\hat{d}\|}$$

for $\rho < \gamma$.

Choose $\rho = \alpha r$ with $\alpha = 1/4$.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 239/491

Iteration of Karmarkars Algorithm

- Current solution \bar{x} . $\bar{Y} := \text{diag}(\bar{x}_1, \dots, \bar{x}_n)$.
- ► Transform problem via $F_{\bar{X}}(x) = \frac{\bar{Y}^{-1}X}{e^t \bar{Y}^{-1}x}$. Let $\hat{c} = \bar{Y}c$, and $\hat{A} = A\bar{Y}$.
- Compute

where $B = \begin{pmatrix} A \\ e^t \end{pmatrix}$.

 $\hat{d} = (I - B^t (BB^t)^{-1} B) \hat{c} ,$

Set

$$\hat{x}_{\mathrm{new}} = rac{e}{n} -
ho rac{\hat{d}}{\|\hat{d}\|}$$
 ,

with $\rho = \alpha r$ with $\alpha = 1/4$ and $r = 1/\sqrt{n(n-1)}$.

• Compute
$$\bar{x}_{new} = F_{\bar{x}}^{-1}(\hat{x}_{new})$$
.

EADS II © Harald Räcke

Lemma 2

The new point \hat{x}_{new} in the transformed space is the point that minimizes the cost $\hat{c}^t \hat{x}$ among all feasible points in $B(\frac{e}{n}, \rho)$.

As $\hat{A}\hat{z} = 0$, $\hat{A}\hat{x}_{new} = 0$, $e^t\hat{z} = 1$, $e^t\hat{x}_{new} = 1$

As $\hat{A}\hat{z} = 0$, $\hat{A}\hat{x}_{new} = 0$, $e^t\hat{z} = 1$, $e^t\hat{x}_{new} = 1$ we have $B(\hat{x}_{new} - \hat{z}) = 0$.

As
$$\hat{A}\hat{z} = 0$$
, $\hat{A}\hat{x}_{new} = 0$, $e^t\hat{z} = 1$, $e^t\hat{x}_{new} = 1$ we have

$$B(\hat{x}_{new} - \hat{z}) = 0$$
.

$$(\hat{c}-\hat{d})^t$$

As
$$\hat{A}\hat{z} = 0$$
, $\hat{A}\hat{x}_{new} = 0$, $e^t\hat{z} = 1$, $e^t\hat{x}_{new} = 1$ we have

$$B(\hat{x}_{new} - \hat{z}) = 0$$
.

$$(\hat{c} - \hat{d})^t = (\hat{c} - P\hat{c})^t$$

As
$$\hat{A}\hat{z} = 0$$
, $\hat{A}\hat{x}_{new} = 0$, $e^t\hat{z} = 1$, $e^t\hat{x}_{new} = 1$ we have

$$B(\hat{x}_{new} - \hat{z}) = 0$$
.

$$(\hat{c} - \hat{d})^t = (\hat{c} - P\hat{c})^t$$

= $(B^t (BB^t)^{-1} B\hat{c})^t$

As
$$\hat{A}\hat{z} = 0$$
, $\hat{A}\hat{x}_{new} = 0$, $e^t\hat{z} = 1$, $e^t\hat{x}_{new} = 1$ we have

$$B(\hat{x}_{new} - \hat{z}) = 0$$
.

$$\begin{aligned} (\hat{c} - \hat{d})^t &= (\hat{c} - P\hat{c})^t \\ &= (B^t (BB^t)^{-1} B\hat{c})^t \\ &= \hat{c}^t B^t (BB^t)^{-1} B \end{aligned}$$

As
$$\hat{A}\hat{z} = 0$$
, $\hat{A}\hat{x}_{new} = 0$, $e^t\hat{z} = 1$, $e^t\hat{x}_{new} = 1$ we have

$$B(\hat{x}_{new} - \hat{z}) = 0$$
.

Further,

$$\begin{aligned} (\hat{c} - \hat{d})^t &= (\hat{c} - P\hat{c})^t \\ &= (B^t (BB^t)^{-1} B\hat{c})^t \\ &= \hat{c}^t B^t (BB^t)^{-1} B \end{aligned}$$

Hence, we get

$$(\hat{c} - \hat{d})^t (\hat{x}_{\text{new}} - \hat{z}) = 0$$

As
$$\hat{A}\hat{z} = 0$$
, $\hat{A}\hat{x}_{new} = 0$, $e^t\hat{z} = 1$, $e^t\hat{x}_{new} = 1$ we have

$$B(\hat{x}_{new} - \hat{z}) = 0$$
.

