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» minv = cfx subject to Ax = 0 and x € A.

» Here A= {x e R" |elx =1,x =0} withel =(1,...,1)
denotes the standard simplex in R™.
Further assumptions:
1. Ais an m X n-matrix with rank m.
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10 Karmarkars Algorithm

We want to solve the following linear program:
» minv = cfx subject to Ax = 0 and x € A.

» Here A= {x e R" |elx =1,x =0} withel =(1,...,1)
denotes the standard simplex in R™.

Further assumptions:
1. Ais an m X n-matrix with rank m.
2. Ae =0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.
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Suppose you start with max{ctx | Ax = b;x = 0}.

>

Multiply ¢ by —1 and do a minimization. = minimization
problem

We can check for feasibility by using the two phase
algorithm. = can assume that LP is feasible.

Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

Add a new variable pair xy, x}, (both restricted to be
positive) and the constraint > ; x; = 1. = solution in simplex

Add —(>.; x;)b; = —bj to every constraint. = vector b is 0

If A does not have full row rank we can delete constraints
(or conclude that the LP is infeasible).
= A has full row rank

We still need to make e/n feasible.



10 Karmarkars Algorithm

The algorithm computes strictly feasible interior points
x(0 = 2 x W) 5@ with

cla®) < 2=0(L) 4. (0)

For k = ®(L). A point x is strictly feasible if x > 0.
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10 Karmarkars Algorithm

The algorithm computes strictly feasible interior points
x(0 = 2 x W) 5@ with

ctx®) < 2=0(1) 1t ,.(0)
For k = ®(L). A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) | can
“snap” to an optimum vertex.
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10 Karmarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.
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10 Karmarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction ¢ onto the feasible

region. Determine a distance to travel along this direction
such that you do not leave the simplex (and you do not
touch the border). Xpew is the point you reached.

T
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10K

armarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction ¢ onto the feasible

region. Determine a distance to travel along this direction
such that you do not leave the simplex (and you do not
touch the border). Xpew is the point you reached.

3. Do a backtransformation to transform X into your new point

Xnevv .

T
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The Transformation

Let Y = diag(x) the diagonal matrix with entries X on the
diagonal.
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The Transformation

Let Y = diag(x) the diagonal matrix with entries X on the
diagonal.

Define

Y- lx

Frix v ——— .
* elY-1x
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The Transformation

Let Y = diag(x) the diagonal matrix with entries X on the

diagonal.
Define _—
Y 'x
Fyz 1 x =
* elY-1x
The inverse function is
SIS Yx
x elYx
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The Transformation

Let Y = diag(x) the diagonal matrix with entries X on the

diagonal.
Define _—
Y 'x
Fyz 1 x =
* elY-1x
The inverse function is
SIS Yx
x elYx

Note that X > 0 in every coordinate. Therefore the above is well
defined.
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Properties

Fz! really is the inverse of Fx:

Y71 YXx %
NN B -
F;‘c(F;‘cl(X)) = ﬁ “olx X
ety elYx

because X € A.

Note that in particular every X € A has a preimage (Urbild) under
Fx.
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Properties

X is mapped to e/n
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Properties

A unit vectors ¢; is mapped to itself:

Y-le; 0,...,0,1/x;,0,...

Fx(ei) = =

,0)f

etY-le; — et(0,...,0,1/%;,0,

s 0)t
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Properties

All nodes of the simplex are mapped to the simplex:

t t
_ X1 Xn X1 Xn
Y*lx ()_C""’)_C) <)_C""’)_C)
Fx(X) = 51— =—" Mo = e A
etY—1x et(xl Xn) 2ix
X T i
& =

10 Karmarkars Algorithm

©Harald Racke



The Transformation

Easy to check:

> F;l really is the inverse of Fx.
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> F);l really is the inverse of Fx.
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The Transformation

Easy to check:

v

F,;l really is the inverse of Fx.
> X is mapped to e/n.