Further,

$$\begin{aligned} (\hat{c} - \hat{d})^t &= (\hat{c} - P\hat{c})^t \\ &= (B^t (BB^t)^{-1} B\hat{c})^t \\ &= \hat{c}^t B^t (BB^t)^{-1} B \end{aligned}$$

Hence, we get

$$(\hat{c} - \hat{d})^t (\hat{x}_{\text{new}} - \hat{z}) = 0 \text{ or } \hat{c}^t (\hat{x}_{\text{new}} - \hat{z}) = \hat{d}^t (\hat{x}_{\text{new}} - \hat{z})$$

As
$$\hat{A}\hat{z} = 0$$
, $\hat{A}\hat{x}_{new} = 0$, $e^t\hat{z} = 1$, $e^t\hat{x}_{new} = 1$ we have

$$B(\hat{x}_{new} - \hat{z}) = 0$$
.

Further,

$$(\hat{c} - \hat{d})^t = (\hat{c} - P\hat{c})^t$$

= $(B^t (BB^t)^{-1} B\hat{c})^t$
= $\hat{c}^t B^t (BB^t)^{-1} B$

Hence, we get

$$(\hat{c} - \hat{d})^t (\hat{x}_{\text{new}} - \hat{z}) = 0 \text{ or } \hat{c}^t (\hat{x}_{\text{new}} - \hat{z}) = \hat{d}^t (\hat{x}_{\text{new}} - \hat{z})$$

which means that the cost-difference between \hat{x}_{new} and \hat{z} is the same measured w.r.t. the cost-vector \hat{c} or the projected cost-vector \hat{d} .

$$\frac{\hat{d}^t}{\|\hat{d}\|} \left(\hat{x}_{\text{new}} - \hat{z} \right)$$

10 Karmarkars Algorithm

$$\frac{\hat{d}^t}{\|\hat{d}\|} \left(\hat{x}_{\rm new} - \hat{z} \right) = \frac{\hat{d}^t}{\|\hat{d}\|} \left(\frac{e}{n} - \rho \frac{\hat{d}}{\|\hat{d}\|} - \hat{z} \right)$$

10 Karmarkars Algorithm

◆ 個 → < E → < E → 243/491

$$\frac{\hat{d}^t}{\|\hat{d}\|} \left(\hat{x}_{\text{new}} - \hat{z} \right) = \frac{\hat{d}^t}{\|\hat{d}\|} \left(\frac{e}{n} - \rho \frac{\hat{d}}{\|\hat{d}\|} - \hat{z} \right) = \frac{\hat{d}^t}{\|\hat{d}\|} \left(\frac{e}{n} - \hat{z} \right) - \rho$$

10 Karmarkars Algorithm

《聞》《圖》《圖》 243/491

$$\frac{\hat{d}^t}{\|\hat{d}\|} \left(\hat{x}_{\text{new}} - \hat{z} \right) = \frac{\hat{d}^t}{\|\hat{d}\|} \left(\frac{e}{n} - \rho \frac{\hat{d}}{\|\hat{d}\|} - \hat{z} \right) = \frac{\hat{d}^t}{\|\hat{d}\|} \left(\frac{e}{n} - \hat{z} \right) - \rho < 0$$

as $\frac{e}{n} - \hat{z}$ is a vector of length at most ρ .

10 Karmarkars Algorithm

《聞》《臣》《臣》 243/491

$$\frac{\hat{d}^t}{\|\hat{d}\|} \left(\hat{x}_{\text{new}} - \hat{z} \right) = \frac{\hat{d}^t}{\|\hat{d}\|} \left(\frac{e}{n} - \rho \frac{\hat{d}}{\|\hat{d}\|} - \hat{z} \right) = \frac{\hat{d}^t}{\|\hat{d}\|} \left(\frac{e}{n} - \hat{z} \right) - \rho < 0$$

as $\frac{e}{n} - \hat{z}$ is a vector of length at most ρ .

This gives $\hat{d}(\hat{x}_{\text{new}} - \hat{z}) \le 0$ and therefore $\hat{c}\hat{x}_{\text{new}} \le \hat{c}\hat{z}$.

10 Karmarkars Algorithm

In order to measure the progress of the algorithm we introduce a potential function f:

f(x)

10 Karmarkars Algorithm

◆ 母 ト ◆ ヨ ト ◆ ヨ ト 244/491 In order to measure the progress of the algorithm we introduce a potential function f:

$$f(x) = \sum_{j} \ln(\frac{c^{t}x}{x_{j}})$$

10 Karmarkars Algorithm

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶ 244/491 In order to measure the progress of the algorithm we introduce a potential function f:

$$f(x) = \sum_{j} \ln(\frac{c^t x}{x_j}) = n \ln(c^t x) - \sum_{j} \ln(x_j) .$$

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶ 244/491
In order to measure the progress of the algorithm we introduce a potential function f:

$$f(x) = \sum_{j} \ln(\frac{c^t x}{x_j}) = n \ln(c^t x) - \sum_{j} \ln(x_j) .$$

• The function f is invariant to scaling (i.e., f(kx) = f(x)).

In order to measure the progress of the algorithm we introduce a potential function f:

$$f(x) = \sum_{j} \ln(\frac{c^t x}{x_j}) = n \ln(c^t x) - \sum_{j} \ln(x_j) .$$

- The function f is invariant to scaling (i.e., f(kx) = f(x)).
- ▶ The potential function essentially measures cost (note the term $n \ln(c^t x)$) but it penalizes us for choosing x_j values very small (by the term $-\sum_j \ln(x_j)$; note that $-\ln(x_j)$ is always positive).

 $\hat{f}(\hat{z}) := f(F_{\bar{x}}^{-1}(\hat{z}))$

$$\hat{f}(\hat{z}) := f(F_{\tilde{x}}^{-1}(\hat{z})) = f(\frac{\bar{Y}\hat{z}}{e^t\bar{Y}\hat{z}}) = f(\bar{Y}\hat{z})$$

$$\begin{split} \hat{f}(\hat{z}) &\coloneqq f(F_{\tilde{x}}^{-1}(\hat{z})) = f(\frac{\bar{Y}\hat{z}}{e^t \bar{Y}\hat{z}}) = f(\bar{Y}\hat{z}) \\ &= \sum_j \ln(\frac{c^t \bar{Y}\hat{z}}{\bar{x}_j \hat{z}_j}) \end{split}$$

10 Karmarkars Algorithm

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶ 245/491

$$\begin{split} \hat{f}(\hat{z}) &\coloneqq f(F_{\bar{x}}^{-1}(\hat{z})) = f(\frac{\bar{Y}\hat{z}}{e^t\bar{Y}\hat{z}}) = f(\bar{Y}\hat{z}) \\ &= \sum_j \ln(\frac{c^t\bar{Y}\hat{z}}{\bar{x}_j\hat{z}_j}) = \sum_j \ln(\frac{\hat{c}^t\hat{z}}{\hat{z}_j}) - \sum_j \ln\bar{x}_j \end{split}$$

10 Karmarkars Algorithm

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶ 245/491

$$\begin{split} \hat{f}(\hat{z}) &\coloneqq f(F_{\bar{x}}^{-1}(\hat{z})) = f(\frac{\bar{Y}\hat{z}}{e^t\bar{Y}\hat{z}}) = f(\bar{Y}\hat{z}) \\ &= \sum_j \ln(\frac{c^t\bar{Y}\hat{z}}{\bar{x}_j\hat{z}_j}) = \sum_j \ln(\frac{\hat{c}^t\hat{z}}{\hat{z}_j}) - \sum_j \ln\bar{x}_j \end{split}$$

Observation:

This means the potential of a point in the transformed space is simply the potential of its pre-image under F.

$$\begin{split} \hat{f}(\hat{z}) &\coloneqq f(F_{\bar{x}}^{-1}(\hat{z})) = f(\frac{\bar{Y}\hat{z}}{e^t\bar{Y}\hat{z}}) = f(\bar{Y}\hat{z}) \\ &= \sum_j \ln(\frac{c^t\bar{Y}\hat{z}}{\bar{x}_j\hat{z}_j}) = \sum_j \ln(\frac{\hat{c}^t\hat{z}}{\hat{z}_j}) - \sum_j \ln\bar{x}_j \end{split}$$

Observation:

This means the potential of a point in the transformed space is simply the potential of its pre-image under F.

Note that if we are interested in potential-change we can ignore the additive term above. Then f and \hat{f} have the same form; only c is replaced by \hat{c} .

The basic idea is to show that one iteration of Karmarkar results in a constant decrease of \hat{f} . This means

$$\hat{f}(\hat{x}_{\text{new}}) \leq \hat{f}(\frac{e}{n}) - \delta$$
,

where δ is a constant.