» A unit vectors ¢; is mapped to itself.

v

All nodes of the simplex are mapped to the simplex.
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10 Karmarkars Algorithm

We have the problem

min{ctx | Ax =0; x € A}
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10 Karmarkars Algorithm

We have the problem

min{ctx | Ax =0; x € A}
=min{c'Fz1 (%) | AFz1(%) = 0; Fz1 (%) € A}
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10 Karmarkars Algorithm
We have the problem
min{ctx | Ax =0; x € A}
=min{c'Fz1 (%) | AFz1(%) = 0; Fz1 (%) € A}
=min{c'Fz} (%) | AFz1(%) = 0; X € A}
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10 Karmarkars Algorithm

We have the problem

min{ctx | Ax =0; x € A}
=min{c'F;1(%) | AFz1 (%) = 0; F{1(%) € A}
=min{c'Fz} (%) | AFz1(%) = 0; X € A}

clYx | Afffc _
elYx

= min { etYx

O;QACEA}
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10 Karmarkars Algorithm

We have the problem

min{ctx | Ax =0; x € A}
=min{c'Fz1 (%) | AFz1(%) = 0; Fz1 (%) € A}
=min{c'Fz}(%) | AFz1(X) = 0; X € A}

ctl:/fc | Afffc _

elYx elYx

= min{ 0; x e A}
Since the optimum solution is O this problem is the same as
min{¢‘% | AXx = 0,% € A}

with ¢ = Yic = Ycand A = AY.
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We still need to make e/n feasible.

» We know that our LP is feasible. Let X be a feasible point.

» Apply Fx, and solve

min{éix | Ax = 0; x € A}

> The feasible point is moved to the center.

T
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10 Karmarkars Algorithm

When computing Xpew We do not want to leave the simplex or
touch its boundary (why?).
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When computing Xpew We do not want to leave the simplex or
touch its boundary (why?).

For this we compute the radius of a ball that completely lies in
the simplex.

b() = frem o] =0}
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10 Karmarkars Algorithm

When computing Xpew We do not want to leave the simplex or
touch its boundary (why?).

For this we compute the radius of a ball that completely lies in
the simplex.

b() = frem o] =0}

We are looking for the largest radius » such that

B(%,T)m{xletle};&
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10 Karmarkars Algorithm

This holds for » = || — (e —e1)5,—7ll. (r is the distance between
the center e/n and the center of the (n —1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)
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This holds for » = || — (e —e1)5,—7ll. (r is the distance between
the center e/n and the center of the (n —1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

1

Jnmn-1)"

This gives r =
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10 Karmarkars Algorithm

This holds for » = || — (e —e1)5,—7ll. (r is the distance between
the center e/n and the center of the (n —1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

1

Jnmn-1)"

Now we consider the problem

This gives r =

min{éix | Ax = 0,x € B(e/n,r) N A}

This problem is easy to solve!!!
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The Simplex

X3
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10 Karmarkars Algorithm

Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).
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10 Karmarkars Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints A% = 0 or the
constraint X € A.
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10 Karmarkars Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints A% = 0 or the
constraint X € A.

Therefore we first project ¢ on the nullspace of

r-(0)
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10 Karmarkars Algorithm

Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints A% = 0 or the
constraint X € A.

Therefore we first project ¢ on the nullspace of
A
B = ot

P=1-BY(BBY) !B

We use

Then

d=P¢

is the required projection.
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10 Karmarkars Algorithm

We get the new point

forp < r.
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10 Karmarkars Algorithm

We get the new point

forp < r.

Choose p = ar with o = 1/4.
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Iteration of Karmarkars Algorithm

» Current solution x. Y := diag(x1,...,X5).
Y-lx
ety-lx-

» Transform problem via Fx(x) =
Let ¢ = Yc,and A = AY.

» Compute
d = (I —-BYBBY) 'B)¢ ,
A
where B = ( t).
e
» Set -
e = & — p-2%
new n ||d"|| ]

with p = v withcx=1/4andr =1/yn(n—1).

» Compute Xnew = Fz ' (Xnew).
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Lemma 2
The new point Xnew in the transformed space is the point that
minimizes the cost ¢'X among all feasible points in B(%, p).
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Proof: Let Z be another feasible point in B(%, p).

As AZ =0, ARpew = 0, €12 = 1, el Xpew = 1 we have
B(Xpew —2) =0 .

Further,

(¢ —d)t = -prot
= (B"(BB")"'Bé)!
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Hence, we get
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Proof: Let Z be another feasible point in B(%, p).