The basic idea is to show that one iteration of Karmarkar results in a constant decrease of \hat{f} . This means

$$\hat{f}(\hat{x}_{\text{new}}) \leq \hat{f}(\frac{e}{n}) - \delta$$
,

where δ is a constant.

This gives

 $f(\bar{x}_{\rm new}) \leq f(\bar{x}) - \delta$.

Lemma 3 There is a feasible point z (i.e., $\hat{A}z = 0$) in $B(\frac{e}{n}, \rho) \cap \Delta$ that has

$$\hat{f}(z) \leq \hat{f}(\frac{e}{n}) - \delta$$

with $\delta = \ln(1 + \alpha)$.

Lemma 3 There is a feasible point z (i.e., $\hat{A}z = 0$) in $B(\frac{e}{n}, \rho) \cap \Delta$ that has

$$\hat{f}(z) \leq \hat{f}(\frac{e}{n}) - \delta$$

with $\delta = \ln(1 + \alpha)$.

Note that this shows the existence of a good point within the ball. In general it will be difficult to find this point.

10 Karmarkars Algorithm

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶
248/491

 z^* must lie at the boundary of the simplex. This means $z^* \notin B(\frac{e}{n}, \rho)$.

 z^* must lie at the boundary of the simplex. This means $z^* \notin B(\frac{e}{n}, \rho)$.

The point *z* we want to use lies farthest in the direction from $\frac{e}{n}$ to *z*^{*}, namely

 z^* must lie at the boundary of the simplex. This means $z^* \notin B(\frac{e}{n}, \rho)$.

The point z we want to use lies farthest in the direction from $\frac{e}{n}$ to z^* , namely

$$z = (1 - \lambda)\frac{e}{n} + \lambda z^*$$

for some positive $\lambda < 1$.

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 249/491

Hence,

$$\hat{c}^t z = (1 - \lambda)\hat{c}^t \frac{e}{n} + \lambda \hat{c}^t z^*$$

10 Karmarkars Algorithm

Hence,

$$\hat{c}^t z = (1 - \lambda)\hat{c}^t \frac{e}{n} + \lambda \hat{c}^t z^*$$

The optimum cost (at z^*) is zero.

10 Karmarkars Algorithm

▲聞▶▲≣▶▲≣▶ 250/491 Hence,

$$\hat{c}^t z = (1-\lambda)\hat{c}^t \frac{e}{n} + \lambda \hat{c}^t z^*$$

The optimum cost (at z^*) is zero.

Therefore,

$$\frac{\hat{c}^t \frac{e}{n}}{\hat{c}^t z} = \frac{1}{1 - \lambda}$$

10 Karmarkars Algorithm

《聞》《臣》《臣》 250/491

10 Karmarkars Algorithm

$$\hat{f}(\frac{e}{n}) - \hat{f}(z)$$

10 Karmarkars Algorithm

▲聞▶▲≣▶▲≣▶ 251/491

$$\hat{f}(\frac{e}{n}) - \hat{f}(z) = \sum_{j} \ln(\frac{\hat{c}^t \frac{e}{n}}{\frac{1}{n}}) - \sum_{j} \ln(\frac{\hat{c}^t z}{z_j})$$

10 Karmarkars Algorithm

◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 251/491

$$\hat{f}(\frac{e}{n}) - \hat{f}(z) = \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\frac{1}{n}}) - \sum_{j} \ln(\frac{\hat{c}^{t} z}{z_{j}})$$
$$= \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\hat{c}^{t} z} \cdot \frac{z_{j}}{\frac{1}{n}})$$

10 Karmarkars Algorithm

▲ @ ▶ ▲ 聖 ▶ ▲ 聖 ▶ 251/491

$$\hat{f}(\frac{e}{n}) - \hat{f}(z) = \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\frac{1}{n}}) - \sum_{j} \ln(\frac{\hat{c}^{t} z}{z_{j}})$$
$$= \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\hat{c}^{t} z} \cdot \frac{z_{j}}{\frac{1}{n}})$$
$$= \sum_{j} \ln(\frac{n}{1 - \lambda} z_{j})$$

10 Karmarkars Algorithm

◆週 → ◆園 → **◆**園 → 251/491

$$\begin{split} \hat{f}(\frac{e}{n}) - \hat{f}(z) &= \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\frac{1}{n}}) - \sum_{j} \ln(\frac{\hat{c}^{t} z}{z_{j}}) \\ &= \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\hat{c}^{t} z} \cdot \frac{z_{j}}{\frac{1}{n}}) \\ &= \sum_{j} \ln(\frac{n}{1-\lambda} z_{j}) \\ &= \sum_{j} \ln(\frac{n}{1-\lambda} ((1-\lambda)\frac{1}{n} + \lambda z_{j}^{*})) \end{split}$$

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 畫 ▶ ▲ ≣ ▶ 251/491

$$\begin{split} \hat{f}(\frac{e}{n}) - \hat{f}(z) &= \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\frac{1}{n}}) - \sum_{j} \ln(\frac{\hat{c}^{t} z}{z_{j}}) \\ &= \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\hat{c}^{t} z} \cdot \frac{z_{j}}{\frac{1}{n}}) \\ &= \sum_{j} \ln(\frac{n}{1-\lambda} z_{j}) \\ &= \sum_{j} \ln(\frac{n}{1-\lambda} ((1-\lambda)\frac{1}{n} + \lambda z_{j}^{*})) \\ &= \sum_{j} \ln(1 + \frac{n\lambda}{1-\lambda} z_{j}^{*}) \end{split}$$

10 Karmarkars Algorithm

《聞》《臺》《臺》 251/491

 $\sum_{i} \ln(1+s_i) \geq \ln(1+\sum_{i} s_i)$

 $\sum_{i} \ln(1+s_i) \geq \ln(1+\sum_{i} s_i)$

This gives

$$\hat{f}(\frac{e}{n}) - \hat{f}(z)$$

 $\sum_{i} \ln(1+s_i) \geq \ln(1+\sum_{i} s_i)$

This gives

$$\hat{f}(\frac{e}{n}) - \hat{f}(z) = \sum_{j} \ln(1 + \frac{n\lambda}{1 - \lambda} z_j^*)$$

 $\sum_{i} \ln(1+s_i) \geq \ln(1+\sum_{i} s_i)$

This gives

$$\hat{f}(\frac{e}{n}) - \hat{f}(z) = \sum_{j} \ln(1 + \frac{n\lambda}{1 - \lambda} z_{j}^{*})$$
$$\geq \ln(1 + \frac{n\lambda}{1 - \lambda})$$

10 Karmarkars Algorithm

◆ 個 → < ≧ → < ≧ → 253/491 In order to get further we need a bound on λ :

 αr

10 Karmarkars Algorithm

《聞》《圖》《夏》 253/491 In order to get further we need a bound on λ :

 $\alpha \gamma = \rho$

10 Karmarkars Algorithm

《聞》《圖》《夏》 253/491 In order to get further we need a bound on λ :

 $\alpha r = \rho = \|z - e/n\|$

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 253/491
$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\|$$

$$\alpha \gamma = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

$$\alpha \gamma = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here *R* is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here *R* is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

 $R = \sqrt{(n-1)/n}.$

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here *R* is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

 $R = \sqrt{(n-1)/n}$. Since $r = 1/\sqrt{(n-1)n}$ we have R/r = n-1 and $\lambda \ge \alpha \frac{r}{R} \ge \alpha/(n-1)$

10 Karmarkars Algorithm

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here *R* is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

$$R = \sqrt{(n-1)/n}$$
. Since $r = 1/\sqrt{(n-1)n}$ we have $R/r = n-1$ and
 $\lambda \ge \alpha \frac{r}{R} \ge \alpha/(n-1)$

$$1 + n \frac{\lambda}{1 - \lambda}$$

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 253/491

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here *R* is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

$$R = \sqrt{(n-1)/n}$$
. Since $r = 1/\sqrt{(n-1)n}$ we have $R/r = n-1$ and
 $\lambda \ge \alpha \frac{r}{R} \ge \alpha/(n-1)$

10 Karmarkars Algorithm

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶ 253/491

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here *R* is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

$$R = \sqrt{(n-1)/n}$$
. Since $r = 1/\sqrt{(n-1)n}$ we have $R/r = n-1$ and
 $\lambda \ge \alpha \frac{r}{R} \ge \alpha/(n-1)$

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 253/491

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here *R* is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

$$R = \sqrt{(n-1)/n}$$
. Since $r = 1/\sqrt{(n-1)n}$ we have $R/r = n-1$ and
 $\lambda \ge \alpha \frac{r}{R} \ge \alpha/(n-1)$