As AZ =0, ARpew = 0, €12 = 1, el Xpew = 1 we have
B(Xpew —2) =0 .

Further,

(¢ —d)t = -prot
= (B"(BB")"'Bé)!
_ "tBt(BBt)—lB

Hence, we get

(¢ — d)! (Rnew — 2) = 0 or ¢H(Rnew — 2) = d' (Xnew

—3)



Proof: Let Z be another feasible point in B(%, p).
As AZ =0, ARpew = 0, €12 = 1, el Xpew = 1 we have
B(Xpew —2) =0 .
Further,
(6 —d)t = (¢-pe)

= (B'(BB")™'B&)!

— ¢tBY(BBY)"!B
Hence, we get

(€ = d)! (Rnew = 2) = 0 or & (Rnew — 2) = d" (Rnew — 2)

which means that the cost-difference between Xpew and Z is the
same measured w.r.t. the cost-vector ¢ or the projected
cost-vector d.



But

at N
—— (X -z
||d|| ( new )

[T
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But

dAt ~ ~
—— (Xpew — 2) =
” l” ( new )

(it

Idll

[

e ,d4 _2>
nCidl
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But

dt ~ ~
—— (Xpew — 2) =
” l” ( new )

(it

Idll

[

e _ pi _ 2) -
no - dl

(it
Id|

(

e
n

)
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But

A = (el
T Idl \n " dl

as % — Z is a vector of length at most p.

(it
Id|

<e

3
n

)—p<0

10 Karmarkars Algorithm
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But

NPT (Y S A i YO
T Idl \n " dl

as % — Z is a vector of length at most p.

This gives ci(fcnew — 2) < 0 and therefore ¢Xnew < CZ.
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In order to measure the progress of the algorithm we introduce
a potential function f:

S(x)
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In order to measure the progress of the algorithm we introduce
a potential function f:
ctx
fx) =X~ >)
J

J
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In order to measure the progress of the algorithm we introduce
a potential function f:

t
£ = S In(<) = ninetx) - 3 In(x;)) -
J J J

m EADS Il 10 Karmarkars Algorithm =) =
©Harald Racke



In order to measure the progress of the algorithm we introduce
a potential function f:

t
fx) = Zln(%) = nln(c'x) - > In(x;) .
J J J

» The function f is invariant to scaling (i.e., f(kx) = f(x)).
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In order to measure the progress of the algorithm we introduce
a potential function f:

t
£ = S In(<) = ninetx) - 3 In(x;)) -
J J J

» The function f is invariant to scaling (i.e., f(kx) = f(x)).

» The potential function essentially measures cost (note the
term nIn(c'x)) but it penalizes us for choosing x; values
very small (by the term — > ;In(x;); note that —In(x;) is
always positive).
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For a point Z in the transformed space we use the potential
function

f(2)
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For a point Z in the transformed space we use the potential
function

f(2):= f(FZ1(2))
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For a point Z in the transformed space we use the potential
function

Y2 - .
etYi) = f(YZ)

f(2):= fFZH2) = f(
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For a point Z in the transformed space we use the potential
function

¥R
f(2) = f(F; (2_)) = f(ietl-,j) = f(Y2)

m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke



For a point Z in the transformed space we use the potential
function
A 1,a z -
f(2) = f(Fg1(2)) = 2) = f(Y2)

tr\
=S ,YAZ) - 21 (55 - Sinx
J Zj J
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For a point Z in the transformed space we use the potential
function

7Y = FEENE)) = f(Y—.ZJ — f(Y2)
= >ng C-.Yf> -Zin H)—Zln:‘q

J

Observation:
This means the potential of a point in the transformed space is
simply the potential of its pre-image under F.
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For a point Z in the transformed space we use the potential
function

(&)= FE @) = f(125) = f(72)
= >ng C-.va -Zin H)—Zln:‘q

J

Observation:
This means the potential of a point in the transformed space is
simply the potential of its pre-image under F.