Then
$$1+n\frac{\lambda}{1-\lambda}\geq 1+\frac{n\alpha}{n-\alpha-1}\geq 1+\alpha$$

This gives the lemma.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 253/491

Lemma 4

If we choose $\alpha = 1/4$ and $n \ge 4$ in Karmarkars algorithm the point \hat{x}_{new} satisfies

$$\hat{f}(\hat{x}_{\text{new}}) \le \hat{f}(\frac{e}{n}) - \delta$$

with $\delta = 1/10$ *.*

10 Karmarkars Algorithm

▲ 個 → < E → < E → 255/491

Define

 $g(\hat{x}) =$

10 Karmarkars Algorithm

《聞》《圖》《夏》 255/491

Define

$$g(\hat{x}) = n \ln \frac{\hat{c}^t \hat{x}}{\hat{c}^t \frac{e}{n}}$$

10 Karmarkars Algorithm

《聞》《圖》《夏》 255/491

Define

$$g(\hat{x}) = n \ln \frac{\hat{c}^t \hat{x}}{\hat{c}^t \frac{e}{n}}$$
$$= n (\ln \hat{c}^t \hat{x} - \ln \hat{c}^t \frac{e}{n}) .$$

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 255/491

Define

$$\begin{split} g(\hat{x}) &= n \ln \frac{\hat{c}^t \hat{x}}{\hat{c}^t \frac{e}{n}} \\ &= n (\ln \hat{c}^t \hat{x} - \ln \hat{c}^t \frac{e}{n}) \end{split}$$

This is the change in the cost part of the potential function when going from the center $\frac{e}{n}$ to the point \hat{x} in the transformed space.

Similar, the penalty when going from $\frac{e}{n}$ to w increases by

$$h(\hat{x}) = \operatorname{pen}(\hat{x}) - \operatorname{pen}(\frac{e}{n}) = -\sum_{j} \ln \frac{\hat{x}_{j}}{\frac{1}{n}}$$

where pen(v) = $-\sum_{j} \ln(v_{j})$.

We want to derive a lower bound on

$$\hat{f}(\frac{e}{n}) - \hat{f}(\hat{x}_{\text{new}})$$

10 Karmarkars Algorithm

《聞》《圖》《圖》 257/491 We want to derive a lower bound on

$$\hat{f}(\frac{e}{n}) - \hat{f}(\hat{x}_{\text{new}}) = [\hat{f}(\frac{e}{n}) - \hat{f}(z)] + h(z) - h(\hat{x}_{\text{new}}) + [g(z) - g(\hat{x}_{\text{new}})]$$

where z is the point in the ball where \hat{f} achieves its minimum.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 257/491 We want to derive a lower bound on

$$\hat{f}(\frac{e}{n}) - \hat{f}(\hat{x}_{\text{new}}) = [\hat{f}(\frac{e}{n}) - \hat{f}(z)] + h(z) - h(\hat{x}_{\text{new}}) + [g(z) - g(\hat{x}_{\text{new}})]$$

where z is the point in the ball where \hat{f} achieves its minimum.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 257/491 We have

$$[\hat{f}(\frac{e}{n}) - \hat{f}(z)] \ge \ln(1 + \alpha)$$

by the previous lemma.

10 Karmarkars Algorithm

《聞》《澄》《澄》 258/491 We have

$$[\hat{f}(\frac{e}{n}) - \hat{f}(z)] \ge \ln(1 + \alpha)$$

by the previous lemma.

We have

$[g(z) - g(\hat{x}_{\text{new}})] \ge 0$

since \hat{x}_{new} is the point with minimum cost in the ball, and g is monotonically increasing with cost.

We show that the change h(w) in penalty when going from e/n to w fulfills

$$|h(w)| \le \frac{\beta^2}{2(1-\beta)}$$

where $\beta = n\alpha r$ and w is some point in the ball $B(\frac{e}{n}, \alpha r)$.

We show that the change h(w) in penalty when going from e/n to w fulfills

$$|h(w)| \le \frac{\beta^2}{2(1-\beta)}$$

where $\beta = n\alpha r$ and w is some point in the ball $B(\frac{e}{n}, \alpha r)$.

Hence,

$$\hat{f}(\frac{e}{n}) - \hat{f}(\hat{x}_{\text{new}}) \ge \ln(1+\alpha) - \frac{\beta^2}{(1-\beta)} \ .$$

10 Karmarkars Algorithm

$$|\ln(1+x) - x| \le \frac{x^2}{2(1-\beta)}$$
.

10 Karmarkars Algorithm

《聞》《園》《夏》 260/491

|h(w)|

10 Karmarkars Algorithm

《聞》《臣》《臣》 261/491

$$|h(w)| = \left| \sum_{j} \ln \frac{w_j}{1/n} \right|$$

$$|h(w)| = \left| \sum_{j} \ln \frac{w_j}{1/n} \right|$$
$$= \left| \sum_{j} \ln \left(\frac{1/n + (w_j - 1/n)}{1/n} \right) - \sum_{j} n \left(w_j - \frac{1}{n} \right) \right|$$

$$|h(w)| = \left| \sum_{j} \ln \frac{w_{j}}{1/n} \right|$$
$$= \left| \sum_{j} \ln \left(\frac{1/n + (w_{j} - 1/n)}{1/n} \right) - \sum_{j} n \left(w_{j} - \frac{1}{n} \right) \right|$$

$$|h(w)| = \left| \sum_{j} \ln \frac{w_j}{1/n} \right|$$
$$= \left| \sum_{j} \ln \left(\frac{1/n + (w_j - 1/n)}{1/n} \right) - \sum_{j} n \left(w_j - \frac{1}{n} \right) \right|$$
$$= \left| \sum_{j} \left[\ln \left(1 + n(w_j - 1/n) \right) - n(w_j - 1/n) \right] \right|$$

10 Karmarkars Algorithm

《聞》《圖》《夏》 261/491

$$|h(w)| = \left| \sum_{j} \ln \frac{w_{j}}{1/n} \right|$$
$$= \left| \sum_{j} \ln \left(\frac{1/n + (w_{j} - 1/n)}{1/n} \right) - \sum_{j} n \left(w_{j} - \frac{1}{n} \right) \right|$$
$$= \left| \sum_{j} \left[\ln \left(1 + n (\frac{\leq \alpha r}{w_{j} - 1/n}) \right) - n (w_{j} - 1/n) \right] \right|$$

10 Karmarkars Algorithm

《聞》《圖》《夏》 261/491

$$|h(w)| = \left| \sum_{j} \ln \frac{w_{j}}{1/n} \right|$$
$$= \left| \sum_{j} \ln \left(\frac{1/n + (w_{j} - 1/n)}{1/n} \right) - \sum_{j} n \left(w_{j} - \frac{1}{n} \right) \right|$$
$$= \left| \sum_{j} \left[\ln \left(1 + \frac{|\mathbf{x}| - 1/n}{|\mathbf{x}| - 1/n} \right) - n(w_{j} - 1/n) \right] \right|$$

10 Karmarkars Algorithm

《聞》《圖》**《**圖》 261/491

$$|h(w)| = \left| \sum_{j} \ln \frac{w_{j}}{1/n} \right|$$
$$= \left| \sum_{j} \ln \left(\frac{1/n + (w_{j} - 1/n)}{1/n} \right) - \sum_{j} n \left(w_{j} - \frac{1}{n} \right) \right|$$
$$= \left| \sum_{j} \left[\ln \left(1 + n (w_{j} - 1/n) \right) - n (w_{j} - 1/n) \right] \right|$$

10 Karmarkars Algorithm

《聞》《圖》《夏》 261/491

$$\begin{split} h(w)| &= \left| \sum_{j} \ln \frac{w_j}{1/n} \right| \\ &= \left| \sum_{j} \ln \left(\frac{1/n + (w_j - 1/n)}{1/n} \right) - \sum_{j} n \left(w_j - \frac{1}{n} \right) \right| \\ &= \left| \sum_{j} \left[\ln \left(1 + n(w_j - 1/n) \right) - n(w_j - 1/n) \right] \right| \\ &\leq \sum_{j} \frac{n^2 (w_j - 1/n)^2}{2(1 - \alpha nr)} \end{split}$$

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 261/491

$$\begin{aligned} h(w)| &= \left| \sum_{j} \ln \frac{w_{j}}{1/n} \right| \\ &= \left| \sum_{j} \ln \left(\frac{1/n + (w_{j} - 1/n)}{1/n} \right) - \sum_{j} n \left(w_{j} - \frac{1}{n} \right) \right| \\ &= \left| \sum_{j} \left[\ln \left(1 + n(w_{j} - 1/n) \right) - n(w_{j} - 1/n) \right] \right| \\ &\leq \sum_{j} \frac{n^{2} (w_{j} - 1/n)^{2}}{2(1 - \alpha n r)} \\ &\leq \frac{(\alpha n r)^{2}}{2(1 - \alpha n r)} \end{aligned}$$

10 Karmarkars Algorithm

The decrease in potential is therefore at least

$$\ln(1+\alpha) - \frac{\beta^2}{1-\beta}$$

with $\beta = n\alpha r = \alpha \sqrt{\frac{n}{n-1}}$.