Note that if we are interested in potential-change we can ignore
the additive term above. Then f and f have the same form; only
c is replaced by ¢.
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The basic idea is to show that one iteration of Karmarkar results
in a constant decrease of f. This means

5 5 e
f(Xnew)Sf(ﬁ)_é,

where 6 is a constant.
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The basic idea is to show that one iteration of Karmarkar results
in a constant decrease of f. This means

a Y-
f(Xnpew) < f(=) -0,
n
where 6 is a constant.

This gives
S (Xnew) < f(X) =6 .
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Lemma 3
There is a feasible point z (i.e., Az = 0) in B(%, p) N A that has

P e
f(Z)Sf(ﬁ)—fS

with 6 = In(1 + o).
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Lemma 3
There is a feasible point z (i.e., Az =0)in B(%, p) N A that has

- ~ e
f(2) Sf(;) -0
with 6 = In(1 + o).

Note that this shows the existence of a good point within the
ball. In general it will be difficult to find this point.
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Let z* be the feasible point in the transformed space where ¢l x
is minimized. (Note that in contrast Xpew is the point in the
intersection of the feasible region and B(%,p) that minimizes
this function; in general z* # Xpew)
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Let z* be the feasible point in the transformed space where ¢l x
is minimized. (Note that in contrast Xpew is the point in the
intersection of the feasible region and B(%,p) that minimizes
this function; in general z* # Xpew)

z* must lie at the boundary of the simplex. This means
z* ¢ B(5,p).
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Let z* be the feasible point in the transformed space where ¢t x
is minimized. (Note that in contrast Xpew is the point in the
intersection of the feasible region and B(%,p) that minimizes
this function; in general z* # Xpew)

z* must lie at the boundary of the simplex. This means
z* ¢ B(5,p).

The point z we want to use lies farthest in the direction from %
to z*, namely
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Let z* be the feasible point in the transformed space where ¢t x
is minimized. (Note that in contrast Xpew is the point in the
intersection of the feasible region and B(%,p) that minimizes
this function; in general z* # Xpew)

z* must lie at the boundary of the simplex. This means
z* ¢ B(5,p).

The point z we want to use lies farthest in the direction from %
to z*, namely

Z=(1—A)£+AZ*
n

for some positive A < 1.
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Hence,

élz—(1- A)ét% + Aétz*

[T
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Hence, 0
flz=(1- A)étﬁ + Aétz*

The optimum cost (at z*) is zero.
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Hence,

élz—(1- A)ét% + Aétz*

The optimum cost (at z*) is zero.

Therefore,
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The improvement in the potential function is

f(%) - f(2)
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The improvement in the potential function is

Cc

te clz
f(—)—f(z)—zln( EREDRUIEES
j J

n
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The improvement in the potential function is

e . ate
f(ﬁ)—f(2)=zln( il

clz
—) —Zln(7)
J n J
CAtg Zj
= le’l( étZ . T)
Jj n
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The improvement in the potential function is

cty étz
f(*)—f(Z)—Zln( —Zln(f)
J ﬁ J Zj
t 5.
= Zln( - TJ)

= %ln(ﬁzj)
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The improvement in the potential function is

R Ate ~
FE) - f = Zln( R Zln(g
t J
= Zln( - T
= %ln(ﬁzj)

- Zln(%((l —)\)% +Az5))
J
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The improvement in the potential function is

TN G

©Harald Racke

R Ate N
FE) - f = Zm Zméf

cte
n

—Zm(

. J
ct l
n

- ?l“ﬁ

_Eﬁmfﬁxu1—ml+Az))
j

=>1In(1+
J

*
_/\Zj)
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We can use the fact that for non-negative s;

Ziln(l +8) =In(1 +>;s:)



We can use the fact that for non-negative s;

Ziln(l +8) =In(1 +>;s:)

This gives

~ e A~
f(ﬁ) —f(Z)



We can use the fact that for non-negative s;

Ziln(l +8) =In(1 +>;s:)

This gives
naA
—-A

FE)-F@=Sma+
J

*
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We can use the fact that for non-negative s;

Ziln(l +8) =In(1 +>;s:)

This gives
nA
-A

FE)-F@=Sma+
J

*
1A%

A

n
zln(1+1_A
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In order to get further we need a bound on A:

Xr
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In order to get further we need a bound on A:

xXr =p
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In order to get further we need a bound on A:

xr =p =|z—e/n|
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In order to get further we need a bound on A:

oar =p =lz—e/nl = A" —¢/n)|
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In order to get further we need a bound on A:

ar =p =|z—e/nl =A(z* —¢/n)| < AR
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In order to get further we need a bound on A:

ar =p =|z—e/nl =A(z* —¢/n)| < AR
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In order to get further we need a bound on A:
or =p = llz—e/nll=||A(z* —¢/n)] < AR

Here R is the radius of the ball around % that contains the whole
simplex.
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In order to get further we need a bound on A:
or =p = llz—e/nll=||A(z* —¢/n)] < AR

Here R is the radius of the ball around % that contains the whole

simplex.
R=V(n-1)/n.
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In order to get further we need a bound on A:
or =p = llz—e/nll=||A(z* —¢/n)] < AR

Here R is the radius of the ball around % that contains the whole
simplex.

R =+/(n-1)/n.Sincer =1/./n-1)n we have R/r = n — 1 and

Aza%za/(n—l)
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In order to get further we need a bound on A:
or =p = llz—e/nll=||A(z* —¢/n)] < AR

Here R is the radius of the ball around % that contains the whole
simplex.

R =+/(n-1)/n.Sincer =1/./n-1)n we have R/r = n — 1 and

Aza%za/(n—l)

Then

A
1 -
T
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In order to get further we need a bound on A:
or =p = llz—e/nll=||A(z* —¢/n)] < AR

Here R is the radius of the ball around % that contains the whole
simplex.

R =+/(n-1)/n.Sincer =1/./n-1)n we have R/r = n — 1 and

Aza%za/(n—l)

Then
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In order to get further we need a bound on A:
or =p = llz—e/nll=||A(z* —¢/n)] < AR

Here R is the radius of the ball around % that contains the whole
simplex.

R =+/(n-1)/n.Sincer =1/./n-1)n we have R/r = n — 1 and

Aza%za/(n—l)

Then
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In order to get further we need a bound on A:
or =p=lz—e/nl=lA(z* —¢/n)| <AR

Here R is the radius of the ball around % that contains the whole
simplex.

R =+/(n-1)/n.Sincer =1/./n-1)n we have R/r = n — 1 and

Aza%za/(n—l)

Then

1+n
1

This gives the lemma.
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Lemma 4
If we choose « = 1/4 and n > 4 in Karmarkars algorithm the
point Xnew satisfies

5 5 oe
f(xnew)ﬁf(ﬁ)—(s

with 6 = 1/10.
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Proof:
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Proof:

Define

g(x) =

T
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Proof:

Define
At ~
~ c'X
g(xX)=nln 5
fte
n
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Proof:

Define

gX)=nln

I

S
=3
>
%
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Proof:

Define

gX)=nln

I
2
5
o
=

|
5
>

This is the change in the cost part of the potential function when
going from the center % to the point X in the transformed space.
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Similar, the penalty when going from % to w increases by
xj
1
n

h(%) = pen(%) — pen(*) = = 'In
J

where pen(v) = - > ;In(v;).
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We want to derive a lower bound on

~ e 2 A
f(ﬁ) — f(Xnew)
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We want to derive a lower bound on
~ e ~ ~ - ~ E _ ~
f(ﬁ) — f(Xnew) = [f(n) f(2)]
+ h(z)

— h(Xnew)
+[9(2) — g(Xnew)

where z is the point in the ball where f achieves its minimum.
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We want to derive a lower bound on
~ e ~ N - ~ E _ ~
f(ﬁ) — f(Xnew) = [f(n) f(2)]
+h(z)

— h(Xpew)
+[9(2) — g(Xnew)

where z is the point in the ball where f achieves its minimum.
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We have

[F(&) -

n
by the previous lemma.

F(2)]=In(1 + x)
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We have

[F(£) - f()]=In( + )

n
by the previous lemma.