It can be shown that this is at least $\frac{1}{10}$ for $n \ge 4$ and $\alpha = 1/4$.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 262/491 The decrease in potential is therefore at least

$$\ln(1+\alpha) - \frac{\beta^2}{1-\beta}$$

with $\beta = n\alpha r = \alpha \sqrt{\frac{n}{n-1}}$.

It can be shown that this is at least $\frac{1}{10}$ for $n \ge 4$ and $\alpha = 1/4$.

10 Karmarkars Algorithm

Then $f(\bar{x}^{(k)}) \le f(e/n) - k/10$. This gives

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le e^{-\ell} \le 2^{-\ell} \ .$$

Hence, $\Theta(nL)$ iterations are sufficient. One iteration can be performed in time $\mathcal{O}(n^3)$.

▲ 個 ▶ ▲ 圖 ▶ ▲ 圖 ▶
263/491

Then $f(\bar{x}^{(k)}) \le f(e/n) - k/10$. This gives

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le e^{-\ell} \le 2^{-\ell} \ .$$

Hence, $\Theta(nL)$ iterations are sufficient. One iteration can be performed in time $\mathcal{O}(n^3)$.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 263/491

Then $f(\bar{x}^{(k)}) \leq f(e/n) - k/10$. This gives

$$n\ln\frac{c^t\bar{x}^{(k)}}{c^t\frac{e}{n}} \le \sum_j \ln\bar{x}^{(k)}_j - \sum_j \ln\frac{1}{n} - k/10$$
$$\le n\ln n - k/10$$

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le e^{-\ell} \le 2^{-\ell} \ .$$

Hence, $\Theta(nL)$ iterations are sufficient. One iteration can be performed in time $\mathcal{O}(n^3)$.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 263/491

Then
$$f(\bar{x}^{(k)}) \le f(e/n) - k/10$$
.
This gives

$$n\ln\frac{c^t\bar{x}^{(k)}}{c^t\frac{e}{n}} \le \sum_j \ln\bar{x}^{(k)}_j - \sum_j \ln\frac{1}{n} - k/10$$
$$\le n\ln n - k/10$$

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{\varrho}{n}} \le e^{-\ell} \le 2^{-\ell} \ .$$

Hence, $\Theta(nL)$ iterations are sufficient. One iteration can be performed in time $\mathcal{O}(n^3)$.

10 Karmarkars Algorithm

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 263/491

Then
$$f(\bar{x}^{(k)}) \le f(e/n) - k/10$$
.
This gives

$$n\ln\frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le \sum_j \ln \bar{x}^{(k)}_j - \sum_j \ln\frac{1}{n} - k/10$$
$$\le n\ln n - k/10$$

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le e^{-\ell} \le 2^{-\ell} \ .$$

Hence, $\Theta(nL)$ iterations are sufficient. One iteration can be performed in time $\mathcal{O}(n^3)$.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶ 263/491

Then
$$f(\bar{x}^{(k)}) \le f(e/n) - k/10$$
.
This gives

$$n\ln\frac{c^t\bar{x}^{(k)}}{c^t\frac{e}{n}} \le \sum_j \ln\bar{x}^{(k)}_j - \sum_j \ln\frac{1}{n} - k/10$$
$$\le n\ln n - k/10$$

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le e^{-\ell} \le 2^{-\ell} \quad .$$

Hence, $\Theta(nL)$ iterations are sufficient. One iteration can be performed in time $\mathcal{O}(n^3)$.

10 Karmarkars Algorithm

▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 263/491

Then
$$f(\bar{x}^{(k)}) \le f(e/n) - k/10$$
.
This gives

$$n\ln\frac{c^t\bar{x}^{(k)}}{c^t\frac{e}{n}} \le \sum_j \ln\bar{x}^{(k)}_j - \sum_j \ln\frac{1}{n} - k/10$$
$$\le n\ln n - k/10$$

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le e^{-\ell} \le 2^{-\ell} \quad .$$

Hence, $\Theta(nL)$ iterations are sufficient. One iteration can be performed in time $\mathcal{O}(n^3)$.