We have
[g(2) —g(Xnew)] =0

since Xpew is the point with minimum cost in the ball, and g is
monotonically increasing with cost.
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We show that the change h(w) in penalty when going from e/n

to w fulfills
BZ
lh(w)]| < m

where B = nar and w is some point in the ball B(%, or).
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We show that the change h(w) in penalty when going from e/n
to w fulfills

_ B
lh(w)| < )
where B = nar and w is some point in the ball B(%, xr).
Hence,
F(E) ~ Flinew) 201 + 00 - —E-
n new’ = 1-8) "
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Lemma 5
For|x|<B <1

X

IIn(1 +x) — x| < ———— 21 -

2

B

T
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This gives for w € B(,p)

lh(w)]
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This gives for w € B(n,p)

Zln 1/n
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This gives for w € B(n,p)

‘Zlnl/n

(1/n+(
n 1/n

wj—l/n))

n(wj—

-2

10 Karmarkars
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This gives for w € B(n,p)

Zlnl/n‘

1/n

n(1/n+ (wj—l/n)) B
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This gives for w € B(n,p)

lh(w)| = Zlnl/n
B I/n+ (wj—-1/n) 1
S (M) Sy 1)

= Z [ln (1 +n(wj - 1/n)> -n(w; - 1/71)] ‘

J
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This gives for w € B(n,p)

Ih(w)| = Zlnl/n

s m) 5, )

‘

= % [ln (1 +n(wj - 1/n)> -n(w;j - 1/71)]
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This gives for w € B(n,

Ih(w)| = Zlnl/n

p)

- %m(
[sfu

J

) S )|

<nar <1

1+n(wj- 1/n)> -n(w; - 1/71)] ‘

©Harald Racke
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This gives for w € B(n,

Ih(w)| = Zlnl/n

p)

- %m(
[sfu

J

) S )|

1+n(w;-1/n) | -n(w;j—-1/n)

©Harald Racke
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This gives for w € B(n,p)

lh(w)]

J

<2

J

Zln l/n
?n(”"”fii;‘””))—%n(wf—i)\

> [ln (1 +n(w; — 1/n)> -n(w;j - 1/71)] ‘

n?(wj—1/n)?

2(1 — anr)

T
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This gives for w € B(n,p)

lh(w)| = Zlnl/n
B I/n+ (wj—-1/n) 1
S (M) Sy 1)

= %[ln <1 +n(w; — 1/1’1)) -n(w; - 1/”)]‘
SzM

2(1 — anr)

J
(anr)?
—2(1 — anr)
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The decrease in potential is therefore at least

BZ
1-8

In(1 + ) —

with B = nor = o).
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The decrease in potential is therefore at least

BZ
1-8

In(1 + ) —

with B = nar = /"5

It can be shown that this is at least %0 form >4 and = 1/4.
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Let x*) be the current point after the k-th iteration, and let
50 = €
n
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Let x*) be the current point after the k-th iteration, and let
50 = €
n

Then f(x®)) < f(e/n) — k/10.
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Let x*) be the current point after the k-th iteration, and let
50 = €
n

Then f(x®)) < f(e/n) — k/10.
This gives
ctx®)

te
T

niln
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Let x*) be the current point after the k-th iteration, and let
50 = €
n

Then f(x®)) < f(e/n) — k/10.

This gives
ctx® _ (k)
nln ct% len ] —Zln——k/lo
J J
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Let x*) be the current point after the k-th iteration, and let
2(0) _ e
X =

Then f(x®)) < f(e/n) — k/10.
This gives

te
n

(k)
nin X7 < Zln g zln% ~k/10
j

< nlnn —k/10
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Let x*) be the current point after the k-th iteration, and let
%0 = ¢
<.

Then f(x®)) < f(e/n) — k/10.

This gives
ctx®) _(k 1
niln e lenx;)—Zlnﬁ—k/lo
n J J

<nlnn-k/10
Choosing k = 10n (£ + Inn) with £ = ©(L) we get

ctx k)

e <et <2t
€

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke



Let x*) be the current point after the k-th iteration, and let
2(0) _ e
X =

Then f(x®)) < f(e/n) — k/10.
This gives

te
n

(k)
nin &% <Zm*” Zm%—wm
j
< nlnn - k/10

Choosing k = 10n (£ + Inn) with £ = ©(L) we get

ctx k)

?SQ_ESZ_#.
Cn

Hence, ©®(nL) iterations are sufficient. One iteration can be
performed in time O (n3).
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